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The questions we are going to discuss have to do with the use of statistical
methods in meson theory, when we perform certain calculations in an area in which
the theory is most certainly wrong. In order, therefore, to lend some degree of
reality to the discussion, it is probably well to begin with the experimental frame-
work within which these problems arise.

It was found, ahout two decades ago, that the forces which act between nuclei,
and between the individual components of a nucleus, exhibit the peculiarity that
they are only operative when the particles involved are very close together (about
1013 cm, or a ten billionth of the tip radius of a microgroove phonograph needle).
At that time, the only forces which were known to act among particles of matter,
the gravitational and electrical forces, both obeyed (and still obey) an inverse
square law for the diminution of intensity with distance, and so were capable of
extending their influence over large distances—as witness the stability of the solar
system. Thus, the discovery of the short range forces posed a qualitatively new
problem for physicists. This problem was considered by Yukawa who, guided by
analogy with the electromagnetic field, concluded that the forces could arise from
the spontaneous creation and exchange of elementary particles of finite mass. The
argument, which is by now very well known, is that, if a particle is spontaneously
created in such a situation, it can exist only for a time given by the uncertainty
principle AEAt ~ h, or At ~ h/AE. If, during this time, it travels with the speed
of light ¢, it can go a distance equal to k¢c/AE, which is then the range of the force
it creates. In the case of light, AE = kv, so that the range of the force is ¢/v = A,
the wave length of the light quantum exchanged. Since there is no upper limit to
this, the range is quite large, and a more careful consideration leads to the inverse
square law. Yukawa reasoned that, in order to limit the range, there must be a
minimum energy for the exchanged particle, which is the case if it has a finite mass.
Then the minimum energy is just the rest energy mc?, and the range is z/mc. If
this expression is compared with the known range of the forces, one finds that the
mass of the particle responsible for the forces must be around 200 times that of an
electron. Such particles had, in 1935, never been observed experimentally. Yukawa
also predicted that these particles, if seen, would be radioactively unstable, since
heavy nuclei were unstable. This last was a prediction that was gratuitous at the
time.

These developments achieved sudden importance, shortly thereafter, when par- -
ticles of mass around 200 were observed in the cosmic rays, and were, in fact, later

543



544 SECOND BERKELEY SYMPOSIUM: LEWIS

shown to be radioactively unstable. There seemed little doubt at the time that
these were Yukawa'’s particles. However, soon difficulties began to arise, the chief
among them the fact that the mesons, as they came to be called, were never seen
to interact with nuclei in any way—not even to collide with them. This was im-
possible to understand, and tended to cast doubt on the meson theory as a whole,
though it should only have been interpreted to mean that these cosmic ray mesons
were not Yukawa’s particles. That this is true we now know from recent experi-
ments in which a new type of meson, of mass 300, has been seen, both in cosmic
rays and artificially produced, and has been observed to interact strongly with
nuclei. There seems to be not much doubt that this is the Yukawa meson. The pic-
ture is, in fact, a good deal more complicated, but we need not look into these com-
plications at the moment, except to mention the important fact that the heavier
mesons are seen to turn into the lighter ones in about 1/100 of a microsecond.
This accounts for the fact that it is almost exclusively the lighter mesons that are
seen in the cosmic rays, the heavier ones having had time to decay before reaching
sea level. '

Now let us summarize our position. On theoretical grounds it seems reasonable
that there are involved, in the forces between nuclei, particles of intermediate mass,
which we call mesons. Particles of the same nature are found in cosmic rays, and
are seen to decay into the lighter mesons that predominate at sea level, and it is
not unreasonable to suppose that all of the lighter mesons arise fromn the heavier
ones. One can also suppose that the latter are produced in the upper atmosphere
by the cosmic ray primaries, which are thought to be largely protons, and fairly
certainly are nuclei of some sort. Here, then, we come to the heart of our problem
—the primary nuclei come into the Earth’s atmosphere carrying their closely con-
nected entourage of mesons, and, by the time they reach sea level, many of these
mesons are liberated and come to us as free particles in their own right. How then,
does this occur? This is the relation between cosmic rays and nuclear forces.

In this connection, one important fact can be uncovered by counting the num-
ber of primary particles at the top of the atmosphere, and comparing this with the
number of mesons at sea level. This leads immediately to the interesting fact that,
for every primary particle, there are about six mesons at sea level. The over all
meson production is, then, multiple. It has, in fact, been possible to observe these
meson production events directly, and to show that the individual events are
themselves multiple.

