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1. Introduction

Exact minimax solutions for sequential point estimation problems are, in
general, very difficult to obtain. As far as the author is aware, such solutions are
known, at present, only in two special cases: (1) in estimating the mean of a
normal distribution with known variance (see Wolfowitz [1]) and (2) in estimating
the mean of a rectangular distribution with unit range (see Wald [2]). The solution
in the first case coincides with the classical nonsequential one, while the solution
in the second case is truly sequential. ;

In this note, we shall derive an asymptotic minimax solution for a general class
of point estimation problems. The point estimation problem considered here may
be stated as follows: Let {X:} (i = 1,2, ..., ad inf.) be a sequence of independ-
ently and identically distributed chance variables. Let F(x|6) be the common
distribution function involving an unknown parameter 6, that is, Pr{X < u} =
F(u|6). We shall assume that F(x|6) admits a density function f(%|6). A sequen-
tial point estimation procedure T can be defined in terms of two sequences of func-
tions {o(x1,...,%m)} and {t(x1,...,2s)} (m=1, 2, ..., ad inf) where
o(x1, . . ., xm) can take only the values 0 and 1. The estimation procedure is then
given as follows: Let x; denote the observed value of X ;. We continue taking ob-
servations as long as ¢(xy, . . . , %m) = 0. At thefirst time when o(x1,. .., %) = 1,
we stop experimentation and estimate the unknown parameter value by #(xy, . . .,
Zm). We shall assume that the cost of experimentation is proportional with the
number of observations. Let ¢ denote the cost of a single observation and let
the loss due to estimating the true parameter value 6 by ¢ be given by (¢ — 6)2

Let »(6, T) denote the expected number of obsetvations when 6 is the true
parameter value and the estimation procedure T is adopted. Furthermore, let
p(8, T) be the expected value of (¢ — 6)2 when 6 is true and T is adopted. This
expected value is given by

©

1.1) p(0,T) =3 [ (w0, wa) = 012 (2] 0) ...
m=1" By
Xf(xnp|0)dx,...dx,
where R,, is the totality of all sample points (x1, . . . , ) for which @;(x1,...,2) =0
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when ¢ < m and @n(xy, . . ., %m) = 1. The risk when 6 is true, T is adopted, and ¢
is the cost of a single observation is then given by

(1.2) r(0,T,¢c) = p(0, T) + ¢cv(0, T) .

An estimation procedure T is said to be a minimax solution for a given value
of ¢ if

(1.3) . sgp r(6,T,, ¢) = sn;p r(6,T, ¢)forallT.

The symbol sup means supremum with respect to 6.
0

For every positive ¢, let 79 be an estimation procedure. We shall say that T? is
an asymptotic minimax solution if
sup r (9, ch', c)

(1.4) lim
om0 1nfsupr(0 T, c)

The symbol ian means infimum with respect to 7. Clearly, if 7% is an asymptotic

minimax solution, for practical purposes 7% may be regarded as a minimax solu-
tion when ¢ is sufficiently small.

For any relation H, the symbol Pr{H|8} will denote the probability that H
holds when 6 is the true value of the parameter. Furthermore, for any chance
variable y, the symbol E(y|6) will denote the expected value of y when 6 is the true
parameter value. Let

(1.5) d(0) = <alog f(x|0)) [9]
and let
(1.6) dy=inf d (0) .

The main result of this paper is that under certain regularity conditions the
estimation procedures 79 and T3 are asymptotic minimax solutions where 779
and T are defined as follows:

Estimation rule T): Take N.observations and estimate § by the maximum like-
lihood estimate 8y, based on the first N, observations where N. is the smallest
integer = 1/ Vedo.

Estimation rule T:: Stop experimentation for the smallest positive integral
value of # for which

(1.7)

1 1 <,
nd (6,) @+1)d(4,) =

and estimate 6 by 8,,. Here 8, denotes the maximum likelihood estimate of 8 based
on the first # observations.

Although T? and T? both are asymptotic minimax solutions, T seems to be
preferable to T? for small ¢, since

1
1.8) lim 70> Te> ©)

im 9, 79, ) < 1 for any 6 for which
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(1.9) d(6) > do,

as will be seen later.

