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MATRIX INEQUALITIES RELATED TO HÖLDER
INEQUALITY
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Abstract. Matrix inequalities of Hölder type are obtained. Among other
inequalities, it is shown that if 2 ≤ p, q <∞ and r > 1 with 1/p+1/q = 1−1/r,

then for any Ai, Bi ∈ Mn (C) and αi ∈ [0, 1] (i = 1, 2, · · · ,m) with
m∑
i=1

αi = 1,

we have ∣∣∣∣∣
m∑
i=1

α
1/r
i BiAi

∣∣∣∣∣ ≤
(

m∑
i=1

|Ai|p
)1/p

whenever
m∑
i=1

|B∗
i |

q ≤ I. Related unitarily invariant norm inequalities are also

presented.

1. Introduction

Let Mn (C) denote the algebra of all n × n complex matrices. A unitarily
invariant norm, denoted by |||.||| , satisfies the invariance property |||UAV ||| =
|||A||| for all A and all unitary matrices U, V ∈ Mn (C). For any matrix A ∈
Mn (C), the positive semidefinite matrix |A| is defined to be (A∗A)1/2 and the
usual operator norm is denoted by ||A||. If A,B are Hermitian matrices whose
eigenvalues are in an interval J , then a continuous function f : J → R is said
to be operator monotone if A ≤ B implies f (A) ≤ f (B), for all Hermitian
matrices A,B whose eigenvalues are in J , while f is said to be operator convex if
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MATRIX HÖLDER’S INEQUALITIES 163

f (αA+ (1− α)B) ≤ αf (A)+(1− α) f (B). For the theory of unitarily invariant
norms and convex functions we refer to [4, 19].

A family of inequalities concerning inner products of vectors and functions be-
gan with Cauchy. The extensions and generalizations later led to the inequalities
of Schwarz, Minkowski and Hölder. The well known Hölder’s inequality is one of
the most important inequalities in analysis. Hölder’s inequality for sequences of
numbers asserts that if xi, yi ∈ C (i = 1, 2, . . . ,m), then

m∑
i=1

|xiyi| ≤

(
m∑
i=1

|xi|p
)1/p( m∑

i=1

|yi|q
)1/q

(1.1)

for all positive real numbers p and q such that 1/p+ 1/q = 1. Moreover, we have
the variational expression

max

{
m∑
i=1

|xiyi| :
m∑
i=1

|yi|q = 1

}
≤

(
m∑
i=1

|xi|p
)1/p

. (1.2)

The equality in (1.1) holds if and only if |xi|p = |yi|q , i = 1, 2, . . . ,m. For uni-
tarily invariant norms several Hölder inequalities for matrices and Hilbert space
operators have been obtained. These forms can be found in [1, 11, 17]. Cauchy-
Schwarz inequalities have been given in [2, 8, 9, 12, 14]. Hölder trace inequalities
were given in [18], while matrix Hölder inequalities were given in [3]. Related
Minkowski–type inequalities and Q-norm inequalities have been given in [16] and
[7], respectively.

The basic Hölder inequality for unitarily invariant norms, see [6], asserts that
if A,B ∈Mn (C) and p, q are positive real numbers such that 1/p+ 1/q = 1, then

|||AB||| ≤ ||| |A|p|||1/p ||| |B|q|||1/q . (1.3)

Horn and Zhan [13] proved that if p, q and r are positive real numbers such that
1/p+ 1/q = 1, then

||| |AB|r||| ≤ ||| |A|pr|||1/p ||| |B|qr|||1/q . (1.4)

Also they proved an inequality containing an intermidiate matrix, it was shown
that if A,B,X ∈Mn (C) such that A and B are positive semidefinite, then

||| |AXB|r||| ≤ ||| |ApX|r|||1/p ||| |XBq|r|||1/q (1.5)

for all positive real numbers p, q and r such that 1/p+ 1/q = 1.
Hiai and Zhan [10] proved that if A,B,C,D ∈Mn (C), then

