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1. Introduction

Since the discovery by Borel1 (1907) of the strong law of large numbers in the
Bernoulli case, there has been much investigation of the problem of almost sure
convergence and almost sure summability of series of random variables. So far
most of the results concern series of independent random variables. In the case of
dependent random variables, the first general result is the celebrated Birkhoff
ergodic theorem [1], or the strong law of large numbers for a stationary sequence
with a finite first moment. This theorem contains the Kolmogoroff strong law of
large numbers as a particular case. P. Levy studied series that are the same as
those of independent random variables in their properties of second order as de-
scribed by the first and second conditional moments. The author [8] investigated
series which behave asymptotically as those of P. Levy. There are also properties
of martingales, due essentially to Doob [2], P. Levy and Ville [10].
We shall proceed to a systematic investigation of almost sure convergence of

sequences of random variables, emphasizing the methods and assuming as little
as possible about the stochastic structure of the sequences. The known results
will appear as various particular cases of a few propositions, and the necessary
known tools will be established. In that respect, this paper is self contained.

Part I is devoted to definitions, notations, and general criteria. In part II the
truncation and centering ideas are expounded. Part III is concerned with the use
of "determining" set functions and with two propositions. The particular cases
of one of them contain the martingale properties and of the other the ergodic theo-
rem and its known extensions.

PART I. BASIC CONCEPTS AND ELEMENTARY INEQUALITIES
2. Fundamental notions

Let (F, P) represent a probabilityfield defined on a space Q of "points" w.
F is a a-field of events A in Q, that is a family of sets in Q2 such that (i) the sure

event Q belongs to F, (ii) if A E F, then A' = (Q- A) E F, (iii) if A,, E F for
n = 1, 2,.. ,then r) A. E F. It follows then, from ( U A,,)' = ri An, that (iii)' if

A,n E F for n = 1, 2, ... ,then U A. E F and, in general, if a sequence of events

has a limit, the limit is also an event. When the events are disjoint we shall repre-

This work was supported in part by the Office of Naval Research.
1 References, denoted by numbers in square brackets, are listed at the end of the paper except

for those of the known results which can be found in P. Levy, ThAorie de l'addition des variables
aleatoires, Gauthier-Villars (1937).
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sent their union by j instead of U . A basic role is played throughout this paper

by the familiar transformation of U into E given by A1 + A'A2 + . .,to
be written

(1)~~~~ ~UA= EA'A. **A'-An

P is a probability measure on F, that is (i) PO = 1, (ii) PA _ 0 if A E F,
and (iii) P( An) = EPAn if An E F for all n. It follows that P is a con-

n n

tinuous function of events, that is P(lim An) = lim P(An) if the sequence of events

An has a limit.
Real random variables (r.v.) on (F, P) will be represented by X, Y, Z, U, V, W,

with or without subscripts. A r.v., say U, is a real, single valued, finite function
of X E Q such that for all real u, the sets of the form [U < a] of the co's are events
in Q. In general, the inverse image by a countable set of r.v. { Ux} where X E A,
of the Borel sets on the range space RA is to be a a-field F { Ux } contained in F, or
the a-field defined by { Ux }. Given a sequence { Un , we shall have to consider later
the a-field F{ Ur, . . , Un } of events defined on the segment UIrn, * . , UnJ,
the tail a-field FI TUn} = n F{ Un, Un+1, . . of events defined on the tail of
{U.} and the field F(U1, U2,...) = U F{U1, . . UnI of events defined on a

n
finite number of U's. F(U1, U2, ... .) is not, in general, a u-field and F{Un} is
the smallest a-field containing it. Two r.v. X and Y are equivalent, or almost surely
(a.s.) equal, if P[X $ Y] = 0. Since equivalence is symmetric, reflexive and transi-
tive, this relationship will be written X = Y.

Throughout this paper, unless otherwise stated, a passage to the limit will be
for n -- w, e will be a positive number and the integer k (or 1) will run from
m to n (m _ k < n).

3. Almost sure convergence

Given a sequence { U.), the events

Amn (e) = [sup I Uk- U,j el
k, I

clearly have the property that

(2) Amn(E) c Am'n'(E') for m _ m' < n' _ n and e _ e'.

Accordingly, the limits
C (e) = lim lim Amn (e) and C = lim C (e)

m n f-4O

exist (and are tail events). Moreover,
(3) C c C(e) C C(e') for E _ e'.

By the Cauchy mutual convergence criterion C is the event [U. converges],
consequently P[Un converges] is well defined (Kolmogoroff) and, when this prob-
ability is one, the sequence {Un) is almost surely (a.s.) convergent. (Clearly the
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limit r.v. is determined up to an equivalence.) The same event C is obtained if
we use

Bmn (e) = [sup I Uk- Uj|eI,
.k,

since

(4) Amn(e) c Bmnf(e) c Amn(2E) .

If we start with
Cmn (e) =[SUpI|Uk- Ujle],

k

C becomes [U.--+ U]. In any case, the relation (3) holds and we have the well
known
LEMMA 3.1. Un converges a.s. if, and only if, P[C(e)] = 1 for every e.
P[C(e)] is the probability of occurrence of an infinity of events [ I Ui- Uj > el

defined on (U1, U2, .. .) or of events [I Un-U I > e]. In general, given a se-
quence {An} of events

(5) P =P of An's occurs] =lim lim P ( U Ak)-
mt n k

From the inequality (Boole)

(6) P (U Ak) =P( Al ... Al-A, <-,EPAk,
there follows (Borel-Cantelli)
LEMMA 3.2. If IPAn < conthen P. = 0.

n
This with lemma 3.1 gives at once (Cantelli)
LEmmA 3.3. If,for every f> 0,E P[ U-U U > e] < 0, then Un U.

n

And, from
co

(7) P [ U ( Un UmI >E)]_ P[Un Um >f'E
n=m

there follows
LEMMA 3.3'. If, for every 6> 0,

lim irifEP [|Un- UnI > el = O,
m n-rn

then U. converges a.s.

Also, the event Bm =. [IUn+± - Un < En], where 'En < entails
n-m n

(8) IU Um| - Uk+1- UkI - Ek 0 as -+--O,
k-m k-m n

that is, Bm C [Un converges]. Hence applying Boole's inequality,
oD

(9) P [ Unconverges] _ PBm= I1-PB' 2 1- P [|Un+l-n|> n
kem
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Thus,
LEMMA 3.3". IfI P[IU,,n+- U. I > e.] < -, where I en < xc then Un

n n

converges a.s.
By the Tchebicheff-Markoff inequality,

(10) P[ IUi-UjI >fe]- EJ Ui-U1Ir, r>O.
Er

Lemmas 3.3, 3.3' and 3.3" yield
LEMMA 3.4. If,foranr> 0,I E |Un U I' < cc, then Un,, U. (Cantelli).

n
co

LEMmA 3.4'. If, for an r > 0, lim infE E| Un- Um = 0, then Un con-
m n=m

verges a.s. 1
LEmmA 3.4". If, for an r > 0 and I E. < 00 -EjIUn+1 - UnIr < cc

n n'En,
then Un converges a.s.

