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1. Introductory remarks
In spite of the brilliant pioneering work of Farr, Hamer and Ross, and of impor-

tant later studies by Soper, Greenwood, McKendrick, E. B. Wilson and others (see
references and also the historical survey by Serffing [31]), a quantitative theory of
epidemics in any complete sense is still a very long way off. The well-known com-
plexity of most epidemiological phenomena is hardly surprising, for not only does it
depend on the interactions between "hosts" and infecting organisms, each indi-
vidual interaction itself usually a complicated and fluctuating biological process,
but it is also, and this is a further point to be stressed, a struggle between opposing
populations, the size of which may play a vital role. This last aspect is essentially
one that can only be discussed in terms of statistical concepts. Greenwood (see
p. 15, [16]) has remarked that "the epidemiologist's unit is not a single human
being, but an aggregate of human beings"; however, even this remark omits to
stress the second population of infecting virus or other parasitic invaders, and a
much more comprehensive statement by Greenwood and his co-authors will be
found in Experimental Epidemiology (see pp. 7-11, [17]). From the time of Ross
at least, the importance of studying the nature, density and mode of transmission
of the infecting agent has been recognized, although reliable information of this
kind is often comparatively meagre. It should also be realized that the virus or bac-
terial populations may be in a continuous genetic or other biological state of flux.
One need merely recall, for example, the existence of different strains of influenza
virus, or the evidence for strains of different virulence in experimental epidemio-
logical studies (see section 6, [17]). Considerable care is of course necessary not to
confuse such variation in the virus with variation in resistance of the susceptible
population, or with variation in the facility of transmission, especially when one
remembers the severity of, say, a first epidemic of measles introduced into an iso-
lated community, or asks what unambiguous evidence there is for intrinsic rise or
The presentation of this paper was supported (in part) by funds provided under Contract AF-
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fall in virulence during the course of single epidemics. Brownlee in particular ap-
peared at times too ready to identify the cycles and waves he isolated from observed
epidemics with an intrinsic variability in the virus, without always fully considering
how far the phenomena he found could be, in part at least, purely statistical proper-
ties of the system under observation.
Any complete quantitative theory, in so far as it is realizable at all, would be

based on hypothetical models or systems depending on a few parameters whose
values could be determined from observations, perhaps of more local or isolated
units. For example, in the case of infection from person to person, some of these
parameters specify the nature of the incubation and infectivity periods, and the
probability of transmission of infection. Other variables to be considered are the size
and structure of the susceptible population, and the nature of, and changes in,
immunity to the disease. The accurate determination of these parametric values
from appropriate statistical data is thus of the utmost importance. (For recent
investigations of this kind see, for example [4], [5], [ 18], and [ 19].) However,
such information by itself does not automatically lead to an understanding of the
behaviour of the population as a whole, and the justification of further theoretical
discussion, as attempted in the present paper, is that mathematical formulations
of typical epidemiological situations indicate (in so far as the equations can be
handled) quite complex consequences even on the simplest assumptions. Until these
have been studied and understood it would seem premature to embark on possibly
more realistic, but even more complex, theories.

In most of these mathematical models the problem of the characteristics of the
invading population of infecting virus has been largely shelved by the introduction
of simple divisions of the human population into susceptible but uninfected, in-
fected, recovered and immune, and so on. This procedure, while it may be criticized,
has been retained below, as it is not unreasonable to see how far we can get with this
approach. (It might be noticed that in Ross' formulation of the epidemiology of
maleria, it was necessary to include also the population of mosquito vectors which
transmit the infection.) In view of the simplifications inevitable at present in any
theoretical discussion, it is clear that no detailed statistical agreement with obser-
vation, in the large-scale sense to be considered here, can be expected at this stage.
But this situation is quite analogous to others where complex and interacting sta-
tistical systems are under consideration, such as some of the more complicated
models of physical statistical systems, or of genetically heterogeneous animal popu-
lations. What should be looked for is a comparable overall pattern of predicted
events; only when this seems a consequence of the assumed model does the model
become a promising one for further study or elaboration.
One contrast of my own approach with that of many earlier theoretical studies

is that complete probabilistic or stochastic formulations have always been in mind.'
This enables the status of previous "deterministic" formulations, as approximations
valid to some extent in the case of large numbers, to be examined. It will be shown
that in some respects, as (i) epidemics always begin with only one or two infected
persons, (ii) local units even of a large population are still small, the neglect of the

I Note, however, the important but largely overlooked paper by McKendrick [27], in which
complete probabilistic models in continuous time are discussed. The probabilistic approach is also
necessary in testing theoretical fits to local units such as households, being first developed by Green-
wood and others for discrete generation or "chain" models; for a recent survey of this work see [5].
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random or chance factor can be quite misleading. I have been interested in par-
ticular in possible mechanisms for recurrent epidemics, when the susceptible popu-
lation is in one way or other replenished. Measles, with children continually growing
up into the critical age period, has been the explicit infectious disease usually in
mind. For this disease the main features of any model, while far from completely
understood, are perhaps, owing to the work of Hamer, Soper, and others, as well
accepted as any, and while the theoretical equations and techniques developed are
obviously applicable to epidemic models in general, it is useful to avoid over-vague
generalization and to relate the general theory to specific problems.
Some of my work along these lines has already been briefly referred to ([7]

through [10]), and needless repetition has been avoided as far as possible. More-
over, for reasons of space some minor or incidental details have still been omitted.
Otherwise the discussion below has been made, as far as practicable, self-contained.

2. Simple stochastic models
In the simple stochastic formulation of the Hamer-Soper model [32] of measles

epidemics previously proposed [7 ], it was assumed that at any time t, St individuals
were susceptible to the disease by transmission of infection from infected persons
(It in number). It was assumed further, as typical of this particular disease, that
recovered individuals were permanently immune, and were similar to isolated (or
dead) individuals in not giving rise to new infections. The "transitions" that can
occur during a small enough interval bt, from any given state i, s of this mixed
population of susceptible and infected persons, are assumed proportional to at, and
to have probabilities (independently of previous states of the population)

(i) Xis&t for s-*s-1,i i+1
(ii) Miet for i- i- 1
(iii) v6t for s-s+ 1.

