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1. Introduction
There are three broad categories into which problems of experimental design can be

classified:
1) the practical problem of deciding which experiments are relevant to the problems

under consideration,
2) the analysis of the particular experimental design chosen,
3) the decision as to which of the relevant experiments to perform.
Most of the work in classical design has concerned itself with the first two aspects,

while the third has only recently been receiving attention. This paper deals with the third
aspect.

Suppose an experimenter has available a family of random variables Y. de-
pending on a parameter OE Q0 E(P) where x E A C E(k), with A compact and E(P) and
E(k) Euclidean spaces. A choice of an experiment of size N is equivalent to choosing N
points xi,--*, XN lying in the set A. Performing the experiment consists in observing
YI', *X. YZN. If the experimenter is interested in a set of problems T, concerning the
parameter 0, then the question of how to choose xi, , XN becomes important. This
is so, since the efficiency and sensitivity of the experiments with regard to the problems in
the set T might be very much affected by the choice of xi,* * *, XN.
A simple illustration is the following. Suppose Y., a = 1,---, N, are uncorrelated

random variables with equal variance a2, and E(Y D = 2 + fl%x. The x's are as-
sumed to be fixed constants.

It is known that the variance of the least squares estimate of ,1 is inversely propor-
tional to (x. - i)2. Hence, if the values xi, *, XN can be chosen in a set A C E('),
the experimenter would choose them so that (x. - )2 is as large as possible. If one

were interested in fi2 as well, it is known that xi, xN should be chosen so that x = 0.
If A is the interval -1 x < 1, and one were interested in both 8i and 02 then, for N
even, the observations would be restricted to -1 and + 1 with half at -1 and the other
half at + 1.

In the above the points xi, XN were chosen to do "well" in two problems, namely,
estimating #I and 92. In general the problems of interest, which we denoted by T, might
include estimating certain linear relations of the form tII, + t202.
The experimenter can sometimes restrict himself to choosing x's in a subset of A with-

out loss with respect to the problems in the set T. In sections 2 and 3 it will be shown
how these subsets can be found.

Sponsored by the Office of Scientific Research of the Air Force, Contract AF 18 (600)-442.

57



58 THIRD BERKELEY SYMPOSIUM: EHRENFELD

2. The linear hypothesis
The model to be discussed in this section can be stated as follows. Let YVI., Y.ZN

be N uncorrelated random variables with common variance O. It is assumed that the
expected value of Y.. is given by
(2.1) E( YZ)=lX-l + +OkXak =o Xa. a * N

where OEE E(*) and x. = (X.1, * * *, Xak) eE(k).
The vectors xa are fixed vectors, and 0 is unknown. The coefficients 1,* Ok are the

population regression coefficients of Y' = (Y., Y,YN) on the k vectors (Xijr *, XNJ),
J = 1,* * *, k, respectively.

In matrix notation the above model can be expressed as

(2.2) E(Y) =xO

where
01'

(2.3) 0-= . , X =||xi.II;ix=i1,- N; J

In the experiment of observing Y,,*, YN some of the x's might be the same. In
order to simplify later proofs, the experiment of observing Y.,,, YZN will be writ-
ten as

(2.4) CN(nl, x('); *- *; n., x(')) with n.,= N
J-1

and x(1),-, x(8) the s different vectors of x1,i , XN. The experiment tN(nl, (1);...;
ns, x(8)) is interpreted as an experiment where Y,(J), J = 1, * **, s, is observed nj times.

Suppose the experimenter is restricted to choosing the vectors X() E A C E(k). A class
of experiments tN[A] is now defined as follows.

DEFINITION 2.1.

(2.5) CN [ AI d I d =,Cg (ni, x(l); * * ; n., x(8)) with X(J) E A c E(k)

and m S NJ.
The condition m < N is imposed to make the statement of theorems easier.