2−|
1
p
− 1

2 | ||| |C∗A+D∗B|||| ≤ ||| |A|p + |B|p|||1/p ||| |C|q + |D|q|||1/q (1.6)

for all positive real numbers p and q such that 1/p+1/q = 1. Inequality (1.6) was
generalized to m−tuple of matrices, Albadawi [1] proved that if Ai, Bi ∈Mn (C)
(i = 1, 2, . . . ,m) and p, q are positive real numbers such that 1/p+ 1/q = 1, then∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

A∗iBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ m|

1
p
− 1

2 |
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

|Ai|p
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1/p ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

|Bi|q
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1/q

. (1.7)
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Moreover, Ando and Hiai proved the most interesting Hölder matrix form, it was
shown in [3] that if 2 ≤ p, q < ∞ and r > 1 with 1/p + 1/q = 1 − 1/r, then for
any A,B,C,D ∈Mn (C) and α ∈ [0, 1] we have∣∣∣α1/rCA+ (1− α)1/rDB

∣∣∣2 ≤ (|A|p + |B|p)2/p (1.8)

whenever |C∗|q + |D∗|q ≤ I.
In this article, we present Hölder-type matrix inequalities for sums and products

of matrices that generalize (1.8). Unitarily invariant norm inequalities of similar
type related to (1.4) and (1.7) are also obtained. It should be mentioned that all
the results in this article can be extended to the class of bounded linear operators
on Hilbert spaces.

2. Main Results

In this section, we will give new matrix Hölder inequalities and unitarily in-

variant norm inequalities involving (
∑m

i=1 |Ai|
p)

1/p
. These inequalities are based

on several lemmas. The first lemma, which can be found in [5], contains an
inequality for positive semidefinite block matrices.

Lemma 2.1. Let A,B,C ∈ Mn (C) such that A,B ≥ 0. Then the block ma-

trix

[
A C∗

C B

]
is positive semidefinite if and only if C = B1/2WA1/2 for some

contraction W with ‖W‖ = 1. In particular,

[
A C∗

C I

]
≥ 0 iff C∗C ≤ A.

The next lemma will be useful in this article, it was proved in [13] and can be
considered as a Hölder-type inequality for unitarily invariant norms.

Lemma 2.2. Let A,B,C ∈ Mn (C) such that A,B ≥ 0. If the block matrix[
A C
C∗ B

]
is positive semidefinite, then

||| |C|r||| ≤
∣∣∣∣∣∣Apr/2∣∣∣∣∣∣1/p ∣∣∣∣∣∣Bqr/2

∣∣∣∣∣∣1/q (2.1)

for all positive real numbers p, q and r such that 1/p + 1/q = 1 and for every
unitarily invariant norm.

We will start by the following inquality.

Lemma 2.3. Let Ai, Bi ∈ Mn (C) be positive semidefinite and αi ∈ [0, 1] (1 ≤
i ≤ n) with

m∑
i=1

αi = 1. Then for p ≥ 1

m∑
i=1

α
1−1/p
i Ai ≤

(
m∑
i=1

Api

)1/p

. (2.2)

Proof. First note that
m∑
i=1

Api =
m∑
i=1

αiα
−1
i Api =

m∑
i=1

αi

(
α
−1/p
i Ai

)p
,
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by the operator concavity of t1/p we get(
m∑
i=1

Api

)1/p

=

(
m∑
i=1

αi

(
α
−1/p
i Ai

)p)1/p

≥
m∑
i=1

αi

((
α
−1/p
i Ai

)p)1/p
=

m∑
i=1

αiα
−1/p
i Ai.

Which completes the proof. �

Our next theorem is a generalization of inequality (1.8).

Theorem 2.4. Let 2 ≤ p, q <∞ and r > 1 with 1/p+ 1/q = 1− 1/r. Then for

any Ai, Bi ∈Mn (C) and αi ∈ [0, 1] (i = 1, 2, · · · ,m) with
m∑
i=1

αi = 1, we have∣∣∣∣∣
m∑
i=1

α
1/r
i BiAi

∣∣∣∣∣ ≤
(

m∑
i=1

|Ai|p
)1/p

(2.3)

whenever
m∑
i=1

|B∗i |
q ≤ I.