Then if the simultaneous probability of It = i, St = s is pi., and

(2.1) wT(w, z) _ E piFtWZ ,

the probability-generating function 7r, satisfies the partial differential equation
__ -X(w a2w 7(2.2) a = (W2 -zw)8 +M(l - w) - + v(z - 1)7r.

This equation is valid even if X, Iu, v are dependent on t, but (unless otherwise stated)
these coefficients are here assumed constant. Special cases of (2.2) are

(a) ,u = v = 0, so that S + I is constant, n, say.
(b) v = 0.

However, such cases, while already of some mathematical intractability,2 represent
theoretical examples of single epidemics, and the condition v > 0 (if the assumption
of permanent immunity of recovered individuals is maintained) is necessary to
ensure the possibility of recurrent epidemics. Of course if no initial infection is
present the solution of (2.2) is independent of w and is

(2.3) 7r, = zn exp {Ivt(z-1) };
' Their detailed stochastic solution has been discussed by Bailey [2], [3]; and see [27] and [35]

also. An ingenious approximation for case (b), based partly on the deterministic and partly on the
stochastic model, has recently been developed by Kendall [23].
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(2.3) also indicates the nature of the ultimate general solution of (2.2), for n can
more generally be interpreted as the number of susceptibles when infection has
become extinct (a contingency not included in the deterministic formulation and
discussed in further detail later) and t reckoned from this extinction time as origin.
To avoid this trivial situation, it will sometimes be more convenient to replace
equation (2.2), which will be denoted by

cOir(2.4) d =H11,

where H is a particular operator, by the augmented equation

(2.5) dt = H, ,at
where

(2.6) H' H + e(w-1).

The extra term represents the probability ebt for the entry of a new infected person
from outside in the interval At, and ensures that infection never permanently dies
out.
An equation of the type (2.4) can always be solved formally by writing

(2.7) 7t = eHr ,
but this is most relevant for providing short-term solutions by expansion in powers
of t (compare [35]), and does not seem particularly useful for studying the long-
term behaviour. For seeking approximate solutions, it is convenient to write

(2.8) 'X(w, z) _ M(log w, log z),

where

(2.9) M(O, 4) .E{e1.+SI
so that (2.5) becomes

(2.10) aM = X(e 9+ - 1) a2M + am(e~- 1)(2.10) ~~~at aeaa

+ v(e - 1)M + e(e - 1)M .

For a change of variables from I, S to I/m, S/n, where m = P, n = J/IX, we have
for the new moment-generating function M'

(2.11) adt = r(eelm-/o - 1) d2Mf + Mr(e-/ _ 1) adM

+ m(e"/n - 1)M' + e (e/m-1)M'
A

For m and n (but not e/,u) large, the first-order approximation to (2.11) is

(2.12) 1 M -+M'+ ,MA. at * n a ao ao
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The solution of (2.12) is

(2.13) MI' =
where

(2.14) 1 dtt=i, ( 1 1 d1s, m ( - t
A dt A ~~dt n

Equations (2.13) and (2.14) represent a deterministic (that is, nonrandom) solution,
and provide one justification of the equations (2.14), which are equivalent to a de-
terministic model discussed by Soper, [32]. Their solution is developed somewhat
further below (see [ 7 ], [ 10 ] ).

3. Deterministic approximations
The equilibrium values of it and ot in (2.14) are obviously unity on their new scale.

To investigate small oscillations about equilibrium, put it _ 1 + u, st 1 + v, and
write (2.14) as

1 du
- dt = v(l + u),

(3.1)
l dv

=
_ (u + v +Uv).

A dt n

The first-order solutions (uv being neglected) are, for an appropriate choice of time
origin,

uo exp t(-2tr)cos (t,
(3.2)

v-.-uO +/dexp (- 't/lo) cos (tt + ,6), (O _ < 7r)
where

= uA/(vX) , r=l/, ,B =T/a, cos ,= -2 ,
and

(3.3) t2

For larger oscillations, the nonlinear character of (3.1) affects the shape of the
waves. If, however, we write up to the second-order terms

U = u1 + au2 + buvI +cv2 + .
(3.4)

V = Vi+ dul2 + euv + fV2 +**

where ul, v1 are the first-order solution (3.2), the coefficients a, b, c, d, e, f are found
by a straightforward investigation [10]. For # small (so that V -~90°), a further
simplification is possible and the solution becomes

u - u1 + - u2e-'1 cos 2tt,
(3.5)

v - vi(l + Au'),
where

VI - -uoV/, exp (-at/a) sin {t.
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In the case of measles, Soper took T equal to the incubation period of two weeks,
and estimating o for London as 68.23 calculated from the solution (3.2) a period of
27r/t = 73.7 weeks, and a damping factor from peak to peak of e-AEO = 0.58. The
damping coefficient has a comparatively small influence on the period, which is
approximately proportional to N/o = 1/N/X, that is, is affected mainly by the
influx rate of susceptibles and the infectivity coefficient X.
The actual solution of the equations (2.14) can of course always be calculated

numerically. Some care is necessary with step-by-step numerical methods of solu-
tion if these are to be sufficiently accurate; otherwise (as occurred with Soper's
calculations) fallacious conclusions on the damping effect may be reached. The nu-
merical method used consisted in integrating (2.14), or rather the equivalent equa-
tions for St, It, to

rt+1 rt+
AIt = X fJ I,S,,du - Jsf Iudu,

t+t

Ast = -X J ILS&du + v,

and writing ft = (1 - V)-'fo, where Vft is the "backward first difference" ft -ft-,
so that

f f,udu = fJ[ft + uVft + .u(u + 1)V2ft + .* *]du

= ft + i(ft - ft_-) + A(ft + ft_2-2ft_i) +

-rfft - t-l+ TfYt2.

