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ABSTRACT. In this paper we study sequence spaces equations (SSE) with op-
erators, which are determined by an identity whose each term is a sum or a
sum of products of sets of the form x, (T') and x () (T) where f maps U™
to itself, x is either of the symbols s, 5%, or s(). Then we solve five (SSE) of
the form x, + X, = X}, where x, X’ are either s°, s(°, or s. We apply the
previous results to the solvability of the systems s0 + s, (A) = sp, s D s and

Sq + 5% (A) = sl(jc), s o slgc). Finally we solve the (SSE) with operators
defined by x, (C (A) D) + s (C(w)Dr) = sgc) where ¥ is either s°, or s.

1. INTRODUCTION

In the book entitled Summability through Functional Analysis [16] Wilansky
introduced sets of the form a~' x £/ where E is a BK space, and a = (a,),,>; is

a nonzero sequence. Recall that £ = (&,),,», belongs to alx Eifaé € E. In

[5], the sets s4, s° and si were defined for positive sequences a by (1/a)"" % x
and x = (o, Co, ¢, respectively. In [0, 10] the sum x, + x; and the product
Xa * X}, were defined where y, x’ are any of the symbols s, s°, or s among other
things characterizations of matrix transformations mapping in the sets s,-+s (A?)

and s, + séc) (A7) were given, where A is the operator of the first difference.
In [11] de Malafosse and Malkowsky gave among other things properties of the
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2 B. DE MALAFOSSE, V. RAKOCEVIC

matrix of weighted means considered as an operator in the set s,. In [12] the
characterizations of the sets (s, (A%), F') can be found where F'is any of the sets
co, ¢ and . We also cite Hardy’s results [2] extended by Méricz and Rhoades
[14, 15], de Malafosse and Rakocevié¢ [9] and formulated as follows, in [2] it is
said that a series > >, 4y, is summable (C,1) if 3, =n~'Y"" _ s, — [, where
Sm = D 1y Yk, it was shown by Hardy that if a series Y~ y,, is summable (C, 1)
then > ° (302 /i) is convergent. On the other hand Hardy’s Tauberian
theorem for Cesdro means states that if (y,), € Sqam)(4), then n”'s, — 1
implies y, — [ for some [ € C. This problem is a consequence of the following
one: What are the sequences = such that ¢(C) N s, (A) C ¢ where C] is the
Cesaro operator?

In this paper we extend some results given in [I, &, 7]. In [l] were given
solvability of the equations s, + s, = s, and s,(,) = s, where ¢ maps U T to itself.
In [3] it is shown that the solutions of the equations y, + s = s) where x is any
of the symbols s, or 5 if a/b € ¢y are given by s, = s, and if a/b ¢ ¢, each of
these equations has no solution. In this paper for given sequences a and b, we
determine the set of all sequences z € U such that for every sequence vy, we have
Yn/bp, — 1 if and only if there are sequences u and v such that y = u + v and

Up/a, — 0, v, /x, — ' as n tends to infinity for some scalars [, I’. This statement

means sg—i-sg;c) = s,(f). So we are led to deal with special sequence spaces inclusion

equations (SSIE), (resp. sequence spaces equations (SSE)), which are determined
by an inclusion, (resp. identity), where each term is a sum or a sum of products
of sets of the form x,(T) and Xj@) (T') where f maps U™ to itself, x is any of
the symbols s, s°, or s, z is the unknown and 7 is a triangle. For instance the
solutions of the elementary (SSE) defined by s, = s, with a € U™ are given by
Ka, <z, < Ksa, for some K, Ko > 0 and for all n. In [!] we dealt with the
equation s, + s, = S, whose the solutions are given by s, = s, if a/b € ¢y, if
Sq = Sp the solutions of this equation are given by x € s, and if a/b ¢ (, this one
has no solution. Except for these cases until now we don’t know the behaviour
of this equation. In [7] are determined the solutions of (SSE) with operators

of the form (x4 * Xz + xo) (A) = x,, and [Xa s (Xa)” + xo * Xa:} (A) = xy. and
Xa + Xz (A) = X, where x is any of the symbols s, or s°.