The class tN[A] is the class of experiments where YV,, -, Y.. is observed and
m . N and x1,* * *, xm are restricted to the set A.
We now suppose the problem space T to be a set T C E(*). A point (,, tk) E T c

E(k) is interpreted as the problem of estimating t10, + + IkOk.
Let

(2.6) F (d) = niFj (d) + + n.F. (d)

with
(2.7) F,(d) =IIx()x(J)I; u, v= 1, ,k .

F(d) is usually called the information matrix associated with experiment d.
Let the variance of the maximum likelihood estimate of 1101 + * * *+ IkOk when ex-

periment d is used be denoted by Vd[1'G]. The maximum likelihood estimate is the same
as the least squares estimate in this case, and is the best unbiased linear estimate in
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the sense of least variance. When tis not estimable the convention of setting Vd[t'I] = X
is adopted. We note that t is estimable with respect to d, when F(d)p = t has solutions
for p.

It is known that Vd[t'GI does not depend on OE Q and, when t is estimable with respect
to d = CN(nl, x(l);... ; n., x(')), that

(2.8) vd [t'O] - g2p' F (d) p,
where pt is any solution of F(d)pt = t. When I is not estimable then p,'F(d)pg is set equal
to infinity. When F(d) is of full rank, all tE E(*) are estimable, and p'F(d)pt = t'F(d)-'t.

DEFINITION 2.2. CL(A o) where A0o C A is said to be essentially complete (T) with re-
spect to CN[A] if and only if for any dE N[A] and any unknown OE Q there exists
d*E &L[A o] such that

(2.9) Vd*[tI6] VdJt'O] for all t E T .

In order to simplify later proofs and to take care of estimability considerations we
prove lemma 2.1. The statistical significance of lemma 2.1 is as follows. Let F* and F be
the information matrices associated with experiment d* and d, respectively. Lemma 2.1
states that if we suppose t'F*t - t'Ft 2 0 for all tE E(k), then

(a) when t is estimable with respect to d, t is estimable with respect to d*, and
(b) V1[tt'd] _ Vd[t'#] for all t E E(*).
LEMMA 2.1. If F* and F are two kXk nonnegative definite (symmetric) matrices such

that

(2.10) t'F*t-t'Ft 2 0 for aU t E E(k)

then
(a) if for any given t, there exists pt such that Fpt = t, then there exists pg such that

F*pt* = t, and
(b) p4'F*p < pg'Fpt.
PROOF.
(a) Let V and V* be the vector spaces spanned by the column vectors of F and F*,

respectively. Since F* and F are symmetric matrices, the spaces spanned by the column
vectors of F* and F are the same as the spaces spanned by the row vectors of F* and F.
Then part (a) of lemmra 2.1 states that V* D V. Let us suppose, on the contrary, there
exist I E V and I orthogonal to V*. Then F*i = 0, and. therefore 'F*1 = 0. From (2.10)
it is seen that -1'FI 2 0, and we thus have l'FI = 0, which implies Ft = 0. This is a
contradiction, since Ft = 0 implies I orthogonal to V.

(b) It will first be demonstrated that we can restrict ourselves to F* and F of the form

A E 0] I O O
(2.11) F*= E'I 0 0 0 0)

where

(2.12) A= . J
0 X"
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This is demonstrated as follows. Let F*, F be any two matrices satisfying (2.10). It is
known there exists a nonsingular matrix D, such that

(2.13) D'F*D = ( C), D'FD =o ) .

From (2.10) it is seen that A is positive definite, since (2.10) becomes
(2.14) t'At _ t't

where t' = (t,, t2). Furthermore, there exist Q, P such that Q,P are orthogonal matrices
with

(2.15) Q'AQ=A, P'CP=(O 0)-
We now calculate that

( 2.16) (0 P) (B', C) (° P' [G I °

It can be seen that G = 0, since, for example, the submatrix

(2.17) (X Gi0)

is positive definite, and thus

(2.18) lg2= > 0Igln 0 1=

We have thus demonstrated that F* and F can be chosen in the indicated form. We now
note that

(2.19) (A E)

is positive definite, since from (2.10) we see that

(2.20) (x,x) (AEtI (x >)() =
and

(2.21) (0° X2)(E' I)()= X2X2-

We thus derive

(2.22) p*9tF* p' = t4Ati1.
We know that A = (A - E'E)-1, which yields

(2.23) P*F*P*t =t4 (A-E'E) 1t .