Thus Boole's inequality provides us with relatively simple sufficient conditions
for a.s. convergence. Relatively simple necessary conditions can be obtained as
follows. Let

Pmk = P(Ak; A', * * A' )) pmm = PAm.
We have
(11) P(U Ak) = 1-P( 9Ar ) = 1-P(A,)P(A,m+1; Am*)...

XP(A'; Al Al-,),
hence

(12) P (U Ak) =1- (1 -Pmk) > 1 - e k
k ~~~~k

or

(13) 0 <.WPmk _ |log[1-P(UAk)]jk

Letting n oo, then m-) there follows
co

LEmmA 3.5. If Pc. = 0, then lim Pmn= 0.
m n=m

In the particular case of independent events An, Pmn,, PAm and the lemma
above becomes a converse to lemma 3.2. Moreover, the relation (12) becomes

(14) P((U Ak) =1- H (1 -PAk)
k k

and, ifI PA = co, the product on the right hand side diverges to zero as n - ,
n

hence P . = 1. Taking this with lemma 3.2, we have the first obtained law of 0 or 1
(Borel). Namely,
LEMMA 3.5'. If the events A,, are independent, then P = 0 or = 1, according as

PA < co or = cc.
n
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Applied to the events [I - UI > e], this becomes
LEMMA 3.5". If the r.v. U. - U are independent, then Un- U converges or

diverges a.s. to zero, according as E P[ U. - U > e] < - orE P[ Un- U
n ~~~~~~~~~n

> e = .

Sharpened inequalities. At present, Boole's inequality is basic in the search for
conditions for a.s. convergence in terms of expectations. It is also very simple in
that it uses only probabilities of the events taken one by one. However, for this
very reason, it is a rough tool since it does not take into account the structure of
the set of events. In fact, the domain of validity of theorem A (next section) and
its particular cases can be extended, and it would be interesting to do so, using
sharper tools such as the following ones.

Let

Cn-mPmn(r)= S P(Ak,U ...uAkr)
k.. . . . ck

and

p* ( r) = lim inf lim inf -Pmn ( r), p* ( r) = lim sup lim sup Pmn( r).
m n rm n

We have, Loeve [8],

(15) p* (1) _ ... < p* (r -1) _ p* (r) _ ...

<p. _ p* (r) _ p* (r-1 < ... < p* (1)-

Thus two scales of conditions for P. vanishing are at our disposal, one provides
us with necessary and the other with sufficient conditions. As r increases, they
become sharper. The Borel-Cantelli lemma corresponds to p*(1) = 0 and is the
roughest, that is, we may have p*(1) > 0 while p*(r) = 0 for some r > 0 but the
converse is not necessarily true. It would be of $ome interest to examine the struc-
ture of sets I An} for which the condition p*(r) = 0 for a given r is not only suffi-
cient but also necessary; Borel's law of 0 or 1 answers this question for r = 1.

A.s. absolute convergence. The study of a.s. absolute convergence of series of
r.v. or, which comes to the same, of monotonic sequences of r.v. is particularly

n
simple. Let Un = IX4. U, does not decrease as n - and, consequently,

i-i

has always a limit. However, this limit can be infinite with positive probability.
Yet if the law of Un converges, then such a possibility is excluded and conversely
and, changing if necessary lim U, on the event [U, = + -I of probability zero,

n

this a.s. limit is a r.v. Thus
LEM1LA 3.6. A series of r.v. converges absolutely a.s. if, and only if, its law con-

verges.
The possibility above is also excluded if, for an r > 0, lim E l Un I r < Co. Thus

n

I.EmmA3.6'. If, for an r> O,E(1 nIX")r<c then JX l<cas
n n
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Moreover, we have

(16) Er E j Xi 16 E" IXir
i-1 i-I

where r' = 1 for 0 < r _ 1 and r' =-for r > 1, and by lemma 3.6', there follows
r

LEmmA3.6".If,foranr> O, E" IXn Ir < -,,then |Xn|I < - a.s.
n tn

In particular, if Xn is an indicator IAn, that is, = 1 if the event A occurs
and = 0 otherwise, then IAn equals the number of occurrences of the An

and lemma 3.6" reduces to the Borel-Cantelli lemma 3.2.

PART II. TRUNCATION AND CENTERING

4. Equivalent sequences

The primary purpose of truncation (introduced by Markoff for the study of
normal convergence and fully exploited by Khintchine, Kolmogoroff and P.
Levy) is to replace a sequence of r.v. by a sequence of bounded r.v. equivalent to
the original in the properties that interest us. For the investigation of a.s. con-
vergence these equivalences can be of two kinds, one preserves all the limit prop-
erties and the other only the convergence. { Un} is tail equivalent to { U.I if { U"}
and I U,} differ only by a finite number of terms. An = [U. #= U,], the definition

corresponds to Pc. 0. Similarly, writing Un = j Xi, the series z Xn and
i=l n

z X, are convergence equivalent if they differ only by a finite number of terms,
n

that is, writing An = [Xn id X.] if P,, = 0.
The relation (15) provides us with scales of necessary and of sufficient conditions

for these equivalences. In particular, lemma 3.2 (r = 1) yields
LEMMA 4.1. (i) If 1: P[Un F6 U'] < a, then { U.} and I U,'} are tail equivalent.

n

(ii) If j P[Xn #5 Xn] < a, thenX Xn and
'

X, are conver-
ft ftn n

gence equivalent (Khintchine).
Now, given { Un}, we can always find a sufficiently fast increasing sequence {Lnf

such thatI P[ I Un > Ln] < X. Taking Un truncated at Ln, that is Un = Un if
n

Unf < Ln and = 0 otherwise, the sequence { U,'} is tail equivalent to {Un.
Similarly, withI P[ I Xn I > Ln] < O, the series Xn and E Xn of the Xn

n n n

truncated at Ln are convergence equivalent.
One of the purposes of truncation is to introduce moments. In general, one has

at the same time to conveniently center r.v.: a r.v. X is centered at t if it is replaced
by X - t. One of the purposes of centering is to avoid the shift of probability
spreads toward infinite values.
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5. Series of expectations and a.s. convergence
Let pn(t) = P[IXnl < t], q.(t) = P[IX.1 _ t] and p,(t), q,(t) be the condi-

tional probabilities of the corresponding events, given X1, . .. , X ,,-1. E' will be
the symbol of the conditional expectation of a r.v. (truncated or not) in a se-
quence, given the preceding terms and = E'Xn, (n = E'Xn, where X, is X,.
truncated at L4. We shall denote by fn(t) functions of I _ 0 such that fn(t) _ Ct2
for t < Ln and _ cl > 0 for I _ Ln > 0. First, we shall give the following exten-
sion due to P. Levy of a Kolmogoroff inequality, for further extensions, see Loeve
[8]. Let Xi = U - U_i_, i = 1, 2, ...v.
LEMMA 5.1. If E'X -= 0, then P[supj UiI > E] < - EUv.