This paper is organized as follows. In Section 2 we recall some definitions and
results on sequence spaces and matrix transformations. In Section 3 we recall
some properties of the multiplier of two sequence spaces. Then we state some
results on the sum and the product of sequence spaces. In section 4 we deal
with the solvability of the five (SSE) 0 + s, = sp, 557 + 52 = s, 5, + 50 = 50,
sat s = s and 0+ 5% = s\ In Section 5 we deal with the solvability of the
system constituted with an (SSE) and an (SSIE) defined by s + s, (A) = s, and
Sy D Sp. Finally we solve the (SSE) with operators defined by x, (C (\) D) +
$$9(C (1) D;) = s\ where x is either s°, or s. These results extend some recent
results of Farés and de Malafosse [1] and de Malafosse [0, 10, 7, 8].

2. NOTATIONS AND PRELIMINARY RESULTS.
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For a given infinite matrix A = (A )n.m>1 we define the operators A,, for any
integer n > 1, by

m=1

where £ = (&,)m>1, and the series are assumed convergent for all n. So we are
led to the study of the operator A defined by A = (A, (£)),~; mapping between
sequence spaces. -

A Banach space E of complex sequences with the norm |||, is a BK space
if each projection P,:E — C with P, = &, is continuous. A BK space FE is
said to have AK if every sequence £ = (§,)m>1 € E has a unique representation
E=> £,e™ where €™ is the sequence with 1 in the n-th position and 0
otherwise.

We will denote by s, ¢y, ¢, 5 the sets of all sequences, the sets of sequences
that converge to zero, that are convergent and that are bounded, respectively. If £
and 7 are sequences and E and F' are two subsets of s, then we write {n = (€,7,),,
and

M(E.F)={¢= (gn)nZI 1 §n € F foralln € B},
M (E, F) is called the multiplier space of E and F. We shall use the set UT =
{(un),>; €s :u,>0forall n}. Using Wilansky’s notations [10], we define for

any sequence a = (a,),~,; € U" and for any set of sequences E, the set (1/ a)_l *
E = {(&)n>1 €5 ¢ (&u/an), € E}. To simplify, we use the diagonal matrix D,
defined by [D,]. = a, for all n and write D, * E = (1/a)”" % E and define
Sa = Dy x ls, 82 = Dy * ¢y and s = D, * ¢, see for instance [, 6, 5, 13].
Each of the spaces D, * x, where x € {l,co,c}, is a BK space normed by
€11, = sup,>1 ([€a] /an) and s has AK.

Now let a = (ay),~;, b = (by),~; € UT. By S, we denote the set of infinite
matrices A = (Apm)nm>1 such that IAllg,, = sup,>1[(1/ba) Yo [ Aamlam] <
co. The set S, is a Banach space with the norm |[[||g . Let £ and F' be any

subsets of s. When A maps F into F we write A € (E,F), see [3]. So we
have A{ € F for all £ € E, (A§ € F means that for each n > 1 the series
An (&) =307 Mum&m 1s convergent and (A, (£)),s; € F). It was proved in [11]
that A € (s,,s) if and only if A € S,p. So we can write that (s,, s5) = Sab-

When s, = s, we obtain the Banach algebra with identity S, = S, normed
by [[Allg, = [[Alls, .. see [5]. We also have A € (sq, 5,) if and only if A € S,

If a = (r"),>1, the sets S,, s4, s and s{ are denoted by S,, s, sY and s,
respectively; see [1]. When r = 1, we obtain s; = /o, s! = ¢y and sﬁc) = ¢,
and putting e = (1,1,---) we have S; = S.. It is well known, see [3] that
(s1,51) = (co,51) = (¢,81) = S1. We also have A € (¢, ¢o) if and only if A € 5
and lim,,_,.c A\, = 0 for all m > 1.