To start the solution, the values for the first and second weeks were obtained by
the cruder difference method obtained by replacing df by Af in (2.14), using half-
weekly steps; the solution could then be continued by the above method, with
weekly steps.
The approximate solution from (3.5) was compared, for the above values of a, T

(for which j# = 0.0293) and initial conditions Io = 13,000, So = 150,000, with such
a step-by-step solution and appeared reasonable in spite of uo in this case being as
large as 1.348 (the values for It are shown in figure 1).
The damping of the oscillations for arbitrary initial amplitudes may conveniently

be depicted in terms of the path traced by a point with coordinates St, It. Such a
path is shown in figure 2. This type of diagram is referred to again later (figure 8),
as it also provides a convenient method of contrasting with this deterministic solu-
tion actual paths realized with the stochastic model. It might be noted that the
nonlinear character of these (deterministic) oscillations may be shown theoretically
not to affect the tendency to damping, the argument4 running as follows. In equa-
tions (2.14), put for convenience jut = T and m/n = c, and consider the function

(3.6) f(it, St) = c(it - log it) + (St- log st) .
3 From previous data of Hamer, with v = 2,200, n = 150,000. VVhile these figures are now some-

what obsolete, it will sometimes be convenient to retain them for illustrative calculations.
I It is due to Mr. G. E. H. Reuter, to whom I am consequently indebted.
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Along the path traced by any solution, we easily find that

(3 7) df _ -c(s, - 1)2 < 0
dt - 8g

so thatf decreases along such a path as T increases. Asf _ 1 + c always, f tends to a
finite limit fo _ 1 + c as T - . The curves f = k are closed, surround the point
(1, 1) and shrink down as k decreases to 1 + c. The argument may be completed
by showing (for example, by reductio ad absurdum) that the limit fo is in fact 1 + c,
so that (it, St) - (1, 1).

12,000-

10,000-
I

o -

42w.000°0 l

0,

0 20 40 60 so 100 120 140 160

Time in weeks p

FIGUrRE 1
Deterministic model. Comparison of step-by-step calculation (thick line)

with approximating curve (dotted line).

4. MisceElaneous modifications
The stochastic formulation (2.2), while typical of a certain class of epidemio-

logical situation, is of course only one of a number of variants which might be more,
typical of modified situations, but there is no difficulty of principle in the formula-
tion of such variants. The use of deterministic models, while subject to limitations
to be discussed presently, has-been seen in section 2 (see also [ 23] ) to be a possible
approximating procedure under appropriate conditions, and it is often useful to
consider directly such deterministic formulations, without the full stochastic model
being first formulated. Some of these deterministic models have been specified in
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some detail by Kermack and McKendrick [25], and I shall not consider them in
any generality here, but merely make one or two remarks with particular reference
to measles. With this illness it is known that there is a fairly restricted interval of
a few days towards the end of the incubation interval of about a fortnight when the
infection is actually transmitted (see, for example, [18], [4], and [5]). Two

14,000

12p00

0- , . . ,
120,000 134000 140000 150p00 164000 174000 160.000

FIGURE 2

Deterministic model. Approach to equilibrium point (at cross) of I, S curve.

methods of modifying the assumption of a simple stochastic rate X of infection are
possible.

(i) The infectivity rate X may be made a function X(x) of the "age" of the infected
person from the instant of infection. This is not perhaps too complicated in deter-
ministic formulations, leading to differential-integral equations, or in special cases,5
but in general it transforms the process to a nonlinear point process, methods of
dealing with which (to be referred to later in connection with spatial effects) are
tnot yet very far developed.

(ii) As a somewhat simpler device, a number of substates may be introduced,
some of which have to be traversed before the incubation interval without infec-
tivity is passed and the rest before infectivity ends. Such a device allows a more
representative probability distribution of the time of infection to be achieved. In a

'Such age-dependent models include those developed by Bellman and Harris (for an account
of which, see [11J).
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limiting case in which the first set of substates becomes very large and the rate of
infection in one final state very large, corresponding to the hypothesis of a very
short infectivity interval (this is the discrete generation or "chain model," and is
referred to again in section 6), Soper was misled by his approximate numerical
calculations into thinking that the damping coefficient was reduced to zero (see

14,000

joool

to-

6,000

0_ I I I.
0 40 s0 120 160 200 240

Time in weeks _
FIGURE 3

Deterministic model. Step-by-step calculation in the case of
10 per cent seasonal variation in infectivity.

section 3), whereas it may be shown to be merely halved, a conclusion first noted
by Wilson and Worcester [38].

Seasonal changes. It is well known that many epidemics exhibit a seasonal varia-
tion in their average intensity, and this implies that the effective intensities, in par-
ticular the infectivity coefficient X, may be periodic functions of the time. Whether
such changes are due to atmospheric changes in the facility of transmission of the
infectious disease, or seasonal changes in the viability or virulence of the infecting
virus or other organism, or due merely to more artificial causes such as dispersion
and subsequent reassembly of school children during the summer, is largely irrele-
vant here. In the case of measles there is a comparatively well-defined seasonal
change of incidence (for example, for Manchester for the years 1917-1951 the change
is 60 per cent above average at the beginning of a calendar year to 60 per cent
below in the later summer), but no very direct evidence of seasonal change in the
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infectivity coefficient X [ 19 ] so that the effect of dispersal and reassembly at school
might well be the most important contributor to the over-all seasonal effect.
The simplest theoretical modification to make is the substitution for X of X'

X + X1 cos ct, where w corresponds to an annual seasonal cycle. The deterministic
equations then give, for small p = i/X, forced annual oscillations, for the incidence
rate

(4.1) VIAS X?smn(l + u + v),
with an amplitude

(4.2) p[{w2(2o,w - 1) - /L2}2 + w2a2{wc2(1 - Ay) + A2}2]I
(A - auw2)2 + W2

For At = co = 27r/52, o = 68.2, this last expression becomes 7.9p, showing that a
10 per cent variation in X' (as assumed by Soper) is sufficient on the above calcula-
tions to lead to about 80 per cent seasonal variation in incidence, which is of the
right order of magnitude for measles. For larger initial oscillations the nonlinear
character of the system does not appear to affect this conclusion; a step-by-step
calculation is depicted in figure 3, where the gradual transition of the initial damped
oscillations into the permanent forced annual oscillations is apparent.

Temporary immunity. With some infections, such as colds and influenza, im-
munity is only temporary, and the assumptions must be modified accordingly. A
different kind of temporary immunity, following infection of a subclinical type, was
suggested for measles by Stocks and Karn [33 ]. With other infections, for example,
polio, even lasting immunity may result in this way, but what evidence there is for
this kind of effect in the case of measles does not seem to me to suggest that it is an
important factor in determining the nature of measles incidence in the community
at large, and I shall not consider it further here.