Relation (2.10) now becomes

(2.24) t' (A -E'E) lt, _ t1t, for all ti

The last relation will hold if

(2.2 5) t' (A -E'E) t1- ttl > 0 for all ti
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This is equivalent to

(2.26) (A-I-E'E)

nonnegative definite. From (2.10) we see that
A E O I 0 0 A-I E 0

(2.27) E' I Oj_O 0 0 = E' I O
0 0 O 00 0 00

is nonnegative definite, and further that

(2.28) ( I E)

is positive definite. Because of thisR is positive definite, whereR is derived from

(2.29) (S s)( E'l I
It is known that
(2.30) R= (A-I-E'E).
The positive definiteness of R yields the desired results, according to (2.26).
DEFITION 2.3. Consider a compact set A 5 E(k). If x E A, and x Fd 0, then there

exists A(x) _ 1 such that X(x)x E A, and if Xi > X(x) then Xlx { A. With this notation
we define R(A) C A as

(2.31) R(A) =tX(x)xjx0O; xE A}.

THEOREm 2.1.1 If A is a compact set in E(k), then gjR(A)] is essentially complete (T)
with respect to C.[A] for all n, and all T ( E(k).

PROOF. Consider any experiment d E e.(A). Suppose

(2.32) d = gn (n,, x(1); * *; n,, x()) , x(s) E A .

The information matrix associated with d is F(d) where

(2.33) F (d) = n,Fj (d) + +n.F, (d) = njF (d)
with

( 2.3 4 ) FJ (d) x= )1X(J)

Let us consider x(J) = X(x(-))x(-) E R(A) in the definition of R(A). Also let

(2.35) d*=eg n(l, x(l); ..; n,, x(')) fE C,,[R(A) I .

Experiment d* has information matrix

(2.36) F (d*) = njF, (d*)

with
(2.37) F, (d*) = X2 (x(J)) x()xi) I! =; 2(X2() FF(d).

'This theorem was suggested by Professor T. W. Anderson of Columbia University.
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The condition in lemma 2.1 that t'F(d*)t - t'F(d)t 0 for all I E Ek) is satisfied since

(2.38) t'F(d*)t-t'F(d)t=t'[F(d*)--F(d)]t
= n, [XI (x(-)) - I] t'Fr (d) t _- O
J

and
(2.39) ) (x(-)) _ 1, t'F.(d)t=[ txJ)] 2O.

Now the conclusion of theorem 2.1 follows from lemma 2.1 and the definition of essential
completeness.

THEoRE1m 2.2. If A is a convex body in E(k) with a total ofm extreme points b(l), **, b(m),
then C.+m(b(1), , b(m)) is essentially complete (T) with respect to g,[A] for all n and
all T ; EJk).

PROOF. Let d = A(ni, x(1);...; n., x(8)) E gn(A) and let d*=-C(f1j, b(l);...
f,. b(-)) with I ni = r 5 n+ m and fljt. O for J = 1, * * *, m.

The information matrices associated with experiments d and d* wiul be denoted by
F(d) and F(d*), respectively. It will be shown that there exist 1l, fltm, such that
ft. 0 0, and t'F(d*)t - t'F(d)t 2 0 for all t E Ek). This with the use of lemma 2.1 will
prove the theorem.