In the sequel we will frequently use the fact that A € (x,,x;) if and only if
Dy yAD, € (Xe, X.) where x, X' are any of the symbols s, 59, or s; see [11].

For any subset F of s, we put AE = {n € s :n=AE{ for some £ € E}. If F is
a subset of s, we write F/(A)=Fy={{€s : A( € F}.

nn
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3. THE MULTIPLIER, THE SUM AND THE PRODUCT OF CERTAIN SETS OF
SEQUENCES

3.1. The multiplier of certain sets of sequences. First we need to recall
some well known results. By [0, Lemma 3.1, p. 648] and [0, Example 1.28, p.
157], we obtain the next result.

Lemma 3.1. We have
i) M (c,co) = M (Uoo,¢) = M (U, o) = co and M (c,c) = ¢;
”) M(Xagoo) = M(C(])X,) = Eoo fO’I" X XI = Cp, C, OT goo

We deduce from the preceding the next corollary.

Corollary 3.2. (i) M (s2,x}) = spja where X' is any of the symbols s, s ors;
(i1) M (Xas Sb) = Sp/a where X is any of the symbols s\, or s;

(111) M (sa,sl()c)> = Sy, and M (s((f),séc)> = Sl(;)a
In the sequel we will use the next lemma.
Lemma 3.3. Leta, b€ U*. Then
a/b e M (x1,x)) if and only if Xoa C X},
where x, X' are any of the symbols s°, s, or s.

Proof. The proof comes from the fact that a/b € M (x1,x}) is equivalent to
Dy € (x1,x1) and to I € (Dg * x1, Dy * X1) = (Xas X3)- O

3.2. Sum and product of sets of the form y,, where y is any of the
symbols s°, s, or s. In this section we recall some properties of the sum
Xa + X, Where x and y/ are any of the symbols s°, 5(¢), or s.

3.2.1. Sum E+F of sets of sequences.. We can state some results concerning the
sum of particular interesting sequence spaces.
Let E, F' C s be two linear spaces. The set E 4 F' is defined by

E+F={¢cs:{=u+wvforsomeuec Eandve F}.

It can easily be seen that £ 4+ F = F' if and only if E C F. This permits us to
show some of the next results that extend some results given in [0].

Theorem 3.4. Leta, be U™.
(1) a) sq C sp if and only if a/b € lo;
b) sq = sp if and only if there are Ky, Ky > 0 such that K; < b,/a, < K
for all n;
¢) Sa + Sy = Satb = Smax(a), Where [max (a,b)], = max (an,by);
d) Sq + Sy = Sa if and only if b/a € (.
(ii) a) s C sY if and only if a/b € Ly ;
b) s° = 8% if and only if s, = sp;
C) 52 + 88 = 52+b;
d) s+ s) = s% if and only if bja € l;
e) s ¢ sl(f) if and only if a/b € c.
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(c) (c) .
=S,

f) The condition a, /b, — 1 # 0 for some scalarl 15 equivalent to sq
(o)

and zfan/b —>l7é0 then s, = sp, 80 = s and s =5,
(1ii) a) sa+b c s+ 51() ).
b) The conditions a,/b, — L € RT U{oo} is equivalent to
s{ + S,()C) = sgclb. (3.1)
© _ 0 _ 0,

Ef)—l—sb =S,

¢) The condition b/a € c is equivalent to s
Proof. The proof of this theorem was given in [0, 10] except for iii) b). Proof of
iii) b). First show ay /b, — L € R* U{oo} implies (3.1). Let y € s& + sl(,c). Then

there are ¢ and 1 € ¢ such that y = ap 4+ 0. Then
a
y _ _a b 1
atb ars? Tappt T ar At
b b
We have
Qp,
— L
. b, if L < o0,
lim a = 1+ L
”_>°°1—I—b— 1 if L = oo;
and
1 LY
lim = T < 00
”_>°°1+b— 0 if L =00

(c)

We conclude sa + 5p

Now let y € 5
and y € si + 51(; o ThlS shows sglb C s 4 sb
R* U {oo} implies (3.1).