5. Properties of stochastic models
In spite of the success of the Hamer-Soper model in predicting a cycle from simple

assumptions which do not explicitly include it, the damping of the waves leads to an
apparent difficulty in seeking for an explanation of recurrenit epidemics on this
basis. The problem has been clearly stated by Wilson and Worcester [38], when
they remark

". . . it must be admitted that the phenomenon of recurrent measles epidemics
gives no clear evidence of any damping. This creates something of a difficulty with
the theory in respect to the prediction of damping and throws some doubt on the
reality of periods; it is possible that measles simply dies out and then returns and
under such a hypothesis there would seem to be no reason to expect either definite
periods or damping to be observable by comparing successive epidemics."

Before this dilemma is accepted as a failure of the theory, the latter must be
examined in regard to each (and both simultaneously) of two possible ways of
escape:

(a) the effect of the more complete stochastic formulation;
(b) the spatial or topographical factor.

That effect (a) may be important is most strikingly realized by contrasting the
endemic stable equilibrium level which the deterministic theory predicts with the
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instability of this average level on the stochastic model. Consider equation (2.2)
again in the critical situation when only a few infected individuals are present in a
much larger initial population SO of susceptibles. For the crucial interval during
which the fate of the majority of the susceptibles hangs in the balance, their number
will remain approximately constant (reduction of their number by infection will
diminish still more any chance of extinction of the infected individuals calculated
with neglect of such reduction). With this approximation, if the number of suscep-
tibles at time t is written St, the chance P of extinction is available at once from the
theory of the "generalized birth-and-death process" [21] and is [J/(l + J)]i,
wherej is the initial number of infected, and

(5.1) J = fM exp{f(u - XSu)du)dt.

Strictly in (2.2) St is increasing according to a Poisson increment of mean vt, and
the above solution for P would require to be averaged for variation in St; however,
an equally relevant case is that of St increasing regularly or deterministically, so
that

(5.2) ( - XS.)du = (jL - SOX)t - JXPt2.
The value of J may then be written in the form

(5.3) J = ieil(l1 ) eIU2dUfl)(f- )

where Al= /6, f = SoX//. For values of X, g, v previously used (section 2),
q = 5.84, and the values of 1 - P(f) for j = 1 are shown in figure 4. In the alterna-
tive important case of a "closed" population (v = 0), the chance Po(f) becomes the
extinction probability for a simple birth-and-death process with birth-rate SoX, and
is, for j = 1 (see, for example, p. 71, [10] ),

(5.4) 1, f ' 1; ilf, f > 1.
For large f, the chance P( f) may be written asymptotically as

(5.5) P(f) - f2(f 1

This extinction phenomenon shows that in a small isolated community the deter-
ministic solution is quite unrepresentative of what will occur on the epidemic model
assumed. After a major epidemic the infected number drops to very few, and conse-
quently, as the susceptible population is also temporarily small, the infection will
disappear, as remarked in section 2. However, if it is allowed to reenter, as envisaged
in the extra term of equation (2.6), a fresh epidemic can break out when the sus-
ceptible population has again become large enough.

It is possible to investigate this stochastic mechanism somewhat further in this
case of uniform (random) rate of entry of infectives. For if the outbreak of an epi-
demic is defined from the date of entry of infection which does not become extinct,
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and, as suggested above, the ultimate reduction in number of susceptibles when an
epidemic gets started is neglected, then the effects of each new infection are inde-
pendent, and the chance of no epidemic from t = 0 up to time t may be written

(5.6) II [1- E du + edu P(fu)] = exp {-j [1- P(fM)]du},
o<u< f

where P( f,) denotes the chance of extinction with one new infection at time u
when the number of susceptibles is S., and it is assumed that there is no infection

0.5

t-
0L 0.4-

0.3-

0.2

0.1

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

f
FIGURE 4

Stochastic model. The chance of a "major epidemic" plotted against f Sox/l. This chance is
1 - P, where P is the extinction probability for a steady influx of susceptibles (X7 = 5.84). The
chance 1 - PO for a closed population is also shown for comparison (it is zero forf S 1).

present at t = 0. If in this rather rough argument the chance P( fu) is replaced by
the further approximation Po(fu), where PO neglects the effect on P of the con-
tinued influx of susceptibles after time u, it is possible to obtain an explicit solution
[ 10]. The equivalent frequency law, in terms of T = Xvt/IL, is

(5.7) r(T - 1) Tr-le-r(T-1)dT (r = e,/(Xv))

with a mode at Tm = 1 + 1/rv The mean value of T for the distribution (5.7) is
shown in figure 5, and will be seen to be relatively insensitive to values of e until e
becomes very small, when considerable delay in an outbreak may of course arise
from the long intervals between successive entries of new infection. The mean value
of t is directly proportional to a - ,u/(Xv) (being, for example, 2.25a when r = 2,
say), in contrast to the deterministic model with period approximately propor-
tional to aXTr.
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The interest of this stochastic model is in providing a mechanism which does
generate a permanent and undamped series of outbreaks, with a period which,
although not completely regular, will show a marked tendency to keep within a
certain range of values. The time of an outbreak is associated closely with the epi-
demiologists' notion of a "threshold" of susceptible density, but this threshold (at
So = A/X) can in the stochastic model represent a genuine discontinuity of effect,
particularly if several infectives are introduced simultaneously into a temporarily
closed population of susceptibles.

7.0 -

6.0 -

8.-0

4.0-

2.0

1.0-
0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 160

r
FIGURE 5

Stochastic model. The mean value T of the delay before a new epidemic for
the distribution of equation (5.7).

The contrast of the stochastic behavior of the model with the previous deter-
ministic treatment is well illustrated on the I, S path diagram. In the deterministic
model the line I = 0 is a possible path, but one never reached from inside the
positive I, S quadrant. In the stochastic model, on the other hand, the actual path
is extremely liable to drop to I = 0 when S drops below its threshold value (and the
path then proceeds along I = 0 until new infection enters); unless m is large or
other conditions (see the further discussion in section 7) are present favoring a
small chance of extinction, the path is thus unlikely to get beyond the deterministic
first epidemic cycle before degenerating to the line I = 0.