Let
Ai = [IUiU > E] and Bi = A1... A',A .

Then, by (1), section 2,
(17) A = UAi= [supI UiI >f=l Bi.

The hypothesis yields
(18) E (UzBj) = E (U; Bj) + E{(UL4 -U,)2; Bi} f2.

Consequently, the inequality follows from

(19) EU. PB1E(U:rB.). f2ePB1=e2PA.

LEMMA 5.2. If (i) E qn(Ln) < o and (ii) nf fn(t)dPn(t) < ,then

, (Xn'- ) conterges a.s.
n

From (i) and lemma 4.1 above it follows thatI (X. -{n) and E (Xn- )
n n

are convergence equivalent and we have only to prove that the last series is a.s.
convergent to establish lemma 5.2. By definition of (n we have E'(Xn - 0)= 0;
consequently
(20) 0-2(XI) =E(X'- t)2=EE'(XX2- 12) <EE'X"'2=EX'2

= t2fL p(
0

From the hypothesis (ii) and the first property off'(t), there follows then that
(21) E a2 (XIt) < Ln1sn2dpn (t) <_ 1s Lnfn (t) dp, ()<

But, for m < k < n, we have applying lemma 5.1

(22) P[sup X>k f _ _ (X,)kP-I
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Consequently, by lemma 3. 1, the series z (Xn- ) converges a.s. and the proof
is completed.

From the lemma follows
LEMMA 5.2'. If I EfM(IX. ) < -, then S (X, -n) converges a.s.

n n

For

(23)
L

,f, t) dp. (t) _JEfn (I Xn ) <

and

(24) qn (L)-' fJ fn (t) dpn (t)- c Efn ( I X. ) <
n n n

Assuming that fn(t) are also continuous and nondecreasing for t < Ln and = 0
at I = 0, lemma 5.2 yields, by integration by parts,
LEMMA 5.2". If E jL, qn(t)df,,(t) < 3,then X (Xn- n) converges a.s.

n n

Let an be positive constants and 77n = E'Xn, where Xn7 is Xn truncated at anLn.
The two lemmas above, together with the Kronecker lemma that, if an T- and

converges, then I xi-XO 0, yield at once the first part of
n, an,a
IHEOREM A. If (i)E Efn( |X. I /an) < - or (ii) Ln

qn(ant)dfn(t) < -,then
n n ~~~~~~~~~~~~0

an
converges a.s. and, when an T ,

an (Xi-.i) as

Moreover, under (i), r7n can be replaced by zero or Sn according as (iii') f,(t)/t _ c"
for I _ Ln or (iii") f,(t)/t _ c" for I _ Ln.

Let S and S denote summations over subscripts n for which (iii') and (iii")
hold, respectively. From
'E InL+ "E I|.- 7in

an an= z i fa nLnttdp (t) + ffnotndpp (t)

an,~,.,a.c~~~~~~~~~~(25) <
an

a,,fc(t danpn an
. t

p

I

t Efn( Xn

< 0:

follows by lemma 3.6" that the series

v 71n+ tn 77In
a, an,

is a.s. absolutely convergent and this entails the second part of the theorem.
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Particular cases. 10. Let fn(t) = trn with 0 < rn _ 2; the conditions imposed
upon the functionsf. are satisfied and the criterion (i), for instance, yields

If ant oo andI EIX. Irn/arn < a), where 0< rn
_ 2, then a-E Xi 0

n ~~~~~~~~n
1 a.s

or -1 (Xi - t,) a s- 0 according as,for almost all n, rn < 1 or rn _ 1.
an i=

For rn- 2, an = n, Xn independent and EXn 0O, this becomes the Kolmo-
goroff criterion for the SLLN.

20. Letfn(t) = 12 in [0, L]. The criterion (ii) becomes IfLtqn(ant)dt < . When,
no

moreover, qn(t) _ q(t) = P[ IX I > t], it becomesft I[ q (ant) ]dt < . To

specialize further we shall establish
LEmmA 5.3. (i) EIXlr < - for an r > 0 if, and only if (ii) tr E q(nl/rt) _

c < O where c is independent of t; and the last relation holds for t > 0 if it holds for
t= 1.

In fact,

(2 6) E X I r =- urdq (u) = urdq (u)
0 n (n-1)'r

and
nI/rt

(2 7) (n- 1) tr [ q (nl/rt) -q I (n- 1) I/rt } ]f< ul'dq (u)
(n-1)'/rt

<_nt [q (n1/rt) -q I (n- 1)l/t
Summing over n in (2|) and rearranging the terms, the first part of the lemma fol-
lows. Now, (2t) and (21) hold with t = 1 and the last part follows at once.

We take now a. = nl/r. By lemma 5.3, the criterion becomes Tr=j dt < ,

that is r < 2. On the other hand, if r = 1 and - -a..- q, then the con-n-i
clusion becomes1- Xi a.s.> -

If r < 1, then E (,7/nl/r) converges a.s. because lemma 3.6" applies:
n

(28)
L

I 7nI - - t tdq (nl/vt) < [ q (nW/vt) ]d
n ~~~n0

L dt
fo tr

and we can suppress the 'n in the conclusion.
IrL dtIf r> 1, then -<coo and, applying the same lemma 3.6", we can replace
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7n,, by n,, in the conclusion. Thus
If q^(t) < P[IXI _ t] and ElXIr < , then

(ii) S l/"r converges a.s. and a s ,
0) - 4 ~

7 ,if -7 , i=1
'

if O<r< 1,

1i i"a,s,-(iii) z -Xnl/r(n converges a.s. and .jrE (Xi- i) - 0

if 1 < r < 2.
Let r = 1 and qn(t) _ q(t) a.s. for t > n. Then a.s.

(29) |{ -7q I_j q (n) -tdq (t) --+O,
0

hence, a fortiori,
n

(30)~~~(Xi- i) a.s°
n*=1

and, taking =n-0, we get a P. Levy SLLN.
Now, let the Xn be independent and identically distributed r.v. Then, (i) be-

comes the Kolmogoroff SLLN and (ii) and (iii) a Marcinkiewicz [9] result. More-
over, the converse is true, that is,

If the Xn are independent and identically distributed r.v., then E XJr < if

(i) r = 1 and- X a 0 (Kolmogoroff),
(ii) 0 < ~~r = I and-1rXi °

i-1nE
1

i

a.s
(ii) OK<r<1land-j1~ ~-0,

(ii)1< r < 2 andas (X -EXi) ° -
i=1

In fact, in case (ii) for instance, there follows that Xn/nl/lr a,. 0 and by lemma
3.5"1,
(31) P[|Xn| >En1/r] = E q (,nl/r) <co

n n

Hence, by lemma 5.3, E Xj < c .