Proof. Let T =

[
α
1/2−1/p
1 A∗1 α

1/2−1/p
2 A∗2 · · · α

1/2−1/p
m A∗m

α
1/2−1/q
1 B1 α

1/2−1/q
2 B2 · · · α

1/2−1/q
m Bm

]
. Then

0 ≤ TT ∗ =


m∑
i=1

α
1−2/p
i A∗iAi

m∑
i=1

α
1/r
i A∗iB

∗
i

m∑
i=1

α
1/r
i BiAi

m∑
i=1

α
1−1/q
i BiB

∗
i

 .
Since p/2 ≥ 1 and A∗iAi ≥ 0, then Lemma 2.3 implies

0 ≤


(

m∑
i=1

|Ai|p
)2/p m∑

i=1

α
1/r
i A∗iB

∗
i

m∑
i=1

α
1/r
i BiAi

(
m∑
i=1

|B∗i |
q

)2/q

 (2.4)

≤


(

m∑
i=1

|Ai|p
)2/p (

m∑
i=1

α
1/r
i BiAi

)∗
m∑
i=1

α
1/r
i BiAi I

 .
Now Lemma 2.1 implies∣∣∣∣∣

m∑
i=1

α
1/r
i BiAi

∣∣∣∣∣
2

≤

(
m∑
i=1

|Ai|p
)2/p

(2.5)
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and hence by operator monotonicity of t1/2∣∣∣∣∣
m∑
i=1

α
1/r
i BiAi

∣∣∣∣∣ ≤
(

m∑
i=1

|Ai|p
)1/p

.

And the proof is complete. �

As an application of inequality (2.3), we get the following important special
cases.

Corollary 2.5. Let 1 ≤ p, q < ∞ with 1/p + 1/q = 1 and αi ∈ [0, 1] (i =

1, 2, · · · ,m) with
m∑
i=1

αi = 1. Then for any Ai, Bi ∈ Mn (C) with
m∑
i=1

|B∗i |
2q ≤ I,

we have ∣∣∣∣∣
m∑
i=1

√
αiBiAi

∣∣∣∣∣ ≤
(

m∑
i=1

|Ai|2p
)1/2p

. (2.6)

In particular, ∣∣∣∣∣
m∑
i=1

BiAi

∣∣∣∣∣
2

≤ m

(
m∑
i=1

|Ai|2p
)1/p

. (2.7)

Proof. Let r = 2 and replace p, q by 2p, 2q in (2.3) to get inequality (2.6). For
the particular case let r = 2 and replace p, q by 2p, 2q in (2.5) and let α1 = α2 =
· · · = αm = 1/m. �

Remark 2.6. The case p = 1 and the operator monotonicity of t1/2in inequality
(2.7) give ∣∣∣∣∣

m∑
i=1

BiAi

∣∣∣∣∣ ≤ √m
(

m∑
i=1

|Ai|2
)1/2

(2.8)

whenever
m∑
i=1

|B∗i |
2 ≤ I, which can be considered as a Cauchy matrix inequality. In

fact, we can get a stronger version of inequality (2.8) by letting T =


A1 B∗1
A2 B∗2
...

...
Am B∗m

.

Then

0 ≤ T ∗T =


m∑
i=1

A∗iAi
m∑
i=1

A∗iB
∗
i

m∑
i=1

BiAi
m∑
i=1

BiB
∗
i

 .
So, Lemma 2.1 implies ∣∣∣∣∣

m∑
i=1

BiAi

∣∣∣∣∣
2

≤

(
m∑
i=1

|Ai|2
)
,
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whenever
m∑
i=1

|B∗i |
2 ≤ I, and hence∣∣∣∣∣

m∑
i=1

BiAi

∣∣∣∣∣ ≤
(

m∑
i=1

|Ai|2
)1/2

. (2.9)

Inequality (2.9) represents a matrix Cauchy Schwarz inequality and clear that it
is better than (2.8). In fact, inequality (2.9) is just (2.5) in the case r = ∞, i.e.
p = q = 2.