Conversely, show (3.1) implies a, /b, — L (n — oo) for some L € RT U {oco}
Put v = a/b. Since trivially we have a € si” + s = s\, then
a v c
= =TEc
a+b 1+4+v
Put L' = lim,, 00 7. We then have v =7 (14+v), v =7/(1 —7) and
L ,
limv,=4¢ 1— LlfL?él
nee oo if L =1.

So we have shown a,/b, — L' € RT U {o0} (n — ).

proof.

© 5,
. Then there is { € ¢ such that y/(a+b) = (, y = a + bC
We conclude that a, /b, — L €

This concludes the

O
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3.2.2. Product of sets of the form x¢ where x is any of the symbols s°, s ors.
In this part we recall some properties of the product E % F' of particular subsets
E and F of s. These results can be found in [1, 6, 12].

For any given sets of sequences E and F', we write

E*F:UDg*F:{gnES &€ Fandne F}.
¢eE

We immediately have the following results,

Proposition 3.5. Let a, b, v € UT. Then
(1) Sa * Sp = Sq * s,()c) — s\ % Sp = Sab,
(ii) Sq % s) = 80 % s) = i x s9 =Y
(111) i x sl()c) = 5((1?,
(iv) Let x be any of the symbols s°, s©), or s. Then the solutions of the (SSE)

Xa * 80 = 82 are determined by Ki7vy,/an, < x, < Kovyn/ay for all n and for some

Kl, Ky > 0.

4. SOLVABILITY OF FIVE (SSE)

In [I] we saw that we don’t know the solvability of s, + s, = sp, when a/b €
loo\Co and s, # sp. In this section we consider (SSE) of the form y, + X, = X},
where y, x’ are distinct and are either s°, s, or s. We show that the next
five equations s0 + s, = sy, s + U =8 5,4+ 50 =8 s, + s = sl(,c) and
sY+ s = sgc) can be totally solved. It remains the (SSE) s+ 5, = sp, that is
not solved until now for a/b € {\co.

4.1. Solvability of five (SSE) of the form x,+ Y/, = x;, where x, \’ are any
of the symbols s°, s, or s. The solvability of the equation s, + s = sl()c) for
a, b € U" consists in determining the set of all x € U™ such that for every y € s
we have y,, /b, — | (n — 00) if and only if there are two sequences u, v such that
Yy =u+v and

Unp, Un /

—=0(1) and — =" (n — 00).

an Ty

For x, x' € {s° s, s} we put
TOGX)={z €U X, CXat X} s

(X)) ={r €U : Xa+ Xz CXo}
and

S.X)={zeU" :xa+xXo = X5}
In the following we consider the equivalence relation on U" defined by xRy if
s, = s, and we denote by ¢l (b) the equivalence class of b € UT. Similarly let
cl® (b) be the equivalence class of b for the equivalence relation R, defined on
U* by 2Ry if s&) = s{?. By Theorem 3.4 ii) f) we have

@ (b) = {z €Uz, ~ kb, (n— o00) for some k >0} .
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In the following we will use the next elementary result, if £/, F' and G are linear
subspaces of s, then E+ F C G if and only if E C G and F' C G. Now state the
following.

Theorem 4.1. [8] Suppose a/b € ¢y. Then the solutions of the equation
Xa+Xa = Xb

where x is any of the symbols s°, s, or s, and x' is any of the symbols s°, or s

are given by = € cl (b).

Corollary 4.2. If a/b € ¢y, then S (x,s) = S1(x, s°) = cl (b) where x is any of

the symbols s°, s\, or s.