Convergent subsequences and truncation. Given a sequence { Un), if (i) there exists

U. as4- U as ni - and (ii) for ni _k < ni+1, Vi = sup|U UkUi .

k

then Un a U.
This is shown by selecting ni such that ni < n < ni+i. Then, as n,i
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n and
(32) l U" - Ul :g I U. - U"'|+ I U,,, - Ul 6 Vi + I U., - Ul °- -.
In the following section, we shall see how this can be achieved, by a convenient

centering, for sequences which converge in probability. There the special form of
{ni} will be immaterial. However if the ni and the X,, increase relatively slowly,
this can be achieved by truncation. In fact,

n~~~~~~~~~~~Let Un, = jS X/nV. If (i) for every e>0O, S P[| U,,- Uj > el/na < s:
i=l1

with 0 < a _ 1, and (ii) S P[I X,,I > cn#] < X with 3> 0, then U" a, s Ufor
n

_ a + ,.
First the following slight extension of a property of series (Dvoretsky [4], for

a = 1) is easy to prove: ifE Ip I/n'a < - with 0 < a < 1, then PjIp < O

with nj+1 - ni = 0(n,). Thus, (i) implies thatE P[I U,,i- UI > e] < - and,
n

by lemma 3.3, Un, U. Now, let Xnbe Xntruncated at cnf andUXn= -X ./n.
i-1

From (ii), there follows by lemma 4.1 that Un- a 0, so that U >a U.
On the other hand, we have

(33) Ut- (JT =u.T U, +X,,i+1+. *.+X.
k-t ~~~k

hence, because of the structure of {nil
(34) Vi < Un,Io (nt'I) + o (ni ) - 0,

and the proposition is proved.
It is easily seen that in the hypothesis (i) we can replace P[ I Un- U I > el

by cO(n) = sup P[ Un+. - U,,, I ]. Then, not only do we not have to know U but
m

also {ni} can be explicitly determined. In fact, elementary computations, using
the relation CO,n,,(2e) _ Cn(), show that

If a < 1, then CO(e)/nna < - for every e> 0 is equivalent to [nlJ(1-a)I (e)
n nf

< - for every e > 0 and if a = 1 then it is equivalent toE co[ 2n](e) < oa for every

e > 0 and everyq > 1.
Clearly the proposition proved above holds a fortiori if P[ U,, - U I > e] is

replaced byE Un-U I e or sup EI Un+,-UnU,,I r > 0. Then, for a = 1,,= 0,

-y = 1, r = 2 and U = 0, it reduces to a result of Dvoretzky [4] which generalized
a result of the author [8] which, in turn, contains Borel's SLLN in the Bernoulli
case and the SLLN in the Poisson case.

With -,(e) and a = 1, ,3 = 0, -y = 1, the proposition reduces to a SLLN (Khint-
chine) for sequences of events which contain sequences of exchangeable events
(de Finetti).
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6. Centering of sequences convergent in probability

A sequence { U. I which converges in probability to U (U..-* U) contains, as

is well known, an a.s. convergent subsequence Uni a.s. Usinceforeverye, becauseof
P[| U, - U > e]-0, there exists for a given E ej < co a sequence of {ni

such that P[[U,,- UI > ei] < ei, hence S P[IU,n - UI > eil < - and, by

lemma 3.3, U,i a-s. U. Similarly, because of P[ Urn - U. > e] -O 0 for every e,
1 1

as -+- - 0, there exists a sequence ni T co (there will be no possible confusion
m n

between the two sequences {nij) such that [PI1 U,l+- Un,I > ej] < - and,

by lemma 3.3", U, converges a.s.; this implies that Un. converges in probability,

whence to U and, finally Un;a-s. U. In any case, condition (i) stated at the begin-
ning of the last part of the previous section is fulfilled and we shall now fulfill
condition (ii) by centering upon convenient conditional quantiles of order p,
O< p < 1/2.

Let {Uk) and {Vkj, k = m, m + 1, . ., n, be two sets of r.v. and {Uk} and
Vk}, Vk = Uk, two sets of nonnegative sure or random quantities. Let

Ak = [ Uk > Uk] , Ak = [ Uk< -Uk], Ak= Ak+ + Ak = [| Uk| > Uk,
A = U Ak,

k

Bk = [ Vk > Vk] , Bk = [ Vk < - Vk] , Bk =Bk +Bk- = [|Vk| > Vk]
B= uBk,

Ck= [Vk- Uk _ Vk -Uk] (C= [ Vk- Uk -Vk+ U] -

LEmMA 6.1. If
(i) P (C+; A+A'+* A') > p < P (Ck-; A- . A')

or
(i') P (CWt; A'... A' A+) > p _ P (C-; A,'. . . A' A-)

then
pP (A) < P (B) .

In fact, by (1),

(35) A = U Ak= A A 1+1 ... A' A+A'+, ... A'

+E AA1A+1 ... Al

and, since
(36) Ck± (A ± A'+, ... A') cCk±iA±cB±cB,
we have
(3 7) PB _P(A +A'+, . . * A')P(C+; A +A'+ *.*.* A')

+ ,P(Ao-A'i . .. A')P(C-; Ak-A'+i ... A'),
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hence

PB_ pP(AkA + *A . A') =pPA
k

and the conclusion is reached; similarly for (i'). Clearly, if some of the a priori
probabilities are null, the corresponding terms in (37) disappear and the conclusion
still holds
LEmmA 6.2. If

(i) P (Vk - Uk _O; Uk,... Un) _ p P (Vk- Uk <0; Uk,*., Un)

or

(i') P (Vk - Uk _O; Um, .Uk) _ p P (Vk - Uk _ O; Um .... Uk)

then, for every e > 0,
PP [SUp UkI > e] _ P [sup Vk I >e.

k k

Let D E FI Uk, .. ., Un I. From (i) and the definition of conditional expectation
(see section 7), it follows that

(38) P(D)P (Vk- Uk>_0; D) = P(Vk-Uk> 0; Uk,., Un) dP
D

_pPD,
and similarly for P(Vk - Uk < 0; D). The same follows from (i') for
D E F{ U .,..., Uk}. Applying lemma 6.2 above with Yk Zk E, the proposi-
tion is proved.

