
ASYMPTOTIC MINIMAX SOLUTIONS
OF SEQUENTIAL POINT
ESTIMATION PROBLEMS

A. WALD
COLUMBIA UNIVERSITY

1. Introduction
Exact minimax solutions for sequential point estimation problems are, in

general, very difficult to obtain. As far as the author is aware, such solutions are
known, at present, only in two special cases: (1) in estimating the mean of a
normal distribution with known variance (see Wolfowitz [1]) and (2) in estimating
the mean of a rectangular distribution with unit range (see Wald [2]). The solution
in the first case coincides with the classical nonsequential one, while the solution
in the second case is truly sequential.

In this note, we shall derive an asymptotic minimax solution for a general class
of point estimation problems. The point estimation problem considered here may
be stated as follows: Let {Xi} (i = 1, 2, . . . , ad inf.) be a sequence of independ-
ently and identically distributed chance variables. Let F(u IO) be the common
distribution function involving an unknown parameter 0, that is, Pr{X < u} =
F(u I1). We shall assume that F(u 0) admits a density function f(u I 0). A sequen-
tial point estimation procedure T can be defined in terms of two sequences of func-
tions {Ip(xi, . . . , x,,)} and {t(xi, . . . , x,..)I (m = 1, 2, . . . , ad inf.) where
(p(x, . . . , x,,) can take only the values 0 and 1. The estimation procedure is then
given as follows: Let xi denote the observed value of Xi. We continue taking ob-
servations as long as (p(x, .. . , xm) = 0. At the first time when P(x, ..., Xm) = 1,
we stop experimentation and estimate the unknown parameter value by t(xi, . . ..
xm). We shall assume that the cost of experimentation is proportional with the
number of observations. Let c denote the cost of a single observation and let
the loss due to estimating the true parameter value 0 by t be given by (t- 0)2.

Let v(0, T) denote the expected number of observations when 0 is the true
parameter value and the estimation procedure T is adopted. Furthermore, let
p(0, T) be the expected value of (t - 0)2 when 0 is true and T is adopted. This
expected value is given by

(1. 1) p (e, T) f [I (Xi, ..,0m] 2f (Xi 0) *
m-1 Rm

X f (XmI 0) dXl ... dxm

where Rm is the totality of all sample points (xi, . .. , xm) for which pi(x, . . . , xi) = 0
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when i < m and (pm(xi, . , xm) = 1. The risk when 0 is true, T is adopted, and c
is the cost of a single observation is then given by

(1.2) r(0, T, c) = p(0, T) + cv(0, T)

An estimation procedure To is said to be a minimax solution for a given value
of c if

(1.3) sup r(0,To, c)_ sup r(0,T, c) forallT.
e e

The symbol sup means supremum with respect to 0.
6

For every positive c, let TO, be an estimation procedure. We shall say that Tr° is
an asymptotic minimax solution if

sup r(0,T, c)
(1.4) lim-; _ =1I

0c=onf sup r (0, T, c)
T o

The symbol inf means infimum with respect to T. Clearly, if TO, is an asymptotic
T

minimax solution, for practical purposes TO, may be regarded as a minimax solu-
tion when c is sufficiently small.

For any relation H, the symbol Pr{H 0} will denote the probability that H
holds when 0 is the true value of the parameter. Furthermore, for any chance
variable y, the symbol E(y 10) will denote the expected value of y when 0 is the true
parameter value. Let

(1.5) d (0) =E[(8 og f(xl 0))21 0]
and let
(1.6) do=infd(0).

The main result of this paper is that under certain regularity conditions the
estimation procedures TO, and T' are asymptotic minimax solutions where To
and T' are defined as follows:

Estimation rule TO: Take N0 observations and estimate 0 by the maximum like-
lihood estimate ONc based on the first N0 observations where N. is the smallest
integer > 1/Vcdo.

Estimation rule TI: Stop experimentation for the smallest positive integral
value of n for which

(1.7) nd (O.) - (n+ 1) d (O.) -

and estimate 0 by OJ.. Here O. denotes the maximum likelihood estimate of 0 based
on the first n observations.