Since x(J) E A and A is a convex set generated by b(l),**, b(m), that is,

(2.40) A = j: Xjb(i); X ,_, i = 1, 2* m and Xi = I
I -1

we have

(2.41) x (a) = Xja3b () ,a)_ 0,z p) = ,1 J= 1, - m; a=1, ,s .
J-1 J

Some calculation shows that F(d) and F(d*) can be written as

(2.42) F (d*) = Ila:.II, a.* = b,tPba,
(2.43) F (d) = IIa.,I1, a..= b,Mb,

where
(2.44) b.- ( b.(1) ...,bm)),

W, 0
(2.45) * M=li

0 n.

(2.46) Muv = nax Xv

It is known from matrix theory that there exists a nonsingular matrix Q such that
b. = Qbu with

(2.47) a = buMb Xi b( +W +Xmb bW
(2.48) a* = b'Pb =b(1)b1)+ ++b
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where X1, Xm are the characteristic roots of MP-1. Denoting Yj = IIbb(vJ) 11, J = 1,
, m, it is seen that F(d) and F(d*) become

(2.49) F (d) = X)XI+*+ mXm

(2.50) F(d*) = X,+ * - - +Xm .

It is first noted that XJ is nonnegative since

(2.51) t'XIt = S J b [ t'J2 _0
r,a V~~~~~~

and thus
(2.52) t'[F(d *)-F(d)l t= (11-X.) tXJt >_ O

if 1,*, ftmcan be chosen so that IXi I1forJ = 1, ,m.
This can be done by choosing ft,***, em so that the column sums of MP-1 are less

than or equal to one, since a matrix that has all positive elements, and whose column
sums are less than or equal to one, has all characteristic roots Ij _ 1.

Let A = IlIAuI1 = MP-1, then Au.,_ 0 and

(2.53) Aa.= nXt Xv

The column sums are

(2.54) AU,= n.aXv

Now IAu. 1 when v =[n na.)a)] + 1, where [y] denotes the greatest integer
u a

in y. It is seen that r= ft, < n+ m and . w- 0. This choice of l, *,m there-

fore satisfies the required conditions.
The following corollaries follow readily.
COROLLARY 2.1. If A is a compact set in E(k) such that the convex closure of A is gen-

erated by m vectors b(l), *, b(m) E A, then Cg+,[b(1),*, bYm)] is essentially complete (T)
with respect to g.[A],for all n, and all T C E(k).

PROOF. The corollary is clear, since Cn+m[b(1)S,-- b(m)] is essentially complete with
respect to Cg[C(A)] by theorem 2.2 [C(A) denotes the convex closure of set A], and
,C[C(A)] is essentially complete with respect to e,,(A), since C(A) D A.

COROLLARY 2.2. Let A be a compact set in E!k) such that R(A) has the property that the
convex closure of R(A) is generated by m vectors b(l), - * *, b(m) in R(A); then, Cn+m[b(l),* ,
b(")] is essentially complete (T) with respect to C.[AI for al n and al T C _(k).

PROOF. The corollary is clear, since tn+m[b(l),- , b(-)] is essentially complete (T)
with respect to A,{R(A)1 by corollary 2.1, and g^{R(A)} is essentially complete (T)
with respect to CR(A) by theorem 2.1.

In an asymptotic sense (as n - ), it is true that when A is a convex body in E!k),
generated by vectors b(l), *, b(m), then n[b(1), * * , b(m)] is essentially complete (T) with
respect to C,(A).

The notion of asymptotic essential completeness will now be defined.
DEFINITION 2.4. tn[Ao] is asymptotically essentially complete (T) with respect to gn[A]
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if and only if for any sequence of experiments dN, CE eN,(A) with dN. { Cr(A), r < NJ,
and NJ -O o as J - there exists a sequence 1 C CN,;[Ao] such that

(2.55) rni {N* IN/N } _ 1

and

(2.56) lim I Vd* [t'I] /FI [t' } _ 1 for all t C T
O N* N

Jr J

and where co / o is taken to be 1.
THEOREm 2.3. If A is a compact convex body in E(k) generated by b(l),-, b(m), then

ge[b(1), **, b(m)] is asymptotically essentially complete (T) with respect to g,[A] for all
T C E(k).