Fixing p, let uA(X; G) denote conditional quantiles of order p on the a-field
G c F (see section 7) defined by
(39) P [X-u (X; G) _ 0; G] _ p < P [X--A(X; G) < O; G].
The conditions under which the conclusion of the lemma above holds can be ful-
filled by centering Vk- Uk upon corresponding ,A's. For instance, (i) is true if we
replace every Uk by Uk = Uk - IA(Uk -Vk; Uk,..., Un). In fact, by the defini-
tion (39) of A's, we have for example
(40) P{ Vk - Uk - yI (Vk - Uk; Uk, ..., Un) > 0; Uk,..*, U.} >_ p
and it implies
(41) P (Vk - Uk U', Un

because, for i > k, U' is a function of { Ui, Ui+1, . .. , U,, only.
Particular cases. 10. With Vka Un, the lemma becomes if /p(Un-Uk; Uk ....

Un) = 0 or A(Un - Uk; Ur,..., Uk) = 0, then

pP[supJ UkI >El =P I Un >EI-
k

20. With Uk replaced by U,, - Uk and Vka Un the conclusion becomes
(42) PP [SUp| Un- UkI >] <P [j U,, >f]

k
But
(43) P [suPI Uk I>E]_ P[sup IUk -Un I> ]+P[ Un > ]
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and we have
If ,u (k; U.- Uk*** U. UU 1) = °O

then
PP [ SUpI Uk I > f-1 (P+1)P[ I >I ]>

30. Because of the Tchebicheff-Markoff inequality, the conclusions above hold

a fortiori when P[ I U. I > e'] is replaced by r E U|, r > 0. They are then

similar to the Kolmogoroff-P. Levy inequality (for r = 2), but the centering is
-now upon conditional quantiles of order p instead of conditional expectations

k

which might not exist. Clearly, if Uk = E Xi where X1, . . . , X, are independ-
i-i

ent, the conditional quantiles of order p degenerate into a priori quantiles of order
p. The inequalities thus obtained can be used to deduce criteria similar to theo-
rem A.

40. We shall need below the following form of lemma 6.2. Let Vk Uni+i -Uni
Uk be replaced by Uk,- Uk, and m = ni + 1, n = ni+i - 1. Then we have,
using (i) for instance,

If P(Uk - Un, > O; UnU - Uk,*** Ui+, - Un+il) _ P
<5 P(Uk -Uni <_ O; Uni+, - Uk, .** Uni+i - Uni+tl-)

then
p P [SUp Uni+ - Uk I > e] = P [ I Uni+- Uni > 'El

k

and, writing Xn= Un- Un-1, the knowledge of U +,- Un+1 Xi= Xni+
Unj+i - Uni+i-2 = Xni+i + Xni+i, . . Un,i+ - Uk = Xn4l + * *+ Xk+l iS
equivalent to that of Xn41, Xni+,- ... . Xk+l-
We can now get back to Un - > U, the sequences {ni} which correspond to a

given ei < - chosen, according to the beginning of this section, such that

E P[ Uni+1 - Un,i > Ei] < -. Here let k = ni + 1, .. n+ -1.

THEOREm B. IfUn=Un Xi U and
i=l

(i) P (XM+ + *+ Xk (0; Xk+l+** +Xni+X)_ p
<P (Xni+l + ***+ Xk _< 0; xk-+i, * X.,+)

or

(i') P (Uk - U >_O Xk+1 .... Xrni.,) _ p < P (Uk - U _;

Xk+b ...* Xni+i)
then Un U.

In fact, letting Wi = sup Xi+l + . + Xk , it follows from (i) and 40 that

-44) P (Wi > Ei) P (Xni+l+ + Xni,,) - pEi
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Consequently j P(Wj > ei) < X and, by 3.3, Wi a s. 0. Similarly, in case (i')

or others in which lemma 6.2 applies. The conclusion holds a fortiori if Un- U are
centered about iu(U, - U; X+ *....).-
THEOREm B'. If UnTJ-- U, then there exists a sequence of zeros and conditional

quantiles of order p, AnO- 0 such that Un- i,Un- U.
In fact, taking Ak = A(Xn,+1 + . . . + Xk; Xk+1, .. , X,,,) for k = ni + 1,

..., ni+ - 1, and Un; 0, the proof above applies to Un -Sun which thus con-

verges a.s. But Un, - 4 = Uni, a-s'- U, hence U,, -,ta,
- U. Consequently

U,n - Aun A U and since U. - * U, it follows that ,n°A 0.

If the AUn are such that .s, -> 0 is equivalent to An a.s. 0 then, clearly,

U. -* U is equivalent to Un a-s- U. This is certainly true when the /,n are
degenerate and, in particular, when the Xn are independent. Thus (P. L6vy) for a
series of independent r.v., convergence in probability and a.s. convergence are
equivalent.
When Un = (X1 + ... + Xn)/n we can, centering conveniently, reduce con-

vergence of { U,, to that of a sequence of { V1 I whose terms do not have common
X's. In fact, let qi = [q¶l with q > 1 and Vi = (X,,+, + . . . + Xi.,)Iqi with
i = 0, 1, 2, .... Since qj+1 - qi -. o as i -- c, we can assume, neglecting per-
haps a finite number of X's, that qi+1 -qi > 1 for i = 0, 1, 2, .... To begin with

Uq; as4 U if and only if Vi a,4 (q - 1)U.
This follows at once from

(45) ~~1 j=1 1
(45) Vj=-(qj+iUqj+,-qiUq,) and Uq, = (X1 + qh Vh)

Replacing Un by Un- U and Vi by V1 - (q - 1)U, that is, replacing Xn by

Xn- U, we have UQ,
a 0 if and only if Vi. 0.

But, for qi < k < qi+i,

(46) Uk = ki Ui+ (XQ + * +Xk)-

Hence,

(47) Ukl < q UqJ + qXqj+i+.- . +Xkc.

Once the sums Xqj+l + ... + Xk are centered in order that lemma 6.2 applies,
for instance upon A(Xqi+l ± . . + Xk; Xk+1, . , Xq+4), it gives

(48) P[sup-|Ixqi+l+.- . +Xk| >f]=-P[| Vi| >El.

If 5 P[I Vi| > E] <X , then, by (47) and (48), Un a-4- 0. Thus
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If P[|I Vi > e] < - and A(Xq*1+ . . . + Xk; X4+1,... , X4) = 0 for

i = 0, 1,2, . . .and k = qj + 1, . . ., q4l - 1, then Un, a-s * O.
In the case of independent Xe's, the ui are degenerate, the Vi are independent

and, by lemma 3.6, Vi 0 ifandonly if,forevery e> 0, P[ IVi I > E] < O.
With q = 2, we have thus the necessary and sufficient condition for the SLLN, due
to Prokhoroff. (See K. L. Chung in these Proceedings.)