Although Tc and T' both are asymptotic minimax solutions, T' seems to be
preferable to T° for small c, since

1.8) lim r (0, Tc, c) <1 for any 0 for which-o0 r (0, TI, c)
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(1.9) d(0) >d ,

as will be seen later.

2. Regularity assumptions
In what follows, for any chance variable y, the symbol 2(y 10) will denote

the variance of y when 0 is the true parameter value. The symbol n will be used
to denote the number of observations required for the estimation procedure, that
is, n is the smallest integer for which pon(x1, . .. , x,,) = 1. Wolfowitz [3] has shown
that under some weak regularity conditions the following inequality holds for any
estimation procedure T:

(1 +dab (o, T))2
(2.1) u2[t(Xl, * * *, X",) 0a (0,T) d (0)
where

(2.2) b(0, T) = E[t(X ,.....X,Xn)-0!I].
Since we shall make use of the above inequality, we shall postulate the following

assumption:
ASSUMPTION 2.1. The regularity conditions postulated by Wolfowitz [3] to insure

the validity of (2.1) are fulfilled.
In addition to the above assumption, we shall make the following assumptions:
ASSUMPTION 2.2. The domain of 0 is an open (finite or infinite interval) interval of

the real axis.
ASSUMPTION 2.3. d(0) is a continuous function of 0 and there exists a value GO for

which d(0o) = do = min d(0). -

ASSUMPTION 2.4. For any positive integerN andfor any 0 let ZN(0) =V0N()N-0).
The following limit relation holds:

lim Pr IZN (0) N/d ((0) < 01 =0 1 f e-u/2du

uniformly in X and 0.
ASSUMPTION 2.5. E[ZN2+(0) I 0] is a bounded function of 0 and N for some posi-

tive B.
It is well known that assumption 2.4 holds under rather general conditions (see,

for example, [4, p. 430]). The above assumptions can no doubt be weakened, but
for the sake of simplicity the author has not attempted to do so here.

3. Proof that TO, is an asymptotic minimax solution

It follows from (1.2) and (2.1) that

(1 + db (0, T)

(3.1) r (0, T, c) _ b2 (0, T) + ( a
d + cp (0, T)

' (0,T) d(0) +c(T)
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Taking the minimum with respect to v, we obtain from (3.1)

2 -\I|I + 8ab |
(3.2) r (0, T, c) 2 b2 (0, T) + >d(0)

Consider a fixed finite and closed interval I of the 0-axis. Let l(I) be the length

of 1. If d -e (0 < e) for all Din I, then900-

(3.3) sup r (0, T, c) >_ su p (0, T) _lsu b2 (0, T) > (I)

If b >- e for some 0 in I, it follows from (3.2) that900

(3.4) sup r ( 0, T, c) _>
2- (I)- .

OE,' /max d (0)

Let

(3.*5) e(I, C) I(I) 4max d (0)

Clearly,

(3.6) e2(I, c)12(I) 2 .(3.6) ~~~~~4/max d (0)
E'

Since the right hand member of (3.6) is greater than the right hand member of
(3.4), it follows from (3.3) and (3.4) that

(3.7) sup r(0,T, c)_. 2V mI E(I,)I
NGE'

Let Q denote the whole parameter space. It then follows from (3.7) that

(3.8) sup r (0, T, c) _ sup 2 \ [ 1 e (I, c)
OE a /~~max d(0)

Let Oo be a value of 0 for which d(o) = min d(@) = do. The existence of such a

value is postulated in assumption 2.3. Let Io be the closed interval of length lo and
midpoint 0o. We then obtain from (3.8)

(3.9) sup, r (0, T, c) ~-' 2 '[1 e(Io, c)]

Since by assumption 2.3 the function d(@) is continuous in 0, there exists a positive
8, say 8i, (depending on lo) such that

(3.10) max d(0)< do+61.
eEIo



SEQUENTIAL POINT ESTIMATION 5

and

(3.11) lim 5, = 0

We then obtain from (3.9)