6. Artificial epidemic series
The type of epidemic behaviour discussed in the last section has been demon-

strated by means of mock series generated with the aid of random numbers. Such
demonstrations are useful in view of the difficulty of complete solution of the sto-
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chastic equations. The method of constructing these artificial series has been pre-
viously indicated [8], the recurrent series there reported being intended to simulate
successive measles outbreaks in a boarding school. The "notifications" in another
series of this type are shown in figure 6. For convenience a random entry of suscepti-
bles has been reverted to, and the simple model represented by equation (2.5) has
been used. Standard random intervals with unit mean were listed (the method used
was to take T = '-(X2 + Y2), where X and Y are standardized normal variables
tabulated by Wold [40]), and as for any state It, St the interval before a new
occurrence has an exponential distribution with mean I/(XItSt + AIt + v + E),
these random intervals were at each stage scaled accordingly. Moreover, when such an

tzo-!0,
-15 -

10

0

10 20 30 40 50
SusceptiblesI _-

FIGURE 8
Stochastic model. Portion of I, S curve for the artificial series shown in figure 6.

event occurs, the relative chances of the four possible transitions (i) I - I + 1,
S -- S - 1, (ii) I * I - 1, S- S, (iii) I- I, S S + 1, (iv) I -o I + 1, S -S,
are XIS : AI : v : e, so that the actual event could also be determined with the aid of a
table of random numbers [24 ].
The numerical constants for the series shown were IA = 1/2, X = 0.02, v + e =

0.375, e = 0.0225 (and Io = 3, So = 50). These values give oa = 70.9, of the same order
as before; but as f is fairly low (r = 1.60), theremay sometimes be delays before epidem-
ics break out. The situation may be compared with that in a small and largely isolated
community, and it is relevant to note that measles epidemics for such isolated com-
munities manifest similar characteristics. (The measles notifications from 1940 to
1955 in the Welsh district of Ffestiniog, an isolated urban center with a total popu-
lation of about 7,000, are shown for comparison in figure 7). The mock series is not
extended enough for any precise comparison with the theoretical distribution (5.7)
of the previous section, but the intervals between the mock epidemics appear
reasonably consistent with it. (The distribution (5.7) is based on the approximate
chance of extinction Po(f). The somewhat more accurate distribution based on
P( f) has subsequently been calculated by Miss Joyce Almond, and has, as might be
expected, not quite such an abrupt beginning.)
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A disadvantage with the continuous-time model is the rather laborious computa-
tion needed for the generation of these mock series, and in some cases it is more con-
venient to construct series based on the discrete time or chain model. This is in
principle readily achieved in exactly the same way as for closed populations, the
influx of susceptibles (and, if required, of infectives) being arranged at the end of
each time unit. Such a model seems no easier to handle theoretically, but the com-
putation of artificial series (with the aid of the National Bureau of Standards tables
of the binomial probability distribution) is much more rapid. An example is given
in the next section.

0.6 -
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0L2

0-
0 1.0 2.0 30 4.0 5.0 c60 7.0 6° t 9.0 10.0

FIGURE 9
Frequency curve for the distribution of equation (5.7), with r = 1.60.

7. The chance of avoiding extinction
The new stochastic phenomenon of extinction or fade-out of infection is impor-

tant, though at first sight this effect might diminish if large enough units or groups
are considered, that is, if instead of boarding schools or small towns, larger urban
districts are taken as units. This notion of a critical size is difficult to discuss quanti-
tatively, but the following very crude argument may have some relevance. From
the approximate extinction probability evaluated in section 5 (allowing for further
influx of susceptibles) the order of magnitude of the number of infectives required
to give not more than a 50: 50 chance of extinction after half the epidemic cycle
(for , = 5.84) is

f= o, I= 2 x 108,
f = -, I =700,
f =2,q I =70,

where f is the ratio of the number of susceptibles to its average value. As no reliable
theoretical value for the swing in f is available, appeal at this point must be made to
experience, which suggests that for measles the range is not more than 14 to a



0~~~~

0

0~~~~~~~~ID

0~~~~~~~~~~~0U

0~~~~~~~~~~~~~~~~0e

0~~~~~~~~~~~~~~
go~~~~~~~~~~~~~~~~~~~~~~~~~-

0,

u0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n

0~~~~~~~~0

0~~~~~~~~~~~~~~~~~4

LO.4
QJ~~~~~~~~~~~~~~

0~~~~~~~~
0~~~~~~~~~~~~~~~~~4

20 C-i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4b0

SpOoOUI *-SGIDI0



RECURRENT EPIDEMICS 99

(a 3 :1 ratio). In this case as many as 700 infectives appear needed. Owing to the
phase difference in the deterministic cycle between numbers of susceptibles and
infectives, this number should be taken as the average number m of infectives, but
even so would imply a rather larger town than Manchester, for which m appears to
be rather less than 400. It is interesting to find that notifications do fade out over
larger intervals than a fortnight for smaller towns like Preston or for subareas of
Manchester, but for Manchester as a whole no extinction occurred throughout the
whole of the period 1917-1951 for which the statistics were available. Thus these
very rough quantitative estimates are perhaps partially, but not completely, con-
firmed by observation. The necessity of treating large-scale units adequately, as
mosaics of hundreds of smaller units each with their own local epidemiological
histories, becomes apparent.