Proposition 4.3. [3] Let x, X', X" be any of the symbols s°, s, or s. If
a/b & M (x1,x}]), then the equation

Xa + X = Xy
has no solution.

Now put
sy = {x eU" :z, > Kb, for some K > 0 and for alln},
and
519 = {x eU"': lim % = [ for some [ € ]0,—1—00]}.

n—oo n

Notice that ¢l (b) = sl(f)\sg. It can easily be seen that
si@ — {x ceUT:s\9 ¢ sgc)} :

Indeed lim,, o /b, = | € |0, +00] means that lim,, . b,/z, = 1/1 € [0, +00]
and b € s\ Since b/z € M (c,¢) = ¢ we have s C s\

State the next results.

Theorem 4.4. Let a, b€ U". Then
i) a) We have
o \_ ) c(b) ifa/bely,
S(s5) = { o ifa/b¢ lu
b) S (s9,5°) =8 (s,5% and

c(b) ifa/be c,

SN s fapd e
i) a)

o if a/b & loo;
b)
c® (b) ifa/b € c,

{
S(éﬂéd)::{ cd© (b) if alb € Ly,
{ Z if a/b & co.
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Proof. i) a) Show Z (s°,s) = s; if a/b € l. Let x € Z(s°,s). Since s, C 82 + s,
and b € s, there are ¢ € ¢y and h € /, such that b = ac + vh. We then have
1 = (a/b)e + (x/b) h and since a/b € {, we deduce €' = (a/b)e € ¢y. Since
1—¢) — 1 (n— o0) we conclude

and Z (s°, ) C s if a/b € (.

Conversely let € s;. We then have s, C s, and trivially s, C s, C 52 + Sg,
for all z € UT. So we have shown that if a/b € (., then Z (s, 5) = s;.

Now determine Z' (s°, s). We see that = € Z' (s°, s) is equivalent to s C s, and
Sy C Sp. We then have a/b € M (¢, o) = oo and /b € M (b, lo) = loo. SO

vro N ose  ifafbely,
I(s’s)—{ o ifafbé L

We conclude S (s%s) = Z(s%s)NZ' (s%s) = s, Ns; = cl(b) if a/b € ly and
S(s% s) =2 if a/b ¢ l.. So we have shown i) a).

i) b) Let x be any of the symbols s°, or 5. By Theorem 4.1, we have
S(x,s%) = cl(b) if a/b € cy. Then by Proposition 4.3 since we have

M (0, 80) = M (e, 0) = co and M (s1,58) = M (loe,c0) = co,

we deduce that if a/b ¢ cg, then S (), s°) = @. This concludes the proof of i).

ii) a) Show Z (s°,s(9) = s\ if a/b € o, Let x € Z (s° s). Since s ¢
s + s and b € s,(f) there are € € ¢y and ¢ € ¢ such that b = ac + xp. Then we
have 1 = (a/b) e + (z/b) ¢ and since a/b € {o, we deduce £’ = (a/b) e € ¢y. Since
1—¢, =1 (n— o0) we conclude b/z = ¢/ (1 —€') € c. Thus we have proved
Z(s%s9) c SZ(C) if a/b € lw.

Conversely let o € sZ(C). We then have séc) C s and trivially séc) c s ¢
s9 4 s for all z € UT. So we have shown ;% C T (s%, s)) and we conclude
that Z (s°,5)) = 55 for a/b € L.