It is known that limit of

{
1
m

m∑
i=1

|Ai|p
}1/p

as p→∞ exists, and so is

{
m∑
i=1

|Ai|p
}1/p

(see [15]). We write
m∨
i=1

Ai = lim
p−→∞

(
m∑
i=1

|Ai|p
)1/p

. (2.10)

The above definition will be used in the following corollary to get new inequalities.

Corollary 2.7. Let 2 ≤ p <∞ and 1 < η ≤ 2 with 1/p+ 1/η = 1. Then for any
Ai, Bi ∈Mn (C) (i = 1, 2, · · · ,m)∣∣∣∣∣

m∑
i=1

BiAi

∣∣∣∣∣
2

≤

(
m∑
i=1

‖Bi‖η
)2/η( m∑

i=1

|Ai|p
)2/p

. (2.11)

Moreover, ∣∣∣∣∣
m∑
i=1

BiAi

∣∣∣∣∣
2

≤

(
m∑
i=1

‖Bi‖

)2( m∨
i=1

Ai

)2

. (2.12)

Proof. Taking the limit of (2.4) as q −→∞ with p fixed (in this case r −→ η) to
get 

(
m∑
i=1

|Ai|p
)2/p m∑

i=1

α
1/η
i A∗iB

∗
i

m∑
i=1

α
1/η
i BiAi lim

q−→∞

(
m∑
i=1

|B∗i |
q

)2/q

 ≥ 0.

So, 
(

m∑
i=1

|Ai|p
)2/p m∑

i=1

α
1/η
i A∗iB

∗
i

m∑
i=1

α
1/η
i BiAi

(
m∨
i=1

|B∗i |
)2

 ≥ 0.

Note that
m∨
i=1

|B∗i | ≤ I if and only if |B∗i | ≤ I for all i = 1, 2, · · · ,m, that is

‖B∗i ‖ ≤ 1 for all i = 1, 2, · · · ,m, then for every 0 ≤ αi ≤ 1 with
m∑
i=1

αi = 1 we

have ∣∣∣∣∣
m∑
i=1

α
1/η
i BiAi

∣∣∣∣∣
2

≤

(
m∑
i=1

|Ai|p
)2/p

.
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By replacing α
1/η
i Bi by Bi (i = 1, 2, · · · ,m), this means that if

m∑
i=1

‖Bi‖η ≤ I,

then ∣∣∣∣∣
m∑
i=1

BiAi

∣∣∣∣∣
2

≤

(
m∑
i=1

|Ai|p
)2/p

,

which is equivalent to (2.11). For equation (2.12) take the limit of equation (2.11)
as p −→∞. �

The next inequality is a generalization of (1.8).

Theorem 2.8. Let 2 ≤ p, q <∞ and r > 1 with 1/p+ 1/q = 1− 1/r. Then for
A,B,C,D,X ∈Mn (C) with X ≥ 0 and α ∈ [0, 1] we have∣∣∣α1/rCXA+ (1− α)1/rDXB

∣∣∣ ≤ ((A∗XA)p/2 + (B∗XB)p/2
)1/p

(2.13)

whenever (CXC∗)q/2 + (DXD∗)q/2 ≤ I.