Before this is attempted, however, the theoretical value of the above ideas will
be demonstrated by a deliberate change of constants to facilitate the recurrence of
epidemics without the need for re-entry of infection. Clearly we must reduce the
value of q if the chance of extinction during each epidemic cycle is to be made small.
It is not too easy to do this without imposing such heavy damping that an endemic
equilibrium level results, for the damping factor from peak to peak tends to be
inversely dependent on vj. However, the compromise value of X = 1.44 was selected.
The new conditions do not of course any longer represent measles, but to render

them of some interest they were chosen in relation to the observed epidemic series
for ectromelia in mice reported in Experimental Epidemiology (see p. 70, [171).
The intake of susceptibles v was 3 per day, the incubation period was 4 days, so
that ,u = 1/4. The value of X was taken as 0.01, in order to give a (deterministic)
period of about 30 days, comparable to that observed. So was 25, Io was 20, as in
the actual series. The average susceptible population in the artificial series was then
about 30; in the actual series the susceptible population, in contrast with the total
population, was unknown, but probably rather higher (see p. 75). No very close
agreement would be expected, but the authors' apparent rejection of the Soper
model (at the beginning of p. 76), on the grounds that no oscillatory movement with
the right period occurred, seems unjustifiable and at variance with their own figure 8
(opposite p. 70).
The artificial series, which was for convenience constructed on a "chain" basis

with the incubation period of four days (see preceding paragraph for other con-
stants) as time unit, is shown (for It) in figure 10. It ran for nearly three "years,"
or about 30 cycles, before extinction of infection occurred.
When conditions permit recurrent epidemics, either by (a) reentry of infection,

or by (b) a quasi-stationarity, as in figure 10, before extinction finally occurs, it is
evident that stochastic variability and the damping tendency determine together a
mean amplitude of fluctuations, just as in more orthodox linear time-series theory.
Under (a) it should be possible in principle to determine the equilibrium distribu-
tion of I and S from equation (2.5), for on heuristic grounds it obviously exists and
satisfies the equation H'7r = 0. However, even the moments seem difficult to find
unless some further approximating assumption of near-normality is made. This can
only be justified under the limiting conditions of m, n large, and small stochastic
oscillatious about the deterministic mean level, with the chance of extinction un-
important. It is perhaps worth stressing the orthodox time-series aspect of this
limiting case, by the following (formal) derivation.
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In place of the deterministic equations (2.14), we may write for the stochastic
changes in a small time At

AIt = -,IhtAt + XI StAt - AZ1 + AZ2,
(7.1)

ASt = vAt-XItStAt- AZ2 + AZ3,

where AZ1, AZ2, AZ3 are Poisson variables with adjusted zero means and variances
AItIAt, XhStAt and vAt respectively. In terms of the reduced variables itIt/m,
st=St/n, with T vt (and AT for At), equations (7.1) become

MAtit = -itAT + itstAT - AZI + AZ2
(7.2)

nAtts = AT - itsfAT + AZ3 - AZ2,

where the variances of AZ1, AZ2 and AZ3 are now itAr, itstAT and AT respectively.
These nonlinear stochastic equations are approximated as in the deterministic
model, with it - 1 + Xt, St - 1 4- Yt. Then the first approximation gives

mdtxt = ytdr-dZi + dZ2,
(7.3)

ndtyt = -(xt + yt)dT + dZ3-dZ2,

orthodox bivariate linear time-series (with the variances of dZ1, dZ2 and dZ3 all dr).
This readily yields the autocorrelations and cross-correlations of xt and yt in terms
of the damped deterministic linear approximation given earlier. The equilibrium
variances and covariance of x and y are moreover obtained by squaring and cross-
multiplication of the equations equivalent to (7.3)

mXt+dt = mxt + ytdT- dZ1 + dZ2,
(7.4)

nyt+dt = yt(n - dr) - xtdr + dZ3 - dZ2

and averaging. This yields three equations for ao2, 2 and cov(x, y), whence

2 n 1 2 1 1 _ 1

rn m n mm
These results will of course only be applicable under conditions for which a2, a2
remain small.

8. The spatial or topographical factor
Coming now to the spatial effect, theoretical progress with this problem is hardly

likely to be rapid when even the simpler case of a small unit has proved so intrac-
table, but two questions at least demand an answer. The first is whether the tend-
ency to a stable endemic level on the simpler deterministic theory still holds; if it
does, the second question is to what extent the stochastic instability previously
discussed now modifies the deterministic solution.
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To obtain some information on the first question, the case of two interacting
groups is worth consideration. The deterministic equations will be written down
at once,6 though there is of course no difficulty in formulating the corresponding
stochastic model. The interaction can be supposed due to actual diffusion or migra-
tion of susceptibles or infectives from one group to the other, or to a chance of
infection to a susceptible of one group from an infective of the other, for example,
by the infective making a visit to the other group and then returning. There does
not ppear to be any very vital difference between these two hypotheses, and for
the time being both will be included.
The changes in the numbers xi, y, of the infectives and susceptibles in the first

group are thus supposed determined by the equations (D _ d/dt)

Dy1 = -(Xlxl + X2x2)yI + V + #(Y2 -Y),
(8.1)

Dxl = (X1Ix + X2x2)yl- I.xL + a(X2 -X1) X

and similarly for the second group, where ,B and a are diffusion or emigration rates
for susceptibles and infectives. The equilibrium values of x1, x2, Yi, y2, are

(8.2) mI = M2 = P/II, ni = n2 = A/(Xl +X2);

and, if x, = mr(l + ur),Yr = r(1 + vr), = 1, 2, then for small fluctuations about
equilibrium it will be found that

(D + + ,8) VI + - Ul OVt2 +- P U2 = °U2O

(8.3)
-,v1 + (D + u[l - p] + a)ui - [,u(l - p) + aju2 = 0,

and similarly with the suffices 1 and 2 interchanged, where a = //[ v(Xi + )12)],
p = X1/(X1 + X2). These linearised equations yield the same equations as before for
v = vi +v2, u =ul +u2,withX = XI +X2. For v' = vl-v2, u' = ul-u2, more-
over, the equations are

(D + + 2)v' 1 2 u' = O

(8.4)
-,v' + [D + 2A(l -p) + 2a]u' = 0

with determinantal equation in D

(8.5) D2+D (!+2M(1-p)+2a+20)+-+ 2a+4A(1-p)3+4aI3=O.

As all the terms in the coefficient of D are positive, the damping of the differences
v', u' will be greater than the damping of v, u.