Now determine the set Z' (5%, s)). We see again that z € I’ (s°, s(9) is equiv-
alent to s C s\ and s\ C s\, this means that a/b € M (co,c) = lo and

a

xz/be M(c,c) =c. So

100 (e 5 if a/b e ly,
T/ (") :{ 2 ifa//be,éeoo.
We conclude S (%, () = SZ(C) N sl()c) =l (b)ifa/b € ly and S (s°,59) = & if
a/b ¢ ly.

ii) b) Show Z (s, s?)) = SZ(C) if a/b € co. Let z € T (s,5)). Since s, C Sat 55
and b € séc) there are h € , and ¢ € c such that b = ah + xp. We then have
1 = (a/b)h + (z/b) ¢ and since a/b € ¢y we deduce ¢ = (a/b)h € ¢y. Since
1 —¢e, =1 (n— o0) we conclude
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This means that b,/x, — L for some L > 0 and z,,/b, — 1/L € ]0,+00]. Thus
we have proved that if a/b € ¢g, then Z (s, S(C)) C S*(C)

Conversely let o € sz(c). We then have séc) C sg and trivially sgc) c s ¢
sV + s for all x € UT. So we have SZ(C) C Z(s,s9) and we conclude that
Z (s,59) —s 1fa/b€co

Now we need to determine 7’ (s s( ) We see that z € 7/ (s s ) if and only

if s, C 51(;) and s C 51(; , which is equivalent to a/b € M ({s,c) = ¢o and

xz/be M(c,c) =c. So
(c)

/ ©y _ ) s ifa/bec,
v ={ %

We conclude S (s, s9)) = st s = el (b) if a/b € co. O
We immediately deduce the next corollary.

Corollary 4.5. Let a, be U". Then
i)a)S(s%s)=8 (S(C), s%) =8 (s,8") = cl(b) for a/b € co;
b) S (s%s) =8 (s9,5°) =S (s,5°) =@ if a/b ¢ lo;
it) a) S (s,s9) =8 (s ,8) =l (b) for a/b € co;
b) S (s,5) =8 (s%s9) =z ifa/b ¢l

Remark 4.6. Tt can easily be seen that each of the equations s + s, = s, or

sV + sg(f) = s(c) has a solution if and only if a/b € ¢, and each of the equations
(C) 450 =50 5,450 = 80, or 5.+ = 5\” has a solution if and only if a/b € c.

Remark 4.7. If anyone of the five equations has a solution, then a/b € (4,

[lustrate the previous results with the next example, where we put ¢l (ry) =
cl((r3),,) and cl (ry) = ' ((13),).
Example 4.8. Let r{, 7o > 0 and consider the next two statements

P;: For every y, z € s the conditions y,, /r} — [; and z,/x, — Iy imply together
(Yn + 2n) /18 — 13 (n — 00) for some scalars Iy, I3 and I3;

Py: For every t € s we have t,/r] — 0 (n — o0) if and only if there are u and
v € s such that t = v + v and u,/r} — L and v,/x, — 0 (n — oo) for some
scalar L.

The set S; of all z € U™ such that P; and P, hold is determined by the next
system

s + s s (4.1)
and
s+ 50 =50 (4.2)

It can easily be seen that (4.1) is equivalent to r; < 79 and = € 37(«2) and by

Theorem 4.1 1) b) (SSE) (4.2) is equivalent to x € ¢l (rq) if (r1/r2)" — 0 (n — 00),
that is for 71 < r9. We conclude that if vy < r9, then the set Sy is equal to
sﬁ? Nel (ry) = el (ry), so x € Sy if and only if x,, ~ kr} with k > 0. If r; > ry,
then S; =
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5. APPLICATION TO SPECIAL (SSE) WITH OPERATORS

In this section we consider two systems of (SSE) with operators defined by
sV + s, (A) = sp, 82 D sp and s, + sl (A) = sl()c), s 5 sl()c). Then we solve the
(SSE) defined by xq (C (M) D,) + st? (C (1) D,) = s\ where y is cither s°, or s.

5.1. The sets C' and 6\1 In the following we need the next definitions and
results. First recall that for any nonzero sequence 1 = (7,,),.~,, the triangle C' (1)
is defined by -

— if m <n,
0 otherwise.