2. Regularity assumptions

In what follows, for any chance variable y, the symbol ¢%(y|6) will denote
the variance of y when 8 is the true parameter value. The symbol # will be used
to denote the number of observations required for the estimation procedure, that
is, n is the smallest integer for which ¢,(x1, . . . , x,) = 1. Wolfowitz [3] has shown
that under some weak regularity conditions the following inequality holds for any

estimation procedure T':
( 1492 ab (0 T) )

2.1) e[t (Xy ..., X) | 012 (O’T)d(e)
where
(2.2) b0, T) =E[(Xy,...,X.) —0]6].

Since we shall make use of the above inequality, we shall postulate the following
assumption:

AssuMPTION 2.1. The regularity conditions postulated by Wolfowitz [3) to insure
the validity of (2.1) are fulfilled.

In addition to the above assumption, we shall make the following assumptions:

AsSUMPTION 2.2. The domain of 0 is an open (finite or infinite interval) interval of
the real axis.

AssuMpTION 2.3. d(0) is a continuous function of 6 and there exists a value 8, for
whick d(6y) = do = moin da(o). -

ASSUMPTION 2.4. For any positive integer N and for any 0 let Zn(8) = V' N by — 0).
The following limit relation holds:

. N 1 A _2/2
lim Pr{Zy (6) Vd(0) <\| 6} =Tﬁf_we du

uniformly in \ and 6.

AssuMPTION 2.5. E[Z3+%(8)]6) is a bounded function of 6 and N for some posi-
live 8.

It is well known that assumption 2.4 holds under rather general conditions (see,
for example, [4, p. 430]). The above assumptions can no doubt be weakened, but
for the sake of simplicity the author has not attempted to do so here.

3. Proof that T9 is an asymptotic minimax solution
It follows from (1.2) and (2.1) that

(1+328DY

@1 10T, )z 0,1 + 157209

4+ w(6,T).
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Taking the minimum with respect to », we obtain from (3.1)

2 \/?’ 1 +%—z
2 R o — —— e
(3.2) r(6,T, c)= b*(0,T) +- NZIO) .
Consider a fixed finite and closed interval I of the 6-axis. Let /(I) be the length
of .19 < _ ¢ (0< &) forall 6in 7, then
a9
3.3) sup r(0,T, ¢) = supp (0, T) = sup bz(O,T)Zipg)—.
oelz) = e€r Y = 4
If g—g > — e for some 6 in I, it follows from (3.2) that \
2vVc(1—¢)
> 2 ¥ ¥As S
3.4) , sotégl) r(6,T, ¢)= meu 700"
1 4
Let
V8v¢e
(3.5) e(l, ¢) =l(I)\‘/max IOR
0cr
Clearly,
2 2
3.6) e,ar) 2+

4 " . Jmax d(8) °
ot

Since the right hand member of (3.6) is greater than the right hand member of
(3.4), it follows from (3.3) and (3.4) that
2Vl —e(l, 0)]

\{max d (9)
ecr

Let @ denote the whole parameter space. It then follows from (3.7) that

2+¢cll —e(, 0]
3.8) fg% r(0,T, ¢c) = 5111p \/r?g 2(0) .

3.7 sup 7 (0, T, ¢) 2
ocT

Let 6, be a value of 8 for which d(6,) = min d(8) = do. The existence of such a
0

value is postulated in assumption 2.3. Let I, be the closed interval of length /, and
midpoint 8,. We then obtain from (3.8)

2Vl —e(ly, 0)]

max d (0)
0C 1o

(3.9 sup-r (0, T, ¢) =
ec o

Since by assumption 2.3 the function d(0) is continuous in 8, there exists a positive
8, say &;, (depending on /o) such that

(3.10) max d (0) < dy + 8,

0€CI
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and

3.11) lim 6, =0 .