PART III. DETERMINING SET FUNCTIONS

7. Determinig set functions and conditional expectations
Let (G, PG) be a contraction of the probability field (F, P), that is G is a c-field

containing Q and contained in F and PG(B) = P(B) for every B E G. Let 4,
with or without subscripts, denote a finite, ar-additive and P-continuous function
defined on F and 4G denote its contraction on G, that is, 4G(B) = +(B) for every
B E G. A r.v. X with E X I < X, determines uniquely its indefinite integral

(49) +(A) =jXdP, A EF.

Conversely, by the Radon-Nikodym theorem a function 4 defined on F deter-

mines (up to an equivalence) a r.v. X = do or derivative of 4 on (F, P) given

by (49); 4) will be called the determining set function (d.s.f.) of X. By the same

theorem ck determines a r.v. Y = dpG or derivative of 4 on (G, PG), by the re-

lation

(50) d>(B) =fYdP, BEG.

Y is a smoothed X, roughly a set of partial mean values of X (for instance, if B is
an atom of G but not of F, then Y is constant on B and is a P-weighted mean of
X on B). It will be the conditional expectation of X on G and written E(X; G).
When X = I(A), then E{I(A); G} is written P(A; G) and is the conditional prob-
ability of A on G. If G is the c-field determined in F by the set { UA,, X E A then
E(X; G) will be denoted by E(X; {Ux})-the conditional expectation of X on
I Ux,. Conditional expectations obey the rules of differential formalism. The con-
ditional expectation E(X; A) of X on A E F is defined by
(51) PAE (X; A) =4 (A)

and the indeterminacy of E(X; A) when PA = 0 can be removed by making the
convention, for a countable number of A's, E(X; A) = 0 if PA = 0.
We shall first briefly examine a few details indirectly related to the study of

a.s. convergence.
10. Because the Radon-Nikodym theorem applies to cr-finite, a-additive and P-

continuous set functions the definition of conditional expectation on G (such that
4)a is c-finite) extends at once to a r.v. X whose indefinite integral exists but is not



ALMOST SURE CONVERGENCE 295

necessarily finite. It would be of some interest to adapt the results of the following
sections, where we assume once for all that the r.v. possess afinite expectation, to this
more general case.

20. Consideration of d.s.f.'s leads, naturally, to a kind of convergence different
from those used at present in probability theory because, if On converges on G to
a finite set function, then this limit function is d.s.f. of a r.v. X. Consequently, if
On is d.s.f. of Xn, then E(Xn; B) converges to E(X; B), B E G, and we can say

that Xn converges to X conditionally on G (Xn G-* X). Clearly Xn G
> X im-

plies EXn -- EX.
Convergence in probability, a.s. or ordinary, does not imply conditional convergence

on F and conversely. The first three do not even imply convergence of EXn to EX;
examples are abundant. For the converse, take Xn = cos 27rnw where w is uni-
formly distributed on (0, 1) and apply the Riemann-Lebesgue theorem.

Conditional convergence on F will be uniform if, given e, there exists an n. such
that I On(A) - O(A) I < e for n > ne and all A E F and it follows at once from
this definition that uniform conditional convergence on F is equivalent to convergence
in the mean. We can define a stronger form of uniform convergence-uniform con-
vergence of conditional expectations: E(Xn; A) - E(X; A) I < e, that is,
IO.(A) - r(A) < EPA, for n > nf and all A C F. We shall see that it is related
to various criteria for a.s. convergence.

30. The zero one law. One might say that two events A1 and A2 are a.s. inde-
pendent on G if P(A A2; G) = P(A1; G).P(A2; G). If A1 = A2 = A, this relation
becomes P(A; G) = p2(A; G). Hence the r.v. P(A; G) has (up to an equivalence)
only two possible values 0 and 1 and one can say that A obeys the zero one law on G.
It is almost immediate that an event A obeys the zero one law on G if and only ifA be-
longs to G a.s. (up to an event of probability zero). Thus A obeys the zero one law,
that is, obeys it on all G c F if and only if it coincides a.s. with an event be-
longing to all G, hence either with Q or with i6. Consequently, PA = 0 or PA = 1
and conversely.

Let I UnI be a sequence of r.v. and C E FI TUn} . C obeys the zero one law on
F{ TU.}, hence on F{ Un D F{TUn , but in general PC $ (PC)2. However, if
C = lim lim Bmn with Bmn E FI Um ... IUn} and Bmn and Bm'n, become asymp-

m n

totically independent as the disjoint segments on which they are defined with the
distance n - m' -* -, then C obeys the zero one law. More precisely,

If (i) C = lim lim Bmn and (ii) P(BmnBm'n') - P(Bmn) P(Bm'n') -O 0 as n -m,m n
n' - m', m, m' and I n - m' , then C obeys the zero one law because, passing to
the limit in (ii), we get by (i) PC - (PC)2 = 0. In the particular case of independ-
ent U,, we have P(Bm,,Bmn) - P(Bm,,)P(Bmn) = 0. Hence FI TU.II = (Q, 0) up

to events of probability zero. Similarly, when Un = z Xi with independent Xi

and the events Bin, are defined in terms of differences Uk - U.. (m _ k < n).
Specializing to C = [U. converges], we have (P. Levy): a sequence or a series of
independent r.v. a.s. converges or a.s. diverges and we see that this conclusion
extends to asymptotically independent Un or X,, in the sense (ii) [or (ii') below]



296 SECOND BERKELEY SYMPOSIUM: LOEVE

with Bmn = sup Uk- Un > E, e arbitrary. The hypothesis (ii) can be replaced

by (ii'),
P (B.,.,; Um.... U.

p
Un PCe

In fact,

(52) f P(Bmn; Ur, .., U)dP f I (Bmn) dP
B,, Bmn

=P(BmnBmn,) *PC,
while the first integral, which can be written f I(Bmn)P(Brn''; Urn ..... Un)dP

converges, by (ii') and the Lebesgue convergence theorem, to f I(C)P(C)dP =
P

(PC)2. The conclusion holds afortiori with P(C; U,,... IU* ) -* PC, and the par-
ticular case P(C; U,, . . . , Un) = PC for every n becomes the Kolmogoroff zero
one law (for tail events). Also, (ii) and (ii') hold if P(BmnnC) - P(Bmn)PC -* 0

and P(B,,; FITUT}) PC.