Here one has to consider the possibility that, in fact, not more than one meson
is supplied from the field of each nucleon in a complex air nucleus. It is not possible,
at the moment, to exclude this possibility, though recent experiments comparing
carbon and lead imply, though by no means conclusively, that this is not the case.
It is still, however, likely that one may have several events in a single nucleus,
with more than one meson created in each event. Our study will center on the mul-
tiple production in a single event, and our problem will be to understand, within
the framework we have mentioned, how this can take place.

First, however, we must look a little more closely into the structure of the meson

- field around a proton, for which purpose we will now adopt explicitly the so called
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pseudoscalar meson theory. In this theory the number of mesons in a range of
momentum dp = dp.dp,dp,, around a stationary nucleon, is proportional to
pidp/ E?, if we designate the direction of the intrinsic spin angular momentum of
the nucleon as the z direction. If the nucleon is moving in the z direction with a
velocity v, this becomes (p, — vE/c®)*dp/{(E — vp,)*E], as can be seen by simply
applying a Lorentz transformation to the original expression. The constant of pro-
portionality is of order of magnitude unity.. (If we had used the so called scalar
meson theory, the factor p2 or (p, — vE/c?)? would simply be absent in these ex-
pressions, with no other change.)

There is immediately apparent one major difficulty with these expressions, most
obvious in the expression involving a nucleon at rest. If one were to ask for the total
number of mesons in the field, the answer would be obtained by integrating over

the entire momentum space, yielding f pH(m2c® + p*)~32dp, which is quadrati-
0

cally divergent and therefore quite unpleasant. In other words, there are an in-
finite number of mesons in the field surrounding a single nucleon—an assertion
that offends one’s sense of physical reasonableness. (We have here used a nonrela-
tivistic theory of the nucleon—a relativistic treatment would lower the order of
the divergence by one.) This difficulty is closely connected with the well known
selfenergy problem, and it is at this time still insurmountable, despite some recent
progress. We will see that this does not seriously impede us in our progress, though
it does indeed raise questions concerning the validity of our results.

We notice that, if the velocity of the nucleon is very large, » ~ ¢, then the
binomial expressions above just cancel each other, so that the density of mesons is
just given by dp/E, a simple expression, and one which is invariant under Lorentz
transformations of the coordinate system, as long as the condition that v~ ¢ is
preserved by the transformation.

We must now consider, in some detail, what happens when this nucleon meson
system collides with another nucleon (which may or may not be a constituent of an
air nucleus). In this collision, we must presume that the nucleon (both of them,
in fact), is upset in some way and tends to free some of its mesons. In this connec-
tion the calculations which have been performed are most subject to criticism,
and there seems to be no good way to estimate the extent to which this tendency
is operative. The assumption that seems to be most indicated by the calculations
that do exist is that the nucleon does tend to emit mesons appreciably, and that it
has no prejudice concerning which mesons it prefers to release, provided some
dubious approximations are used.

We might interject, at this point, a few words about the nature of the statistical
problem with which we will have to deal. It will be clear that the forms of statisti-
cal analysis involved are indeed rather elementary, once the rules of the game have
been properly formulated, the point at which many mathematical problems begin.
Our task is, on the other hand, to study the physics of the question sufficiently
closely to be able to formulate the rules of the game. Once this is done we will have
no serious difficulties, but to do it involves an excursion into the most questionable
areas of present day meson theory, and it is little more than hope that what we say
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may have some validity. However, we will try to state the statistical problem in a
sufficiently precise way to be able to judge from the experimental data, as they
become available, just where our considerations have to be modified.