=0
We then obtain from (3.9)

2Vl —e(ly, ¢)]
'\/d0+ Blo )

(3.12) sup 7(0,T, ¢) =
ecQ

Since the right hand member of (3.12) does not depend on T, we obtain

2Vl —e(ly, 0)]

i =
3.13) u;fsgp r(e,T,c)= Vi T o .
For fixed /o, we have
(3.14) lime (Iy, ¢) =0.

c=0
Hence, it follows from (3.13) that

. . ‘\/d0+ gl—o . >
) Y %0 T Ot =1,
3.15) lu:l_;nf 7/c 1111'f sto;p r(6,T, ¢c) =

Since &;, can be made arbitrarily small by choosing J, sufficiently small, and since
do > 0, we obtain

inf sup 7 (0, T, ¢)
(3.16) lim inf £

J —
=0 2\/3%

sup 7 (0, T9 ¢)
(3.17) lim +——————— =1,
c=0 2 _E_ !
7

Clearly, for the estimation procedure T? defined in section 1 we have
(3.18) N,r(8,T% ¢) =NE[(by,— 0)2] 0]+ cN2.

v

We shall now show that

Let {6x} (N =1,2,...,ad inf.) be any sequence of parameter points. It fol-
lows from assumption 2.4 that the distribution of Zy(6y)V d(0y), as N — o, con-
verges to the normal distribution with zero mean and unit variance. Hence, the
Helly-Bray theorem [7, p. 31] and assumption 2.5 give

3.19) : }’if:oE[Zﬁv(oN)]oN]d(ﬂN)=1.
From this it follows that
1
. e
3.20) l:f: NCE(GNa ) 700

uniformly in 6. Hence, because of (3.18), we have

1 1
; 0 L Wit
3.21) . lcn;l N, r(8,T% c) T0) +do
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uniformly in 6. Hence,
(3.22) lim N _sup 7 (6, T? ¢) ! 1_2
c=0 [

s ta "%

Since N, = 1/ v c-d;, (3.17) is an immediate consequence of (3.22). From (3.16)
and (3.17) it follows that
inf 5101p r(6,T, c)

(3.23) lim £ =1.
c=0 2 i
do

Equations (3.17) and (3.23) imply that 7% is an asymptotic minimax solution.

4. Limiting distribution of the maximum likelihood estimate when the num-
ber of observations is determined by a sequential rule

In order to study the risk function associated with the estimation procedure T,
it will be necessary to obtain the limiting distribution of V'# (8, — 6) when # is
determined by a sequential rule.

For any positive value ¢, let {@.(x1,..., %)} (m=1,2,...,ad inf.) be a
sequence of functions which can take only the values 0 and 1. Let #, be the small-
est positive integer for which

@e(X1, ..., 2%m) =0 for m < n,
and
(’c(xl) ] xnc) =1.
We shall make the following assumptions:

AssSUMPTION 4.1. There exist a function N(c, 8) of ¢ and 8, and a positive function
e(c) of ¢ such that

4.1) lim N (¢, §) = « uniformly in ¢,
c=0

4.2) lime(c) =0,
c=0

and

(4.3) limPr{N—eNZn,<N+eN|0}=1
c=0

uniformly in 0.

AssuMPTION 4.2. The derivatives 9 log f (x] 6) and 9%log f(x] 6)

a6 062
2+3
AssuMPTION 4.3. For some positive 6, E [(ﬂ‘_’g_%f’_]ﬁ | 0] is @ bounded

SJunction of 6.
ASsUMPTION 4.4.

exist.

E [(a_lgg_%xl 8) )2( o] =d(0)

has a positive lower bound and is uniformly continuous in 9.
For any positive p, let
_ d%log f (x| 0)
(4.4) (a0 0) =swo | (S ), |
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where 8’ is restricted to values in the closed interval {§ — p, 8 + p|. Furthermore,
let

(4.42) hi(w, 6, ) = sup [(Z1%B FAGL) )]

and
(4.4b) he (%, 0, p) —1nf

when [0 — 6] < p
AssuMmPTION 4.5. E[k(x, 6, p) | 8] is @ bounded function. of 6 for some positive p and

dtlog f(x]8) ]
YT 0=0

) _ o%log f(x] 6)
lim E lhi (v, 6, ) | 0] =B [ ZELELD 0] = —a(a),

uniformly in 6.
For any 8, any positive integer m and for any positive §, let Qs ms denote the
event that

(4.5) [, —06"<6 for allk=m.
ASSUMPTION 4.6. For any positive 6, we have
(4.6) lim Pr{Qs,ms| 0} =1

uniformly in 6.1
We shall prove the following theorem:
THEOREM 4.1. If assumptions 4.1 to 4.6 hold, then

@.7) lim Pr{v/n. (6, 0) VE(8) <\| 0] = \/_f e/ du

uniformly in \ and 9.