PROOF. From theorem 2.2 it is known that for any dN CgN.,(A) there exists di~(Ao)
such that
(2.57) Vd* [It'o / Vd [t'O] _ 1

N* N
J J

for all t C E(k) and N* < NJ + m. Now since NJ O we have 11im NI/N. _ 1.

The following corollaries follow quite readily from theorem 2.3.
COROLLARY 2.3. With A as in corollary 2.1, gn[b(l), - b(Y)I is asymptotically essen-

tially complete (T) with respect to g4[A] for all T 5 E(k).
COROLLARY 2.4. With A as in corollary 2.2, Cg[b(l), ' bCY)] is asymptotically essen-

tially complete (T) with respect to g4[A] for all T 5 E;).
EXAMPLES.
(a) Let us suppose, in this example, that the model is

(2.58) E ( YJ) = z1XJI+ 02X.2 .

Let the set A be as follows:
(2.59) A = I (xn, x.,2): O< a, _XiJ _ bi;O _ a2 _ XJ2 _ b2} SE(2).
The set R(A) is the boundary outlined in heavy lines in figure 1, namely, line PIP2

and P2P3. Theorem 2.1 states that for any n observations in the set A, there exist n ob-

pi P2

ACshoded area)

a, b

FIGURE 1

servations in R(A) which do as well for estimating any linear combination tll + t202.
Corollary 2.2 states that for any n observations in the set A, there exist s observations
(s _ n + 3) at the points P1, P2, P3 that are as efficient for estimating any linear combi-
nation 401 + t202.
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(b) Let E(YJ) = e1+ 02x, and A = {(1, xj)Ia < x, . b} C E(2). Then A is the
heavy line P1P2 in figure 2 and R(A) in this case is equal to the set A. Theorem 2.1 is
empty for this example. Corollary 2.2 states that for any n observations on the line
P1P2 there exist s observations (s . n + 2) on the points PL and P2 that are as efficient
for estimating any linear combination t101 + t202.

b _ _

a
Ps

FIGURE 2

(c) Let Yzw,) , Y2(n) be n uncorrelated, normally distributed random variables
with common variance A0.
We suppose

(2.60) E(Y,(j)) = O'x(J), J= 1, n .

The problem associated with t = (0lt, 028) wil be testing vector 0lt against vector 02t.
The loss functions in this case will be simple. Namely, the loss incurred in problem I
when 01t is chosen is 1 when 028 is true, and zero otherwise.

The minimax value for problem t when experiment d is used can be calculated as equal
to M(d, t) where

(2.61) M(d,t) (d) A

with
(2.62) At= 028- 01.,

(2.63) I(s) = J

We first notice that the condition M(d*, t) 9 M(d, t) is equivalent to

(2.64) A',F (d*) At- A'F (d) At 2 0 .

It is furthermore noted that (2.64) for all At is identical with

(2.65) Vd*[At] Vd[A for aR At .

It becomes clear from this identification that any comparison of minimax values for a
problem t can be translated into a comparison of variances of the least squares esti-
mate A'O.

Because of the above remark, we can use the proofs of theorem 2.1 and corollary 2.2
to derive the following two theorems.
THoREm 2.4. Let x(z) E A C Ek) with A compact. For any d E gn[A] there exists
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d* E en[R(A)] such that M(d*, t) _ M(d, t) for aU discrimination problems (O1i, p28) and
all n.
THEoREm 2.5. If the convex closure ofR(A) is generated by vector b(l), , b(m), then for

any d E e4,[A] there exists d* E Cn+m[b(1),** bY-)] such that M(d*, t) < M(d, t) for all
discrimination problems (0lt, 02t) and all n.