8. D.s.f. and a.s. convergence of sequences
Let {k0.) be the sequence of d.s.f. which corresponds to [U.), G = Ff UJ} and

H = F{ TU,,). Events Ai, are disjoint inj if Aii, and Aii2 are disjoint forjl # j2.
4' will denote the P-continuous part of 4, and, as usual, k = m, m + 1, . , n.
THEOREM C. If, for all disjoint in k events Amk defined on { Um .... Uk I such

that lim lim S A.k = A exists, and all events B defined on a finite number of U.,
m n k

4' defined by lim lim I ckk(AmkB) = 4,(AB) exists and is bounded and o-additive, then
mn n k

a.s. U= U4) dO"0U U= d-p,;if {Um., - Uk) is replaced by {UlX. ..Uk}, then U =

dpG

To prove the existence of a limit r.v., we shall show that, writing U, for
lim inf U,, and U* for lim sup U,,, (i) P[U* 7Z U*] = 0 and (ii) P[U* =-] =

n$ n

P[U* =+ o] = 0. To begin with, (i) is equivalent to (i') PCab = 0 for any couple
a < b of rationals, Cab = [U* < a < b < U*] because

(53) Co=[ U* ]Ù I = U Cab -
a,b

Now, selecting Am^k = [Ur _ a, Uk-I _ a, Uk < a], hence A = [U* < a],
we have

(54) J>k (AkkB)= JrAmkB PP p ( AmkB) = aP( E AkB).

From the hypothesis, there follows that as n -- o and m -
,

(55) 4'(AB).aPAB.

Since 4' has a unique extension (to be denoted by the same letter) on G, this rela-



ALMOST SURE CONVERGENCE 297

tion holds when B is replaced by any event in G and, in particular, by Cb( D A).
Therefore

(56) #, (Cab) _ aPCab.

Similarly, starting with Amk = [Urn _ b, . .. , Uk-i1 < b, Uk > b], we get

(5 7) + (Cb) _ bPCab

Consequently, since a < b, it follows that PCb = 0 and (i'), hence (i), is proved.
Now let B = Q. Being finite and a-additive, the function 4t is bounded by a

constant c < O and, for a < 0, (55) gives

(58) P [ U. <a] _
c--0 as a-- .I a

Similarly, for b > 0

(59) P[U*>b ]c-b as b +c

and (ii) is proved. Thus, taking for U the r.v. equal to U* = U* on C' and to

zero on C = Co U [U* = + co] u [U* =-o ] we have proved that Uas U.

There remains to show that U = ILet A E H and

(60) U = hkX on Ch=[hX _ U < (h+ 1)X]
where X > 0, h =...,-1, 0, +1, . . ., and

(61) UA=0 onC.

From the hypothesis, there follows as for (i) that

(62) hXP (AC^C') _ 4' (AC,C') _ (h + 1) XP (AChC') .

Summing over k we get, because of UM < U < U + X,

(63) C(AC') f P UdP- X
,

A U 4/(AC') +X- +

Thus, letting X -* 0,
(64) vt(AC') = ,UdP

AC

or, since PC = 0, U=dP.
If Amk F U..P..XUkasF{U. . . Xs,n U afortiori and the

last part of the proof applies with A E G instead of H, hence U =d-
Also Amk can be replaced by Ak. = [Uk < a, Uk+1 _ a,... , U. > a] with

BE H instead of F(U1, U2,...) and then U= dPH.
The theorem above has a partial converse and, perhaps, it would be possible to

improve it so as to get a necessary and sufficient condition for a.s. convergence in
terms of d.s.f.



298 SECOND BERKELEY SYMPOSIUM: LOEVE

THEOREMC'. If Uas U and IUnI < V(EV < co),then lim rim z ok(Ak)
m ns k

= 4(A) where lim lim E Ak = A, Ak varying or not with m and n.
m k

In fact, given e > 0, there exists an m. such that for m > m.,
(65) PC.<e for Cf = [sUp| U,-U| >E].

k

On the other hand,

(66) '4k(Ak) = fUdP+ (Uk-U)dP
k k Ak k Ak

or

(67) E 0k(Ak)= ck( Ak)+ : f (U,-U)dP- f UdP
k AkCf AkCe

+ fUkdP.
k Ak Ce

As e -- 0 the first term on the right hand side converges to 4(A) and the third

to zero; the second term is bounded by eP ( AkC') < e,0 . The fourth is the

only term for which a restriction seems essential. If Uk I < V, (EV < x ) then

(68) f UkdP E fI UkI dP < f VdP
Ak C k AkCe AkCe

.)f VdP--O as e0
Ce

and the theorem is proved.
An obvious weaker restriction under which the conclusion still holds is

(69) j>k(AkC)-*0 as n-o, m--, when P(C.) -O.
k

Particular cases. 1°. (i) If E(Un; A) -* E(V; A) uniformly on A E FI Ul, U2,
... I.U}, then U n U = E(V; G) and (ii) if A E F{U,, U,,+, ... ., then
U = E(V; H).

In the first case, given E > 0 and B E F(Ul, U2 ... .), there exists an n. inde-
pendent of A E FI U1, , U,I such that

(70) |i4 (AB)4-v (AB) I < e PAB ,

and, consequently, with Amk E Ft U1,. .. U,},

(71) A.(Am&B) - v ( AmkB)| <eP ( Am,BE)_e-
k~~~~~~~~~~~~~~~~

Thus, passing to the limit, theorem C applies with U = E(V; G). In the second
case, we apply the theorem with Akn instead of Amk.
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(iii) If E(Um; A) - E(U.; A)--O as-+- 0 uniformly in A C F{Ul,m n

* * Un} and E| Un| < c < , then Un converges a.s.

In fact, by Cauchy convergence criterion E(Xn; A) converges to a set function
e(A) uniformly in A C F{ U,, . . . , U.) for an arbitrarily fixed no. Consequently,
given e > 0, there exists an n, such that

(72) jq5(A)-4'(A) I <EPA with 'A E F{U,, . . .,URo
and 4, (A) = e (A) PA .

It follows that 4{(A) is bounded by c and is a-additive on F U1, ... , U. I for
every no. Hence, by a trivial extension of Kolmogoroff's theorem on probability
measures in R., the set function 4,, which so far is defined only on F(U1, U2,
can be extended to a bounded and a-additive set function 4' on G.

Now, for m > n. sufficiently large

(73) | k( Amk) - +(A.kB) < e P ( AmJaB) -<.E.

Thus, 41 (I A k approaches 4'(AB) asE A.k approaches A E G, and theo-

rem C applies with U = dpa. Specializing further we have

20. (i') If Un-E(V; U,, ... U.) - O, uniformly in {U1,. . . , U.), then

Uans U = E(V; G). (ii') If U,, ... , U. are replaced by U., U.+,, . .. , then
a.sUn > U = E(V; H). (iii') If V is replaced by U,+, and E| U,n < c < x,,then

Un converges a.s.
These propositions follow from those above in the same fashion. For instance,

case (i) follows from the fact that for n > ne sufficiently large,

(74) JE(U.;A) -E(V; A) |-P< : U.-E(V; U,, . ..,U.) I|dP<e.

Taking the particular cases (i") Un = E(V; U1, . . . , U), (ii") Un = E(V; U,n
Un+1 .... ), (iii") U, = E(Un+i; U1, ... , Un) the above propositions reduce to
martingale properties due to Doob [2], P. L6vy and Ville [10].