< 3 log f (%] 6)

Proor. Taylor expansion of 2 T at 8 = b, gives
a=1

s Ealog f (%] 0) _ E"alog f;;c_Aﬁi

+ (0=, D21 &log J |0

a=1

where 8. lies between #,, and 6 and M) denotes the wvalue of

3 log f (%] 8) a6:
()ga# at 6 = 0*. Since the first term on the right hand side of (4.8) is
zero, we obtain
0 log f (%a] 6) 3% log f (] B.)
(4.9) Zl_g_a—o—_ - 0) El S

1 This assumption states that the maximum likelihood estimate converges strongly to the true
parameter point 8 and that this convergence is uniform in 6. The strong convergence of the maxi-
mum likelihood estimate was proved under very general conditions (see, for example, [5] and [6]).
The uniformity of this convergence in 8 can also be proved under some slight additional regularity
conditions, by making use of a result by Chung [8] concerning the uniformity of the strong law of
large numbers.
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Hence,
3 log f(xal o))
77 <Z Vi _
(4.10) ] \/N(é,,c—ﬂ) Vd(9) .
8%log f (#a] 8.)
N§} T
Let {n;} ¢ =1,2,...,ad inf.) be a sequence of positive numbers such that

lim 5; = 0. It follows from assumption 4.6 that there exists a sequence {k:}

=0

(1= 1,2,...,adinf.) of positive integers such that lim 2; = « and

i=o

(4.11) . lim Pr{Qsuum,| 0} =1 uniformlyin 6 .

For any positive 2 = k1, let pr = 7; where ¢ is the largest positive integer for
which & = k,. Clearly, we have

(4.12) lim py=0
k=0
and
(4.13) lim Pr{Qs.r.| 0} =1 uniformly in 6 .
k=00

It follows from (4.13) and assumption 4.1 that.
(4.13a) lim Pr{|6, — 0| <Pix-en1]| 0} =
. e=0
uniformly in 8. The symbol [a] denotes the smallest integer = a. Since 8. lies be-
tween 0, and 6, the above equation gives

(4.14) lim Pr{|8.— 0| = Py—en1| 0} uniformly in @ .
c=0

Let 7% be defined as follows:
(4.15) nt=n.whenN — eNSn. <N+ eN
nt=[N— eN]whenn, < N — N
=[N+ eNlwhenn. > N + N .
For any sequence {#;} of chance variables the symbol
plim (] 6) =
will mean that lim Pr{|u; — | ; pl8} = Oforany p > 0. It follows immediately

i=o

from assumption 4.1 that

. al (Xa 9) al (Xcl 0)
.16 plim| ﬂv(z S 2 B )]l -

a=1
and

M~

1/~ 0%log f(Xa| B) < 9% log f(Xa] 8.) 3
(4.17) RE{,“[’N(; 30 - 567 )‘ =

a=1
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uniformly in 8. Clearly,

[N+eN] 3 [N+en]
d%lo Xa| 0,
3 —g—f;é—l)— = h(%ay 8, Pin—eni)

u=n:+l a=[N—eN]

(4.18) ‘

holds when |8 — 8| = Pv_u- Because of (4.12) and assumption 4.1, we have
(4.19) lim (P(y—en1) =0 uniformly in 6 .

c=0
It follows from assumption 4.5 that for some positive p

) 1 [N+enN]
(4.20)  lim NE[

c=0 a=[N—eN]

h(Xe 6, p) | o] =0 uniformly in 6.

Hence, because of (4.18), (4.19), and (4.14), we have

) 1[N+¢N] 921 X.| 8.
(4.21) plim [ 1 > e 102 K2

=0 N ¢=w:+l

6] =0

uniformly in 6.