(3.12) sup r(0,T, c)_ 2V-[ I-e(Io, c)I
OEa ~Vd~o+ 8

Since the right hand member of (3.12) does not depend on T, we obtain

(3.13) iinf sup r(0,T, c)_ 2\/c [I-E(IO, c)l
(3.13) ~T 9 Vo 1

For fixed lo, we have

(3.14) lime (Io, c) = 0 .
c=0

Hence, it follows from (3.13) that

(3.15) liminf -2 inf sup r ( _,T, c) _ 1
C=0 2VC insu r(,,c.1

Since 61. can be made arbitrarily small by choosing lo sufficiently small, and since
do > 0, we obtain

inf sup r (O, T, c)
(3.16) lim inf -T --- 1 .

c=0 2~id-

We shall now show that
sup r(O, TO, c)

(3.17) lim -=1.
c0o 2 V'Ii

do

Clearly, for the estimation procedure T°c defined in section 1 we have
(3.18) NC r (0, T%°, c) = NCE [ (6NC,-) 2I ]+ cN2 .

Let tONI (N = 1, 2, .. , ad inf.) be any sequence of parameter points. It fol-
lows from assumption 2.4 that the distribution of ZN(ON)Vl Hk, as N -X c, con-
verges to the normal distribution with zero mean and unit variance. Hence, the
Helly-Bray theorem [7, p. 31] and assumption 2.5 give

(3.19) lim E [Z2 I(N)jId(EN)=1

From this it follows that

(3.20) lim NcE (ONC 2) 1
c-0 d (O)

uniformly in 0. Hence, because of (3.18), we have

(3.21) lim Ncr (O, TO, c) =--+-c0 d~c ( i) d0T



6 SECOND BERKELEY SYMPOSIUM: WALD

uniformly in 6. Hence,
(3.22) lim Nc sup r (6, TO, c) = sup 1 1 2

c=O G e d(6) +do=do~
Since Nc = 1/V/cdo, (3.17) is an immediate consequence of (3.22). From (3.16)
and (3.17) it follows that

inf sup r(0,T, c)
(3.23) lim T 9 1

c=o 241

Equations (3.17) and (3.23) imply that T° is an asymptotic minimax solution.

4. Limiting distribution of the maximum likelihood estimate when the num-
ber of observations is determined by a sequential rule
In order to study the risk function associated with the estimation procedure T.,

it will be necessary to obtain the limiting distribution of X/n ( 0,,-0) when n is
determined by a sequential rule.

For any positive value c, let I op(xi, . . , xm)I (m = 1, 2, . . . , ad inf.) be a
sequence of functions which can take only the values 0 and 1. Let n, be the small-
est positive integer for which

.op(xi, . .*, xm) = O for m < nc
and

Pc(X) ...* * Xnc) = 1 .

We shall make the following assumptions:
ASSUMPTION 4. 1. There exist a function N(c, 6) of c and 6, and a positive function

e(c) of c such that

(4.1) lim N (c, 6) = o uniformly in 6,
c=O

(4.2) lime (c) = 0,
C=O

and

(4.3) limPr{N-eN<nc <N+eNI 6 = 1
c=O

uniformly in 6.
ASSUMPTION 4.2. The derivatives f and Cl f02 exist.

aOlog f (xJ 6) \2+51ASSUMPTION 4.3. For some positive 6, E [(a f ) J zsi bounded
function of 6.

ASSUMPTION 4.4.

E [(a log f (XI 0) )2 l ] d (09)

has a positive lower bound and is uniformly continuous in 6.
For any positive p, let

(4.4) h(x, 6, p) = st ( 2logf (X 6)) _
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where 6' is restricted to values in the closed interval 6 - p, 6 + p1. Furthermore,
let

(4.4a) h, (x, 6, p) =sup
[(2 log f (xi ))]

and

(4.4b) h2(X, 6, P) =inf[(02 log f (x 0)
when 16'- 01 _ p.

ASSUMPTION 4.5. E[h(x, 6, p) 60] is a bounded function. of Ofor some positive p and

lim E [hi (x, 6, p) 16 =E [d log f (x 6])-9 d (6)062
uniformly in 6.

For any 6, any positive integer m and for any positive 6, let Qo,.,s denote the
event that

(4. 5) iOk-6V 5 for allk> m.