30. In the case of exchangeable r.v. {Xn, it is known that if the second common
moment is finite, the SLLN holds. It is easy to show that finiteness of the first com-

mon moment suffices and also to find the limit r.v. In fact, let Sn = E Xi and
t=1

Hs = F{ TSn}. We have, for every fixed i,

(75) E(Xi; Sn Sn+ *. .*) asEa(Xi; Hs).

But the Xi being exchangeable, for all i < n,
(76) E (Xi; Sn, Sn+1, . .) = Un = E (XI; Sn, Sn+1 ..
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and

(77) U.as- E(Xi; H
Consequently

(78) Sn=E(-;SnSn+ i .... (Xi, S., Sn+1....
Uas'= U,,-E (X1; Hs) .

a.sThus, if the Xi are exchangeable (and EIX1| < X), then S,,/n - E(Xi; Hs).
In particular, if the X,, are independent and identically distributed, this reduces to
the Kolmogoroff SLLN and the proof specializes to that of Doob.

9. D.s.f. and a.s. convergence of ratios of sums
The method used in the preceding section but adapted to sequences of ratios

of sums of r.v. by the Fr. Riesz lemma below will yield a proposition containing
as particular cases the celebrated Birkhoff ergodic theorem as well as its known
extensions obtained by various methods by Hopf [6], Hurewicz [7], Halmos [5]
and Dunford and Miller [3].

Let a,, a2, . . . , a, be real numbers, m < v, =0, 1, 2, . . ., m- 1. The term
ai is said to be "favorable" if sup (ai + a1+i + ... + ai+,) > 0. There need not

be any favorable terms but if there are any, then,
LEMMA 9.1. The sum offavorable terms in {a,, . . . , a,} is positive.
In fact, let ak, be the first favorable term and ak, + ak1+1 + * + ak1+I4

(11 < m) the shortest positive sum beginning with ak,. All terms of this sum are
favorable because if ak,+i0 (O < lo _ lh) were not favorable, *e would have
ak1+lo + . . . + aki+11 _ 0 hence ak, + . . . + akl+lo_i > 0 which contradicts the
assumption made. Thus the successive favorable terms form stretches of positive
sums and the lemma is proved.
We are now going to give conditions under which lim U,, exists a.s. with U,, =

S,,/T,, S. = S Xix n, = E Yi, 4i and Vi d.s.f. of Xi and Yi, respectively. We
i-1 i-1

assume that the r.v. Yi are positive and that

(79) lim inf-- oi (C) > O
n i-1

for all events C of positive probability defined on {Xn, Y,,} which remain invari-
ant under translations on Y's.

All events below will be defined on F{Xn, YJ,} Ami will represent an event
Am = Am. translated by i - 1, that is obtained by adding i - 1 to the sub-
scripts of the r.v. X,,, Y,, which figure in the definition of Am.

THEOREmD. If,foreveryA asm X, (i)limlim sup n| i(Ami) 0=0,n
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(i') urn urn SUp - 4Pi(A i) =0 , and (ii) limn n

then lim U. exists a.s.
n

We want to prove that P[U* = U*] = 1. Thus, as in the proof of theorem C,
we have to show that

(80) PCb = 0, C = [U*< a < b < U*];

to simplify the writing we shall drop the subscripts a and b in Cab. Let Bm =
[inf Ui < a]. Clearly
i.m
(81) BmTB = [inf Un _ a] C.

n
Thus, BmC T C and we can write

(82) C=BmC+Am with AmJj1 as m- .

Now we apply the lemma above with v = n + m to the values of aYi-Xi,
i = 1, 2, . ., n + m. If B., represents the event [aYi- Xi favorable], that is,

B' =i<nf ys +<a ]' Bi=Bn
then

n+m
(83) Zn+m,= (a Yi-Xi) I (B' ) _ 0

i=I

and, a fortiori,
n+m

(84) Zn+mI (C) = (aYi-Xj) I(B.C) 0.
i-1

But, for i . n, we have Bm = Bmi hence, applying to (82) a translation i -1,
we get

(85) C = BmiC + Ami, < n.

Thus, a fortiori,
n n+m

(86) (aYi-Xi)[I(C) -I(Ami)]+ aYi-XiI >0.
i=l =+

Integrating with respect to P and dividing by n we get, a fortiori

(87) f(a7(-i)dp+! ) + J (A i)c(aTn-- SnAmj)dp

n n n n~1$

+n 1+ ElXi I + l I EYiR20.
i-n+1 ~~i-i

Now we let n , then m -+ c. From the hypotheses there follows that

(88) lim inf(a n- ) dP _0.
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Similarly, starting with B. = [sup Ui > b], we get
i<m

(89) lim inff( n-b ) dP 0.

Together with (88) this implies that

(90) lim inff (a-b)T. dP 2 0
n e n

and, since a < b, that

1n
(91) lim inf n E'i (C) = O

which, because of property (79) of I Yn} implies that PC = 0, and the theo-
rem follows.

Particular cases. 10. If PAmi < cPAm, then U. = Sn/n converges a.s. to a r.v.
In fact, Yn = 1, |J0fI (Ami) < cl l l (Am) and the conditions are satisfied since

(i) lim | (Am) = 0, (i') lim PAm = 0, (ii) lim |41 l (Q)/n = 0, and (ii') lim 1/n = 0.
mS m n is

Moreover E ISnIn| _ cE XI I < o hence, by the Fatou lemma lim Un is a r.v.

(up to an equivalence).
Specializing to PAmi = PAm, we have the Birkoff theorem.

In
20. If- PAmi < cPAm, then Un = Sn/n converges a.s. to a r.v.

In fact, it follows that

(92) Ij0i (Ami) < cJl4J (Am)

and, in particular, for every h

(93) - Xh+iE <_ cE I Xh|
i-1

hence E Xn In -|/0. The conditions of the theorem are satisfied, the Fatou lemma
applies and this extension of Birkhoff's theorem (Dunford-Miller) is proved.

30. If the d.s.f. of Xi and Yi are defined by o6i(Ami) = ol(Am) and #li(Ami) =
4,t(Am), then Un = Sn/Tn converges a.s. to a r.v.

This corresponds to Hurewicz's extension of Birkhoff's theorem and follows as
above from our theorem. It contains Hopf's extension which corresponds to
P(Ami) = PAm for Am E FXXn, Yn} with Y,, = 1.

40° From E o i(Ami) | _cs(Am), ti(Ami) _ c4P(A.) (4s and 4' P-con-
tinuous), (i) and (i') follow at once. The corresponding particular case would repre-
sent an extension of the ergodic theorem containing Hurewicz's and Dunford-Mil-
ler's theorems.
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