One further word is now appropriate with regard to the distribution of mesons
which we found above, proportional to dp/E, for a fast moving nucleon. There is a
serious difficulty connected with this, in that it is spherically symmetric. Offhand,
this would not be a matter for concern, except that it is spherically symmetric for
every velocity of the nucleon, and, if we look back, even for a nucleon at rest. Only
when a nucleon is not at rest, but not moving too rapidly, is it not completely
isotropic. That this is not a selfconsistent state of affairs can be seen by con-
sidering what happens to a spherical distribution of mesons around a stationary
nucleon, when that nucleon starts to move rapidly in (say) the z-direction. Then
each of the mesons, as it is carried along, takes on an additional z-component of
velocity, and lo! the distribution is no longer isotropic. For sufficiently large nu-
cleon velocities, this additional component of meson velocity will dominate, and
the mesons will tend to be concentrated around the z-axis in momentum space,
more and more as the velocity increases. But our results indicate that the meson
distribution, initially isotropic, goes through a region of anisotropy, and then be-
comes more and more spherically symmetric as the velocity of the nucleon in-
creases. What then is the difficulty with the preceding argument? The answer is
that there is nothing wrong with it, but that our original calculation is at fault, and
that, in fact, the continued spherical symmetry is a direct consequence of the in-
finite number of mesons in our field—a feature which we are not fully prepared to
believe. This is clear since it is just the feature that dp/E is an invariant under
Lorentz transformation that caused our difficulty. This is the case because, al-
though a transformation or velocity in the z-direction adds a z-component of mo-
mentum to each meson in the field, it brings into the field at a given energy mesons
which previously had a large negative component of velocity in the z-direction.
If this supply were not unlimited, the isotropy would not persist. So we must con-
nect the spherical symmetry with just the dubious feature of the theory that gives
rise to the infinite number of mesons. We will, however, use this property of the
field, keeping tongue in cheek.

In keeping, now, with our assumptions that, in a collision, a nucleon is strongly
impelled to emit mesons, and that it has no a priori preference concerning which
mesons it would like to release, the most primitive assumption we might make is
that the probability of emitting N mesons into the V regions of momentum space

dpdp: - . . dpy, is proportional to

N
(1) [1%

n=1 N

where the constant of proportionality must be experimentally determined. We will
assume that the multiplicative constant is of the form K", which one would ob-
tain by attaching a factor of K to the meson distribution around the nucleon. K is
the so called coupling constant. Whether the constant is, indeed, of this simple
form, is a question that is quite difficult, and the assumption that it is is simply a
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consistent application of the hypothesis of a priori statistical independence of the
emissions.

If we were now to assume, as a start, that the mesons are completely uncorre-
lated, the total probability of emitting NV mesons in the collision would be obtained
by integrating this expression over the whole 3 N-dimensional momentum space,
yielding a high order indeed of infinity. This, in itself, might not be too disturbing
in the present state of meson theory, but far worse is the fact that the ratio of the
probability of emitting NV 4 1 mesons to that of emitting IV is just
(2) ‘ B 11)v+1 dE_p

N
which is, itself, infinite. In other words, this model yields the result that the more
mesons the better ad infinitum—an unreasonable result.

We know, however, that certain simple correlations are, in fact, operative, and
tend to make the result more reasonable. We know, for example, that the number
of mesons emitted is certainly limited by the conservation of energy, which, itself,
would suffice to make the most probable number a finite one. There are also other
conservation laws which impose correlations, and we have not explored the question
of whether the primitive law for the emission ought to embody some correlations.

If we take into account now, only the conservation of energy, then we must do
the integral over the 3N-dimensional momentum space, subject to the condition
that the sum of the V energies is equal to ¢, the energy loss of the nucleons involved,
in the coordinate system under consideration. (Since the imposition of energy con-
servation, without momentum conservation, is not a relativistically invariant pro-
cedure, the result will depend upon the coordinate system we use. Reasonable re-
sults are obtained by using the center of mass coordinate system, for a two nucleon
collision.) The integral we must do is, then,

S ST 8- Er)

where § represents Dirac’s é-function, a singular function defined by &(x) = 0

for x £ 0, and f ma(x)dx = 1. Any expression containing the é-function, which -

depends upon properties other than these two, is meaningless. This integral is
similar to one encountered in the statistical mechanics of an ideal gas, but is not
quite so simple, since, in this relativistic case, the é-function does not isolate a
spherical shell in the momentum space.

If we use the representation of the d§-function as an integral &8(x) =

2=z f cmexp (ixy)dy, we find for the total probability of emitting N mesons,

with energy conservation
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where H{" () is the Hankel function of the first kind and first order. The path of
integration must pass above the singularity at the origin, and the rest energy of
the meson has been set equal to unity. Thus, for N > ¢, the asymptotic form of the
Hankel function permits us to close the contour in the upper half of the complex
plane, giving rigorously zero for the value of the integral. This is encouraging, since
it means that a number of mesons cannot be emitted whose rest energy alone ex-
ceeds the total amount of energy available. If, however, ¢ > N, the integral has
a finite value, since the two ends of the contour may be bent downward into the
lower half of the complex plane, where the integrand is nicely convergent.