Since
E% [[Nim a_l%_fé%‘)_(_‘;‘u)_]z‘ 02 =d(0)E{ ([N +eN) __n:) (6}

a=n*+1
¢

it follows easily from assumption 4.1 that

. 1 "M 9log f(Xa| 0)
(4.22) plim [7-—— u.z,.;ﬂ ——79-—__\ o] -0

uniformly in 6. We shall now show that

. [ 1EN 9210g f (X B.)
(4.23) plim [N 3 -

a=1

o]=—d(e)

uniformly in 6.
Clearly,

1 [N+en]

1[N+£N] 92 log f (xal éc)
(4.24) % D ka2, 0, Plv-an) S Z= e

a62

1[N+GN]

= N 2 hy(%e, 0, Piy—en))

a=1

a=1

whenever |8, — 6] < Pv_.v. Hence, because of (4.14), equation (4.23) is proved
if we can show that
[N+enN]

. N\
(4.25) plim [W 2:1 By (Xay 8, Ply—enl] o] - —d(0)

uniformly in 6. But this follows from (4.19) and assumption 4.5. Thus, (4.23) is
proved.
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We obtain from (4.10), (4.16), (4.17), (4.21), (4.22), and (4.23) that

Ny 010g f(xal 0)
(4.26) \/N( )\/d(0)+£c = VN (8 v
. N, — 0 d(e
d(0) +5. o, = 8) V2 6)
where
(4.27) plim (£ 8) = plim (¢ 0) =0
c=0 c=0

uniformly in 4.
It follows from assumption 4.3 and the central limit theorem that

(4.28) lim Pr

c=0

% 1 " 910g f(Xa|0) _ 1 < ”l 0}
VN 36 Va0
1 v
= _— —u?/2
\/27!' [me du
uniformly in » and 6.

Since according to assumption 4.4 d() has a positive lower bound, theorem 4.1
follows easily from (4.26), (4.27), (4.28) and assumption 4.1.

6. Proof that T is an asymptotic minimax solution and that (1.8) holds

Assumptions 4.2 to 4.6 are assumptions concerning f(x|6) only. If these as-
sumptions hold, it is not difficult to verify that assumption 4.1 is fulfilled for the

sequential procedure 7%, where N(c, 8) = 1/ V'cd(6). In fact, it follows from the
boundedness of d(8) that

(5.1) limn,=o .
c=0

From this and assumption 4.6 it follows that for any § > 0

(5.2) hm Pr;nelsmcluded in ol—no|55(m') 1),

su

|0'—£§s (ﬁ"' 1)] I 0% =1

uniformly in 8. Assumption 4.1 is a simple consequence of (5.1), (5.2) and assump-
tion 4.4. Hence, theorem 4.1 yields

— 1 A
(53) lim Pr{ va; (b= 0) VI(D) <[ 0} == [ emrdu

c=0

uniformly.in \ and 4. Clearly,
(5.4) N(, 0)r (8, Tt c) = N(c, 6) E[(6a, — 0)*|6] + N(c, 6) cE (n.|6) .
We shall make the additional assumption:
AssuMPTION 5.1. [N(c, O)I"H/2E[(8,, — 0)**%| 8] is @ bounded function of c and 0

for some & > 0.
Since

(5.5) plim (N—(Z_Wl o) =1
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uniformly in 6, it follows from (5.3) and assumption 5.1 that

1

. T P
(5.6) 1013 N(c, )E[(8,,— 6)2] 0] 700
uniformly in 6. Furthermore, it can easily be seen that
(5.7 1015‘} N (¢, 6) cE(n.| 8) =ﬁ
uniformly in 9. Hence
(5.8) 1}33 N (c, 0) r(6,T:, ¢) =?1‘(2”7
uniformly in 8, or

1
(5.9) lim i%/T—Tfl =1
c=0
New

uniformly in 6. This and (3.21) show that the following theorem holds:

THEOREM 5.1. If assumptions 4.2 to 4.6 and 5.1 hold, and if (3.21) and (3.23)
hold, then T is an asymptotic minimax solution and (1.8) holds.

Let 772 be the estimation procedure defined as follows: Take first m. observa-
tions where m, = [1/ \/Jl] and d, is the least upper bound of d(6) with respect
to 0. Then take n, — m, additional observations where 7. = [1/V ¢d(@.,)]. Esti-
mate 6 by 0,,.

One can show in a similar way that if assumptions 4.2 to 4.6 hold, and if as-
sumption 5.1 remains valid when T is replaced by 7%, then

. r(8,T3 ¢
m ——F—=

(5.10) Ii 1
¢c=0" 2 _C_
d(0)
uniformly in 8. Thus, because of (5.9), we have
. r(0,T: c) _
¢4 i T
uniformly in 6.
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