Proof. Let T =

[
α1/2−1/pX1/2A α1/2−1/qX1/2C∗

(1− α)1/2−1/pX1/2B (1− α)1/2−1/qX1/2D∗

]
. Then

0 ≤ T ∗T

=

[
α1−2/pA∗XA+ (1− α)1−2/pB∗XB α1/rA∗XC∗ + (1− α)1/r B∗XD∗

α1/rCXA+ (1− α)1/rDXB α1−2/qCXC∗ + (1− α)1−2/qDXD∗

]
Since p/2 ≥ 1 and A∗iXAi ≥ 0, then Lemma 2.3 implies

0 ≤


(

(A∗XA)p/2 + (B∗XB)p/2
)2/p

α1/rA∗XC∗ + (1− α)1/r B∗XD∗

α1/rCXA+ (1− α)1/rDXB
(

(CXC∗)q/2 + (DXD∗)q/2
)2/q


≤

 ((A∗XA)p/2 + (B∗XB)p/2
)2/p (

α1/rCXA+ (1− α)1/rDXB
)∗

α1/rCXA+ (1− α)1/rDXB I


Now lemma 2.1 implies∣∣∣α1/rCXA+ (1− α)1/rDXB

∣∣∣2 ≤ ((A∗XA)p/2 + (B∗XB)p/2
)2/p

,

and hence, by operator monotonicity of t1/2, we have∣∣∣α1/rCXA+ (1− α)1/rDXB
∣∣∣ ≤ ((A∗XA)p/2 + (B∗XB)p/2

)1/p
.

Which complete the proof. �

The proof of the following inequality is similar to that of (2.6).

Corollary 2.9. Let 1 ≤ p, q <∞ with 1/p+ 1/q = 1. If A,B,C,D,X ∈Mn (C)
with X ≥ 0, then

|CXA+DXB| ≤
√

2 ((A∗XA)p + (B∗XB)p)
1/2p

(2.14)

whenever (CXC∗)q + (DXD∗)q ≤ I.
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Remark 2.10. Inequality (2.13) gives inequality (1.8) directly if X = I. Note that
inequality (2.14) can be generalized to m−tuple of matrices.

Hölder-type inequalities for unitarily invariant norms are included in the fol-
lowing theorem.

Theorem 2.11. Let 2 ≤ p, q <∞ and r > 1 with 1/p+ 1/q = 1− 1/r. Then for

any Ai, Bi ∈Mn (C) and αi ∈ [0, 1] (i = 1, 2, · · · ,m) with
m∑
i=1

αi = 1, we have∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

α
1/r
i BiAi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(

m∑
i=1

|Ai|p
)1/p

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ (2.15)

and ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

α
1/r
i BiAi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

|Ai|p
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1/p

(2.16)

whenever
m∑
i=1

|B∗i |
q ≤ I.

Proof. Inequality (2.15) follows directly from (2.3). To prove inequality (2.16)
use (2.4) to get 

(
m∑
i=1

|Ai|p
)2/p (

m∑
i=1

α
1/r
i BiAi

)∗
m∑
i=1

α
1/r
i BiAi I

 ≥ 0.

Now Lemma 2.2 in the case r = 1 implies∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

α
1/r
i BiAi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
( m∑

i=1

|Ai|p
)2/p

p/2
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1/p

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

|Ai|p
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1/p

.

�

We end this article by the following remarks.

Remark 2.12. For a positive semidefinite matrix T ∈ Mn (C) and a normalized
unitarily invariant norm, i.e. |||diag (1, 0, . . . , 0)||| = 1, see [19], we have |||T r||| ≤
|||T |||r for r ≥ 1 and |||T |||r ≤ |||T r||| for 0 ≤ r ≤ 1. Thus∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

|Ai|p
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1/p

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(

m∑
i=1

|Ai|p
)1/p

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

for every normalized unitarily invariant norm (since 1/p is less than 1). So in-
equality (2.16) is better than inequality (2.15).
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Remark 2.13. Inequality (2.7) implies∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

BiAi

∣∣∣∣∣
2
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ m

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(

m∑
i=1

|Ai|2p
)1/p

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
1/p

.

This inequality is related to∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

A∗iBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ m|

1
p
− 1

2 |
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

|Ai|p
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1/p

which is the variational expression of inequality (1.7) .

Remark 2.14. Let A = U |A| and B = V |B| be the polar decompositions with
unitaries U, V . If we let S = CU and T = DV , then

|C∗| = |S∗| , |D∗| = |T ∗| , |CA+DB| = |S |A|+ T |B| | ,
that means it may assumed without loss of generality that A, B are positive
semidefinite.
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