One can now obtain an estimate of the value of this integral by noting that, with
the folded contour, and for sufficiently large ¢, the major contributions come from
small values of X. Thus, one can expand the Hankel function in powers of A, keep-
ing only the leading term. This reduces the singularity at the origin to a pole (the
logarithmic terms not appearing in the leading power of \) whose residue gives
the required estimate. We obtain

(3) Py~ (47K)¥

N—1
(2N n!

which is, in effect, the leading term in an expansion in powers of e. From this, we
find for the mean number of mesons

(6) N=13[14e¢V4rK coth(e V4rK)]
~eVrK

where the latter expression applies if it is much greater than one. From the ex-
pression given above for Py, we also find that large e are favored, so that, most like-
ly, all of the energy available tends to go into meson production.

For large energies, an available energy e in the center of mass coordinate system
implies an incident energy in the coordinate system in which one of the nucleons
is at rest (the laboratory system) of E; = ¢2/2M, where M is the mass energy of

the nucleon. So N ~ V27 KM E,, where nothing is known a priori about the value
of K. It is clear that these results do, as predicted, depend upon the choice of co-
ordinate system in which the energy loss is ¢, since that choice determines the rela-
tion between € and E,.

In order to lift this self-imposed difficulty, we must look a little more closely into
the correlations that arise from momentum conservation, as well as energy con-
servation. The results should then be relativistically invariant. Thus, we must not
only require that the total energy of the mesons be equal to E, the-energy loss of
the nucleons, but that their momenta add up to P, the loss of momentum of the
nucleons in the collision. We have to consider

7) gof . fs(E- EE) (- Ep,,)ndp“

which is a somewhat more difficult integral to reduce to a manageable form.
By a transformation similar to that used above, we can write this

2(4xK)¥N > o N —DE *® A ol 2 _1)1/2 N
(8) _(2—1,-)3}’_ _wA ! sin uPe dud)\[[ dre™sin u (7 1) ]
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where P is the absolute magnitude of P. The expression in the bracket can then be
integrated by expanding the sine in power series (assuming that A has a small
positive imaginary part, to insure convergence), yielding, after some obvious
transformations,

9) 2(?22:;:}{()N[:/; l-tsm #Pe AEGy d\ z (2>‘> ”“()\)

where, as a result of the convergence requirement above, the A integral must be
passed above the real axis. The convergence of the series to an analytic function
of N and p is easily demonstrated as is, then, the convergence of the double integral,
with the appropriate contours.

The sum can, in fact, be evaluated by means of the recurrence formula for the
Hankel functions, and yields

(10) HM (VN —p?).

1/ u?
;—om(z—x) n+l()‘) —_/'——'
That this is true for 4 > X requires further investigation for its establishment, as
does the branch of the square root that we must choose. Referring back to the
integral that originally gave rise to the series, we see that this representation is
correct if we choose the branch which has a positive imaginary part for u > \.
Thus, over the entire product space, we have

A0 S S R R U (VR

where, in virtue of the evenness of the integrand with regard to u, the u integral
has been extended to — . A similar argument to that used before enables us to
use only the first term in the expansion of the Hankel function, obtaining, after
an integration by parts,
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This integral is easily evaluated by transforming to x + X and ¢ — \ as variables,
remembering that A has a small positive imaginary part, and we find
2 (v K) ¥
x (N—-1)I(N —2)!

in which the energy and momentum appear in the expected invariant combination.
From this, we find

(13) (B2 — P2 ¥

— — 2 —

where the I, are the modified Bessel functions of the first kmd. (The reason that
this expression predicts a finite number of mesons, even for K = 0, is that we have
ignored the statistical weights of the nucleons. For very small numbers of mesons,
these would dominate the problem.)

For sufficiently large argument, the ratio of I, to I, approaches unity, so that
we find, if NV is large.

(14") N~ VaEE =P,
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which is precisely the same as was obtained using only energy conservation, except
that E appears now in an invariant combination. It is also true, from (13), that
large energy loss and small momentum loss tend to be favored for any N. What this
entails is most easily recognized in the center of mass coordinate system of the two
nucleons involved in a collision, in which they have, initially, equal and opposite
momenta. Maximum energy, and minimum momentum loss then imply that, after
the collision, the nucleons are effectively stopped, converting all their energy into
mesons. (This result would be, of course, slightly modified, if one were to take into
account the final nucleons, as mentioned above.) The corresponding consequences,
in other coordinate systems, can be obtained by transformation.