6 See a recent paper by Rushton and Mautner [30] on a deterministic model for several conumuni-
ties. The different and more restricted conditions they assumed ensure, however, no overlap with
my own discussion.
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This result indicates that a similar result should follow for several interconnected
units, but it is perhaps advisable to check this in the extreme case when the units
have become relatively so small that the system spatially may be considered con-
tinuous. In this case the equations (8.1) are assumed replaced by

Dy(r, t) = -Xy(x + pV2X) + v + 3V2y,
(8.6)

Dx(r, t) = Xy(x + pV2x) - jx + aV2x,

where r stands for the spatial coordinates (%, n), x and y are now spatial "densities"
of infected and susceptible, and V2 = a2/8a2 + 02/8X72. (The same letters p, a and d3
are used as in (8.1), but of course with different interpretations; the assumption
underlying the appearance of the operator V2 is that infection and migration are
local and isotropic in character. Homogeneity in space is implied by the coefficients
X, p, etc., being independent of r.) The linearised form of these equations is

(D + 1 - lV2) v(r, t) + 1 (1 + pV2)U(r,t) = 0

(8.7)
- Av(r, t) + (D - [a + jp]V2)u(r,t) = 0 .

Equations of this type have been studied by Turing [34] as possible models for
biological growth and form, and in general may lead to undamped waves in space
and time, but it is not difficult to show that the particular equations (8.7) still yield
waves damped in time. Consider a component of the general solution of (8.7) of the
form exp (at + ibQ + icq), where i v'ZiI, and b and c are real. Then from (8.7)

(8.8) [a + + (b2 +c2)[a + (a +up)(b2+C2)+ [1 - p(b2+C2)] =0.

If a = a, + ia2, the imaginary part of this equation yields

(8-9) a2
1
+ 3(b2 + C2) + (a + ttp)(b2 + c2)] + 2aja2 = 0,

or (for a2 5# 0) b2 + c2 _ 0 provided

(8.10) -+2a_ _ 0

or

(8.11) a, < - L

that is, the damping in time is at least as great as in the corresponding nonspatial
model.
A particular situation of some importance occurs when infection is introduced at

one point in an area where it has previously been extinct. In this case, the equation
for x in (8.3) may be written

(8.12) Dx = (Xy - M)X + (a + Xpy)V2x,
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where y is treated as temporarily constant. This is a standard diffusion equation
whose solution has Fourier transform

(8.13) M = ff__ei(,E+920)x dS dq

= exp {(Xy -_,u)t - (a + Xpy)(02 + 02)t1

This solution represents a Gaussian distribution normalized to exp (Xy - 1)t. The
logarithm of

(8.14) XE + 2 2Rdd2
is, apart from a constant,

1 R2
(8.15) ~~-2 R t + (BY-,u)t (2Ty2 a + xpy)X

which corresponds to any arbitrarily chosen but constant number when R2/t2 -
2(Xy -,)y2 = 0 except for an amount which decreases to zero as t increases. In
this sense [14] the limiting velocity of propagation of infection is y V2(Xy - .

For example, if f = Xy//. = 2, u = 2, this velocity is just -y. In the discussion on
Soper's paper [32], an interval of 24 weeks was suggested by Dr. Halliday as the
time for measles to spread across Glasgow. If the relevant area is, say, five square
miles, this implies (in so far as these rough calculations are applicable) an effective
diffusion of infectives with parameter -y (standard deviation) - 0.05 miles /N/-wk
Two limitations of the above theoretical discussion are (a) its neglect of sto-

chastic fluctuations, (b) its applicability is in any case restricted to the initial spread
of infection. On this last point some rather cumbrous numerical calculations on the
deterministic basis were carried out (for the one-dimensional case), but these calcu-
lations will not be considered here in any detail, especially as the deterministic ap-
proach becomes even less appropriate for a finite model extended in space. It
might, however, be noted that the propagation velocity of the initial infection wave
agreed reasonably well with the theoretical formula.
When the full stochastic model is considered, there is the same alternative as

with the deterministic model of (i) taking an arrayed set of discrete units, or (ii)
of formulating the equations precisely for a continuous area. The first choice may
often be no more an approximation than the second, for epidemics are sometimes
accelerated by the concentration of susceptibles in schools or other collective units,
whereas with the second method (to be discussed in section 9) a mathematical model
will usually have to be made spatially homogeneous. Mock stochastic epidemic
series are most conveniently computed for (i), and several small-scale series in one
space-dimension have been constructed. One of these was designed to check the
adequacy of the deterministic formula for the propagation velocity of infection, and
gave an average velocity of 0.24, against the theoretical value of 0.28. (For S0 = 100
per unit, X = 0.01, v = 0 and a diffusion coefficient for infectives between neigh-
bouring units of 0.08, cross-infection being only possible by such diffusion.)
The theoretical analysis at the end of section 7 on small-scale stochastic fluctua-

tions has also been extended to the case of several interconnected regions, and, as
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might be expected, the equilibrium variances of fluctuations in the total numbers of
infected and susceptibles are increased by diffusion between the regions. However,
the neglect of extinction for the individual regions makes such an analysis, at least
for conditions simulating measles, seem of doubtful practical interest, and the more
promising project at present for studying the long-term time behaviour of epidemic
series extended over space is by more elaborate Monte Carlo computations (such
a project was planned some time ago for the electronic computer at Manchester,
but-unfortunately it has not yet been possible to have any results available).

9. Specification in terms of point processes
In spite of this difficulty of studying long-term behaviour, a precise point-process

specification of the complete spatial problem will now be given. It permits further
generalization at least of the approximate solution for the initial spread of infection.
The theoretical technique employed [9] is that of a "point" stochastic process

N(r, t) depending on both the time and the spatial coordinates r (t, ) and of its
probability-generating functional

(9.1) 7r(z(r), t) E {exp [f log z(r) dN(r, u)

For both infectives and susceptibles, the two auxiliary variables w, z in 7r(z, w) are
replaced by the two functions w(r), z(r). The possible transitions will now be
assumed to be represented by the scheme

Transition Rate Operator
a

w(r) - 1 M4 aw(r) dr

1 z(r) vdr 1

w(s)z(r) - w(s)w(r) X a()a() dr ds

w(r) w(s) ads a() dr

z(r) z(s) A 3ds az(r) dr

with an entry of new infection, if also included, given by

1 -w(r) E dr 1.

The notation for the functional derivatives follows Hopf [20], and indicates the
assumed order of magnitude of the associated moment densities, for example, for
one quantity N(r, t),

(9.2) E{N(r, t)} = EIdN(r, t)} = f, (r, t) dr

= (': [raw(z(u), t)] dr.