ASSUMPTION 4.6. For any positive 6, we have

(4.6) lim Pr{Qs,m,6 61 = 1

uniformly in 6.'
We shall prove the following theorem:
THEOREM 4.1. If assumptions 4.1 to 4.6 hold, then

(4.7) lim Pr{I v (On- .-6) +/d (6) <X 6J} v,Jf e 2u/2du
C=

uniformly in X and 6.

PROOF. Taylor expansion of 0g f (0 16) at a = 0, gives

(4.8) d log f (xa. I6) a0logf (XajI Onc)

+ (-J"¢) S d9 log f (Xa| fc)
aa1

where gc lies between Onc and 6 and d log df (XIx 0 ) denotes the value of

' oigf( 6) at 6 = 6*. Since the first term on the right hand side of (4.8) is

zero, we obtain

(4.9) 06gda I = --( 0-6) 2

g f(XIc)

1 This assumption states that the maximum likelihood estimate converges strongly to the true
parameter point 0 and that this convergence is uniform in 0. The strong convergence of the maxi-
mum likelihood estimate was proved under very general conditions (see, for example, [5] and [6]).
The uniformity of this convergence in 0 can also be proved under some slight additional regularity
conditions, by making use of a result by Chung [8] concerning the uniformity of the strong law of
large numbers.
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Hence,

d ( a log f (X.J 0) x/d(0)
(4.10) -\I=N (O.,-0) -\I ()-

1 0log f (x^|T)
002

Let {17i) (i = 1, 2, ... , ad inf.) be a sequence of positive numbers such that
limrn = 0. It follows from assumption 4.6 that there exists a sequence {ki}
j=C0
(i = 1, 2, . .. , ad inf.) of positive integers such that lin ki =c and

(4.11) lim PrIfIQo.ki, iJ = 1 uniformly in 0

For any positive k > ki, let pk = r)i where i is the largest positive integer for
which k _ ki. Clearly, we have
(4.12) lim pk=O

k= C

and

(4.13) lim Pr{Qo,k,k I 0t1 = 1 uniformly in 0
k= c

It follows from (4.13) and assumption 4.1 that

(4.13a) lim Pr Ij -0I < PIN-IN] I =1
c=0

uniformly in 0. The symbol [a] denotes the smallest integer aa. Since j, lies be-
tween O,* and 0, the above equation gives

(4.14) lim Pr{I Ic- 01. P1N-.N] I 0 uniformly in 0
c-0

Let n*, be defined as follows:

(4.15) n*= n,whenN-EN nc < N+ eN

n* = [N-eN] when n. < N-eN

n* = [N + eN] when n, > N + eN .

For any sequence I ui of chance variables the symbol

plim (u1 0) = X

willmeanthatlimPrlui- XI> plOI = 0foranyp> 0.Itfollowsinmmediately
i-0

from assumption 4.1 that

(4.16) plim [ lo X )_a log f(X,,0) O] = 0
C=0 LVo \i00

and

(4.17) plim[(rE 2 log _ (Xj.Ig) ,2 log f (X. |Ic) )1]\ 0(417pi a 02 - 9020 =
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uniformly in 0. Clearly,

IIN±eNI 02 lgfX-Ie) IN+E1NI
(4.18) 02l h (Xa, 0, PIN-eN])

holds when -00 P[N_,N1. Because of (4.12) and assumption 4.1, we have
(4.19) lim (PIN- EN]) = 0 uniformly in 0

c50

It follows from assumption 4.5 that for some positive p
I IN+eN]

(4.20) liNrn E[I h(X, 0, p) 10 =0 uniformly in 0.