There is one further statistical feature of these problems that we would like to
take into account here, which arises from the indistinguishability of the various
mesons from each other. This has the consequence that we have overestimated our
total momentum space, since a final state in which two mesons have momenta
b and p. is, in fact, no different from one in which these two momenta are inter-
changed. However, in our method of summing, we have counted them each sepa-
rately, and must now correct for this error.

This would be particularly simple if there were only one kind of meson, since it
would then result in a factor of N!in the denomination of (13), and would have no
other consequences. Thus, the mean number of mesons, for a high enough multi-
plicity, would become

(15) N ~ [rK(E? — PY)V3

or, in terms of the incident energy E, in the laboratory coordinate system, assum-
ing that all the energy in the center of mass system is converted into mesons,

(15%) N ~ 2rKME)V3,

so that the multiplicity now increases with the cube root of the primary energy
in the laboratory system.

However, we must take into account the fact that there are probably at least
three different kinds of mesons, positive, negative, and neutral, which are indis-
tinguishable within a class, but distinguishable from each other. Thus we ought
really to divide (13) by N1!N:!N;!, where Ny, Ny, and Nj are the number of posi-
tive, negative, and neutral mesons, respectively, and N, 4+ N2+ N3 = N. If we
were now to ask for the total probability of emitting N mesons of any type, we
would sum this over all distributions of the N mesons among the three types, and
would find, in addition to the factor of N!in the denominator of (13), a factor of
3" in the numerator, so that the average number of mesons emitted is increased
by a factor of the cube root of 3 over the case of complete indistinguishability. Un-
fortunately, though, the case is not quite so simple, because of charge conservation,
whose role in the problem raises a physical question that is, at present, unanswer-
able, but which we must discuss.

Consider, as an example, the collision of two protons, the end resuits of the col-
lision being a certain number of positive, negative, and neutral mesons, and two
nucleons. (We will continue to ignore the possibility of pair production of nu-
cleons.) Ordinarily, we would think of the nucleons as either protons or neutrons,
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these being the only types presently known experimentally. However, certain
forms of meson theory (the so called strong coupling theories) predict that it is
possible to form nucleons with an arbitrary number of positive or negative charges,
provided that one can add a sufficient amount of excitation energy. These are called
nucleon isobars, and the energy of excitation is called the isobar energy. Now, if the
isobar energy were zero, an extreme case, the nucleons could emerge from the col-
lision with any amount of charge, positive or negative, with energies quite inde-
pendent of their charge status. Then the relative numbers of positive and negative
mesons would be completely uninhibited by questions of charge, and the result
would be just that mentioned in the last paragraph, namely

(16) N ~ [3zK(E? — P
~ [6xKME .

On the other extreme, when the isobar energy is very large, one can suppose that
only protons and neutrons can appear in the final state. In this case, for our two
proton collision, the number of positive mesons must equal or exceed the number
of negatives, but cannot exceed the latter by more than two. Thus N, and N are
correlated, and the sum over N;, Vg, and NV; has to be carried out under the condi-
tion that 0 £ Ny — N: £ 2, in addition to Ny + N, 4 N3 = N. Here one need
not carry out the sum, since it is certainly less than 3V/N!, the unrestricted sum,
and certainly larger than its largest term, which is approximately 3¥/(N¥ + 1)1,
so that the expression (16) still obtains. This is of course also true in the interme-
diate case when the isobar energy is neither zero nor very large, but finite. Then
the energy available when the nucleons come from the collision in isobar states is
decreased, along with the available momentum space, which makes the calculation
complicated. However, the results must rigorously lie between the two extreme
cases, so that V remains the same. Thus the charge conservation does not introduce
any significant correlations into the problem.

To summarize our discussion we might say that we have found that, if we as-
sume the unbelievable feature of meson theory (pseudoscalar) that a nucleon car-
ries with it a cornucopia of mesons, then plentiful meson emissions are expected to
occur in a collision. These emissions are expected to be statistically independent,
and limited only by the various conservation theorems one expects to be operative
in such events, and which are alone responsible for the finite results. Energy and
momentum conservation turn out to be most important, and charge conservation,
while it cannot easily be taken into account in the present state of the theory, can
be safely said not to play a significant role. The average number of mesons pro-
duced by a primary nucleon of energy E, is given by (6xKM E,)"/?, where K is an
unspecified coupling constant. If K is the same for positive, negative, and neutral
mesons, we expect them to be emitted in equal numbers, on the average.