3. Generalization
The model in the previous section will now be generalized. Assume that Y,,,*, YZN

are normally distributed (which was not necessary in section 2) with

(3.1) E ( Y.,)) =(O, x(J)),
9o2 forJ =r

(3.2) cov (YZ(J)' ( = O for JO r,

It is assumed that 34'(O, x(-)/Od, exists for all 0 E Q and all x(4' E A.
When 4'(8, x()) = 0'x( it is known that the maximum likelihood estimator is the

same as the least squares estimator.
The information matrix associated with experiment d = C(ni, x(l);... ; n., x(')) is

denoted by F(d, 0), indicating that it may depend on the values of 0 E 52. Now F(d, 0)
is defined to be
(3.3) F(d, 0) = znJF,(d, 0)
where
(3.4) F (d, 0) = 048(a' )a(ao# )Iu;, v=,---,m;

and 0' = (01, am) and x(4'- (x(l'4. *, ).
It is known that the asymptotic (n X ) variance of the maximum likelihood esti-

mate of Vn t'0 = -Vn(tiO + * * *+ tm0m) is Vd[Vn t'Oj, where
(3.5) Vd [t'OI = a2t'F-1 (d, 0) t

which now may depend on 0 E (2.
In order to adapt the results of section 2, we consider the transformations To from

E!k) to E(")
da 0,Zx(J))0

(3.6) To : =To (IX())) = =0). =ZC ((0)-
x*(s) ds,6 ( @~, x( T) ) Z ff ( 0)

It should be noted that when 4,(0, x°.) - 0'x(4 as in section 2, we have Te(x) = x
for all x E E(k) and all 0 E Q.

In terms of the above notation,
(3.7) F,(d, 0) =IIZV'(0)Zt (0) II

If the x(4 are restricted to lie in a set A c Ek), then for a particular 0 E(, the vec-
tor ZV (0) is restricted to lie in Te(A).
To make To(A) for all 0 E Ql compact it is sufficient that 04(0, x(J))/d0, be continu-

ous and bounded for all 0 E Q and x(4 E A. When A is compact, the continuity as-
sumption is sufficient.
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Let Ao = fx(J) E AI Te(x() E R[To(A)J} and Au = o Ao.

By use of theorem 2.2 and corollaries 2.1 and 2.2 in section 2 we easily derive theo-
rem 3.1.

THEoREmx 3.1. ef(An) is asymptotically essentially complete with respect to g.(A).
Let the convex closure of R[Te(A)] be generated by a finite number me of vectors

b(l)(O), , bm)(O) for all 0 E Q and let Ao = {x(J) E Al To(x(>)) = b(s)(O) for some
s= 1,-*, m} and An= u Ao. By theorem 2.2 and corollaries 2.1 and 2.2 in section

GE 0
2 we derive theorem 3.2.
THEOREM 3.2. e"(A0) is asymptotically essentially complete with respect to e"(A).
EXAMPLES.
(a) Let us suppose 4(O, x) = exp (Ox) and Q = {OIO _ 0}> E(1) and 0 < x <

a < c. The problem t E T E El1) then becomes the problem of estimating to, which
are all equivalent to estimating 0. We have in this example

(3.8) To (x) - 0A(O x) = x.ea00
It is easily computed that

(3.9) Aua {a}jaA= a.

Thus, for large n, observations should be taken at x = a. This is reasonable since the
regression curves exp (Ox) are widest apart at x = a.

(b) Let
(3.10) , x) = -+ 3(x- s 0 x 1,

and El = tOIO 5 8 . i}-
Since R[Te(0 . x . 1)] is composed of two points, 0#(O, 0)/90 and 0#,(O, 1)/da,

we have

(3.11) Ao=xx=0;x=1}.
Thus
(3.12) As=10!x IS; x=1 and An= Au .

There are many questions of interest that have not been fully investigated. Some of
these questions are

(1) Is corollary 2.2 the strongest result that can be derived? Under what conditions
are the extra m observations not necessary?

(2) What can be said about minimal essentially complete classes?
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