RECURRENT EPIDEMICS 105

The quantities ,u, v (and e) are now in general functions of t and r, and X, a and B
of t, r and s, but it will be assumed in particular that the process is both temporally
and spatially homogeneous, so that ,u, v (and e) are constants, and X, a, ,3 functions
of the vector displacement r - s. For simplicity the process will also when necessary
be assumed isotropic, so that only the magnitude r - s of the displacement is
involved. It might be noticed that if the further complication to rates depending on
the "ages" of the various infections to allow, for example, for incubation periods,
is required, this can also be included in the same general formalism. The formal
equation for the above scheme (with e = 0) is then immediately written down as

(9.3) A =r [l w(r)1[d() dr dr + jv(z(r) - 1)r dr

+ ffX(r - s)w(s)[w(r) -z(r)] a2r ds d s dr

+ fa(r - s)[w(s)- w(r)] F- 1 ds drJJ L~~~~~Ow(r)drJ

+ -fo(r s)[z(s) -z(r)]- a(9r lds dr .JJ L~~~~~az(r)dr]
As in the nonspatial formulation, progress with this equation is possible in the

initial stages of infection in an area, when the number of susceptibles may be treated
as temporarily constant. In this case ir is taken to be a functional of w(r) only, and
the actual number of susceptibles is replaced by a constant (approximating) den-
sity n(r), which will further be assumed uniform, that is, n(r) = n. Equation (9.3)
is then replaced by the stochastic analogue of (8.2), namely,

(9.4) I9 dAt r[lf R-w(r)] [wLw(r) drJ dr

+ n ffX(r - s)w(s)[w(r)-1][- ds] ds dr
a(s) ds

+ ff(r - s)[w(s) -w(r)] [aw(r)d ds dr

The process as formulated in (9.4) is of "multiplicative" type, and hence if 7r(v)
denotes the probability-generating functional resulting from one infected individual
at v at t = 0 (and none elsewhere), 7r(v) satisfies also the equation

(9.5) a9r(V) = u[l-7r(V)] + n X(u -V)7r(V)[7r(U) - 1] du

+ fa(V -U)[7r(U) - (v)] du.

This last equation is useful in yielding the chance of extinction pt(v) of infection,
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for putting w(r) 0O, it gives

(9.6) aps(v) = [l - p,(v)] + n fX(u -v)pg(v)(pg(u) - 1) duatf

+ fa(v -u)[pt(u) - p,(v)] du,

or, with the homogeneity assumption pt(v) = pt(u) = pt,

(9-7) f9i =A(l -pI) + np(pt-1) n X(u) du

= ( - Pt) + np,(p -1)Ao,

say. This equation is the equation for the chance of extinction in a simple birth-and-
death rate with death-rate A and birth-rate nAo, and has solution

(9.8) Pt
t _ 1]

nAoe(nAo-u)tt

Equation (9.4) may be used to generate and solve equations for the moment densi-
ties. In particular, if

(9.9) f1(r, t)dr E{dI(r, t)},

where dI(r, t) is the random or stochastic number of infectives at time t in the in-
finitesimal element dr,

(9.10) df() = _fl(r)+nfr(r-s)f1(s)ds-fi(r)a(r-s)ds+a(s-r)fi(s)ds
If

(9.11) M10() = fflei(81X1+G2x2) f1(r) dx1 dx2

where r (x1, x2), and correspondingly A, A are the Fourier transforms of X, a, then
the Fourier transform of equation (9.10) gives

(9.12) dt(=) [-p + nA(O) - Ao + A(-0)]M1(O)at
where Ao = A(o), Ao = A(o), with solution

(9.13) MI(o) = exp{ [nA(O) - -Ao + A(-O)]t}-
-In the particular case of purely local (isotropic) infection and diffusion, this solu-
tion corresponds to the deterministic solution (8.12).

It should be noticed that while fi(r) is an average density which includes the zero
contribution from cases where total extinction of infection has occurred, the average
densityfl conditional on no total extinction up to time t is given by

(9.14) fal = fi/( - pI)
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and the "velocity of propagation" associated with f' will ultimately be the same as
that referred to in section 8.
The long-term stability of the system in the sense of avoiding total extinction of

infection cannot unfortunately be discussed in terms of the chance pg above, which
applies only to the initial stages of an epidemic. (Moreover, the system treated
would have to be finite and hence no longer homogeneous.) In the nonspatial model,
a further rough argument was used to follow the probable course of events develop-
ing from the situation after an epidemic had occurred, when the susceptibles were
at their lowest value. Such an argument can hardly be extended to the more general
spatial model, for the epidemic will show some heterogeneity of phase in different
places, and the only immediate conclusion appears to be the qualitative one that
such heterogeneity should presumably facilitate the preservation of infection.

10. Concluding remarks
When the theoretical results so far reached are reviewed, it can hardly be claimed

that any complete quantitative picture has yet been achieved; but I suggest that,
in addition to the more classical (deterministic) results, some important further
features have begun, at least qualitatively, to emerge. The phenomenon of extinc-
tion or fade-out of infection (impossible to consider in deterministic models) largely
decides whether the deterministic approximation has any relevance or not to the
quasiperiodicity of recurrent epidemics. This chance of extinction, which alters with
the characteristics of the model, is high for models appropriate to measles in com-
paratively small communities. This implies that the "two-year cycle" sometimes
claimed as an inherent feature of measles, and an observed fact for many large
urban areas, will be replaced by a longer average interval between epidemics for
smaller communities (also an observed fact,7 familiar of course to many epidemiolo-
gists).
The dangers of comparing small-scale experimental studies with deterministic

models (or, for that matter, with large-scale field studies) are now seen to be even
greater than I envisaged in 1949 (see p. 227, [7]); for example, the effect of scale
will be more important for infections liable to extinction than for others, and hence
very dependent on the particular type of infection under study.

In spite of the availability of a precise specification, the difficulties of a complete
theoretical treatment, including spatial effects, for recurrent epidemics in urban
areas (with interacting units in and out of phase, some with infection present and
some not) need not be further emphasized. Like the many other problems arising
in epidemic theory, it remains a very obstinate, but, one hopes, not a permanently
intractable, problem.
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