It can be shown that the matrix A (n) defined by

Mn if m =n,
AM)],, =94 —Mn-1 ifm=n—-1andn>2,
0 otherwise;

is the inverse of C'(n), that is C'(n) (A (n) &) = A (n) (C'(n)€&) for all € € 5. It is
well known that A = A (e) € (s, s) is the operator of first-difference and we have
A&, =&, — &, for all n > 1 with & = 0. The inverse A~! = ¥ is defined by
Ym = 1 for m < n. We also use the sets

a:{an+:C(a)ae£w} and@z{anJr:C(a)aEc}.

Note that if a, b € 6'\1 then the sum a + b and the product ab are in 6’\1 It
can easily be seen that any sequence of the form (R"), with R > 1 belongs to

6'\1. It is known that C which is equal to the set T of all z € U* such that
lim,, o0 (€,1/%,) < 1. Here we use the next lemmas which are consequences of
[5, Proposition 2.1, p. 1786], and [0] and of the fact that s, (A) C s, is equivalent

to ¥ € (a4, 5,) and Dy /3D, € Sy, which in turn is a € Cf.

Lemma 5.1. Let a € UT. Then
i) The following statements are equivalent

a)a € Cy,
b) sq (A) C Sa,
c) Sq (A) = s,.

i) s (A) = s if and only ifa € T.
We also have the next elementary result.

Lemma 5.2. Let a, b € Ut and assume s, = s,. Then a € a if and only if
be (.

5.2. Solvability of two systems of (SSE) with operators defined by s° +

() (c) (o) (c

Sp (A) = Spy S D sp and s, + Sz (A) =8,7, S2’ D S, ). Now consider the next
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statement: what are the sequences € U™ such that for every y € s we have

Yn/bp = O (1) (n — o0) if and only if there are u, v € s such that y = v + v and
U o, 7% _ 0(1) (n— o0) and @, > Kby, for all n ?
an xn

This statement is equivalent to the system
s0 + 5, (A) = s and s, D 8p. (5.1)
We then have the following.
Proposition 5.3. Let S; be the set of all x € UT such that (5.1) holds. Then
’I,) Zfb ¢ Cl then 81 =J;
i) if b € Cy then
S = { c (b) if a/b € by,

I otherwise.

Proof. i) First show S; # @ implies b € Cy. Let 2 € 8. Then by (5.1) we have
sy (A) C s, and x € C; by Lemma 5.1. Then

Sy = 8z (A) C 82+ 5, (A) =8, C 5

and s, = s,. By Lemma 5.2 we conclude b € 61. So we have shown 1i).
ii) Let b € Cy. Then

50 (A) C 82+ 5, (A) =5, C 5

and as we have just seen this implies x € 61 and s, = Sp. Then by Lemma 5.1
we have z € & if and only if s? + s, = s, and we conclude by Theorem 4.4 i)

a). O

Now consider the next question. What are the sequences z € U™ such that for
every y € s we have y,/b, — L (n — o0) if and only if there are u, v € s such
that y = v + v, and

up/a, =0 (1), (v, —v,_1) /2y — L' (n — ) and x,/b, — L" €10, 0],

for some scalars L, L', and L" ?
The answer to this question is given by the following proposition, which can
be shown as in Proposition 5.3.

Proposition 5.4. Let S be the set of all x € U™ such that
Sa 4 59 (A) = 59 and s > s\,

We have R
S — { @ (b) ifa/becyandbeT,

1%} otherwise.

Example 5.5. Let 71, 75 > 0. The system s, + s\ (A) = s\ and r7 /2, — [ for

some scalar [, has solutions if and only if r; < r9 and ry > 1, and they are given
by x,, ~ kry (n — oo) for some k > 0.