Hence, because of (4.18), (4.19), and (4.14), we have

(4.21) plin [N 02 lo 0 ]
c

uniformly in 0.
Since

Ei[IN+EN] a log f (X. f0) ]2 |g = d ( )EIN+ eN )n }

c~~~~~~~~

it follows easily from assumption 4.1 that

(4.22) plim cllgf(. 01=0

uniformly in 0. We shall now show that

(4.23) plim[I[Oogf(Xa ) |o] = -d (0)I=oN a- 002

uniformly in 0.
Clearly,

(4.24) N E h2(X-NN 0 PIN-EN]) - N 0 lo f (X|j)

I N+-NJ

<N hl (X-, 0, PIN--NJ)

whenever -_c PP[NENJ. Hence, because of (4.14), equation (4.23) is proved
if we can show that

1IN+eN]
(4.25) plim [N- hi (X., 0i P[N_-NJ I ]1 d 0

uniformly in 0. But this follows from (4.19) and assumption 4.5. Thus, (4.23) is
proved.
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We obtain from (4.10), (4.16), (4.17), (4.21), (4.22), and (4.23) that

1 N±eN _________) v'd(O)1_=( : d o x )) /d( -O) +___N alf Jo)
(4.26) d(\)+N= VN(Onc-o) x/d()

where

(4.2 7) plim (Q, I ) = plim (¢¢|) =0
c=O c=O

uniformly in 0.
It follows from assumption 4.3 and the central limit theorem that

I__ [NCOalog f(X.aI_0)(4.28) lim Pr N gd(f) < v 0
c_0 a/ IT O

= 1 _S-fe_u2/2du
uniformly in v and 0.

Since according to assumption 4.4 d(a) has a positive lower bound, theorem 4.1
follows easily from (4.26), (4.27), (4.28) and assumption 4.1.

5. Proof that T' is an asymptotic minimax solution and that (1.8) holds

Assumptions 4.2 to 4.6 are assumptions concerning f(x I) only. If these as-
sumptions hold, it is not difficult to verify that assumption 4.1 is fulfilled for the
sequential procedure TI, where N(c, 0) = 1/A/cd(0). In fact, it follows from the
boundedness of d(O) that

(5.1) lim n, = co

c=0

From this and assumption 4.6 it follows that for any a > 0

(5.2) lim Pr nc is includedin inf ( 1 --1c=0 1°\@17v d _(K@)
sup ( 1 1)] t=

uniformly in 0. Assumption 4.1 is a simple consequence of (5.1), (5.2) and assump-
tion 4.4. Hence, theorem 4.1 yields

(5.3) lim Pr I Vn (kc - 0) /d (°) < X I0 = je -/2du

uniformly. in X and 0. Clearly,
(5.4) N(c, 0) r (0, TI, c) = N(c, 0)E [(0 - 0)2 01 + N(c, 0)cE (n, I0)
We shall make the additional assumption:

ASSUMPTION 5.1. [N(c, 0)1P+1/2E[(O 0-0)2+810] is a bounded function of c and 0
for some 6> 0.

Since

(5.5) plim (N(c )| = 1



SEQUENTIAL POINT ESTIMATION II

uniformly in 6, it follows from (5.3) and assumption 5.1 that

(5.6) lim N (c, 1) E [ ) 2 1] = d

uniformly in 6. Furthermore, it can easily be seen that

(5.7) lim N ( c, 6) cE (n |I 6) = dc0~~~~~~~ 0
uniformly in 6. Hence

(5.8) lim N (c, 0) r (0,T, c) = 2

uniformly in 6, or

(5.9) ~~~~~limr_( , Vc, c)
d(0-d (8_)

uniformly in 6. This and (3.21) show that the following theorem holds:
THEOREm 5.1. If assumptions 4.2 to 4.6 and 5.1 hold, and if (3.21) and (3.23)

hold, then T' is an asymptotic minimax solution and (1.8) holds.
Let TP be the estimation procedure defined as follows: Take first m, observa-

tions where m, = [1/Vcdi] and di is the least upper bound of d(8) with respect
to 6. Then take n, - m, additional observations where n, = [1/c-d(Omc)]. Esti-
mate 6 by O.,.

One can show in a similar way that if assumptions 4.2 to 4.6 hold, and if as-
sumption 5.1 remains valid when T' is replaced by T2C, then

(5.10) lim r (6, T2, c) 1
c=O 2V

d (6)
uniformly in 6. Thus, because of (5.9), we have

(5.11) Aim r(6-T', )- 1,=O r (0,TI, c)
uniformly in 6.
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