12 B. DE MALAFOSSE, V. RAKOCEVIC

5.3. On the (SSE) with operators y, (C (\) D )—i—s;(f) (C(n)D;) = sl(f) where
 is either s°, or s. Here let ® (X7 s(c)) be the set of all z € U™ such that

Xa (C (N) D;) +59(C (1) D,) = sl(,c) where y is either s°, or s. (5.2)

For y = s° the solvability of (SSE) (5.2) consists in determining all the se-
quences x € U* such that the condition y, /b, — | (n — o0) holds if and only if
there are u, v € s such that y = v + v and

TiUp + -+ TRU TV + -+ TR
“= — 0 and -

)\nan MLy

— 1" (n— o00) for all y € s,

and for some scalars [, I'.
To state the next theorem we need a lemma where we use the set

S0 = {oe Ut v+ s =50}
where y is either s or s. We have the following.

Lemma 5.6. We have

© S'(x) ifbreC,
® (s = { o ifbr¢ 0.

where x is either s°, or s.

Proof. Since C~! (v) = A (v) for any nonzero sequence v, we have (5.2) equivalent
to
(c) — (©) —
D17 A (X) Xa + D1/ A (1) 837 = D1y Axar + Dy Asyy = sy

and to
Xor 560 = 5,7 (D1js8) = 537 (). (5.3)
So if br € C, then we have S(T) (A) = 51()? and since (5.3) is equivalent to (5.2),
we conclude @ (x,s9) = &' (x). .
It remains to show that (I>( ) # @ implies br € (). For this let £ €
) (X s ) that is ya\ + s() = IE)(A). First we have s%, C xan C Su and
sig C su¢ which imply together

()

52,\+u5 )\ + Sﬂg C Xax + Sy C Sax + Spue = Sartpue-

Then

Sartue C Sz(;) (A) C Sartue- (5.4)
The first inclusion gives I € (sg)\ws, st (A)) and D1 jpr ADgxyue € (co, ). Since
(co,¢) C (co,51) = S1 we deduce

AnAn + pinén

2 < K for all n and for some K > 0.
nTn

The second inclusion of (5.4) yields A= =X € (s,()i), SQMH&), that is
D1 j(artue)E2Dyr € (¢, ls) = S
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and
bimi + -+ by

< K’ for all n and for some K’ > 0.

We deduce
blTl + -+ bnTn o blTl + -+ bnTn an)\n + /fbnfn
bnTh A F fnén bnTh

We conclude bt € 6’\1 This concludes the proof. 0

< KK’ for all n.

As a direct consequence of Lemma 5.6 and Theorem 4.4 we obtain the next
result.

Theorem 5.7. Leta, b, A\, p, 7 € UT. Then

i) a) if br ¢ C then @ (s°, ) = &;

b) if br € C then

(o) ;
0o oy _ J d9br/p) if aX/bT € co,
®(s,5) = { %) otherwise.

ii) a) if br ¢ Cy then ® (5,59) = &;

b) if br € C then

(o) ;
@y _ ) ¥ (br/p) if a\/bT € l,
¢ (S’S ) o { o] otherwise.

We are led to state the next corollary where the (SSE) is totally solved.

Corollary 5.8. Let a, A, u € U' and R > 0. Let ®p (X,s(c)) be the set of the
solutions of the equation

Xa (C () + 55 (C (1) = 537,
where x is either s°, or s. We have

i) a) if R <1 then ®p (s°,59) = &;

b)if R > 1, then

(¢) n ; n
0 (e _ ' ((R"/p),,) if anAn/R* =0 (n — 00),
Pr (S 8 ) - { & otherwise.

it) a) if R <1 then ®p (s,59) = @;

b)if R > 1, then

(¢) n ; n
©\ _ ' (R 1n),) if (anAn/R"),5, € s1,
Cr (S’S ) o { %} otherwise.

Proof. The proof is a direct consequence of Theorem 5.7. Indeed, if R < 1, then
(R"),>1 ¢ C1. Since C' =T and lim,, o (R"'/R") = 1/R < 1 we deduce that if
R>1, then (R"),., € C. O
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