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Abstract. In this paper we study sequence spaces equations (SSE) with op-
erators, which are determined by an identity whose each term is a sum or a
sum of products of sets of the form χa (T ) and χf(x) (T ) where f maps U+

to itself, χ is either of the symbols s, s0, or s(c). Then we solve five (SSE) of
the form χa + χ′x = χ′b, where χ, χ′ are either s0, s(c), or s. We apply the
previous results to the solvability of the systems s0a + sx (∆) = sb, sx ⊃ sb and

sa + s
(c)
x (∆) = s

(c)
b , s

(c)
x ⊃ s

(c)
b . Finally we solve the (SSE) with operators

defined by χa (C (λ)Dτ ) + s
(c)
x (C (µ)Dτ ) = s

(c)
b where χ is either s0, or s.

1. Introduction

In the book entitled Summability through Functional Analysis [16] Wilansky
introduced sets of the form a−1 ∗ E where E is a BK space, and a = (an)n≥1 is

a nonzero sequence. Recall that ξ = (ξn)n≥1 belongs to a−1 ∗ E if aξ ∈ E. In

[5], the sets sa, s
0
a and s

(c)
a were defined for positive sequences a by (1/a)−1 ∗ χ

and χ = `∞, c0, c, respectively. In [6, 10] the sum χa + χ′b and the product
χa ∗χ′b were defined where χ, χ′ are any of the symbols s, s0, or s(c), among other
things characterizations of matrix transformations mapping in the sets sa+s

0
b (∆q)

and sa + s
(c)
b (∆q) were given, where ∆ is the operator of the first difference.

In [11] de Malafosse and Malkowsky gave among other things properties of the
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matrix of weighted means considered as an operator in the set sa. In [12] the
characterizations of the sets (sa (∆q) , F ) can be found where F is any of the sets
c0, c and `∞. We also cite Hardy’s results [2] extended by Móricz and Rhoades
[14, 15], de Malafosse and Rakočević [9] and formulated as follows, in [2] it is
said that a series

∑∞
m=1 ym is summable (C, 1) if κn = n−1

∑n
m=1 sm → l, where

sm =
∑m

k=1 yk, it was shown by Hardy that if a series
∑∞

m=1 ym is summable (C, 1)
then

∑∞
m=1 (

∑∞
i=m yi/i) is convergent. On the other hand Hardy’s Tauberian

theorem for Cesàro means states that if (yn)n ∈ s(1/n) (∆), then n−1sn → l
implies yn → l for some l ∈ C. This problem is a consequence of the following
one: What are the sequences x such that c (C1) ∩ sx (∆) ⊂ c where C1 is the
Cesàro operator?

In this paper we extend some results given in [1, 8, 7]. In [1] were given
solvability of the equations sa+sx = sb and sϕ(x) = sb where ϕ maps U+ to itself.
In [8] it is shown that the solutions of the equations χa + s0

x = s0
b where χ is any

of the symbols s, or s(c) if a/b ∈ c0 are given by sx = sb and if a/b /∈ c0 each of
these equations has no solution. In this paper for given sequences a and b, we
determine the set of all sequences x ∈ U+ such that for every sequence y, we have
yn/bn → l if and only if there are sequences u and v such that y = u + v and
un/an → 0, vn/xn → l′ as n tends to infinity for some scalars l, l′. This statement

means s0
a+s

(c)
x = s

(c)
b . So we are led to deal with special sequence spaces inclusion

equations (SSIE), (resp. sequence spaces equations (SSE)), which are determined
by an inclusion, (resp. identity), where each term is a sum or a sum of products
of sets of the form χa (T ) and χf(x) (T ) where f maps U+ to itself, χ is any of

the symbols s, s0, or s(c), x is the unknown and T is a triangle. For instance the
solutions of the elementary (SSE) defined by sx = sa with a ∈ U+ are given by
K1an ≤ xn ≤ K2an for some K1, K2 > 0 and for all n. In [1] we dealt with the
equation sa + sx = sb whose the solutions are given by sx = sb if a/b ∈ c0, if
sa = sb the solutions of this equation are given by x ∈ sa and if a/b /∈ `∞ this one
has no solution. Except for these cases until now we don’t know the behaviour
of this equation. In [7] are determined the solutions of (SSE) with operators
of the form (χa ∗ χx + χb) (∆) = χη and

[
χa ∗ (χx)

2 + χb ∗ χx
]

(∆) = χη. and
χa + χx (∆) = χx where χ is any of the symbols s, or s0.

This paper is organized as follows. In Section 2 we recall some definitions and
results on sequence spaces and matrix transformations. In Section 3 we recall
some properties of the multiplier of two sequence spaces. Then we state some
results on the sum and the product of sequence spaces. In section 4 we deal

with the solvability of the five (SSE) s0
a + sx = sb, s

(c)
a + s0

x = s0
b , sa + s0

x = s0
b ,

sa+s
(c)
x = s

(c)
b and s0

a+s
(c)
x = s

(c)
b . In Section 5 we deal with the solvability of the

system constituted with an (SSE) and an (SSIE) defined by s0
a + sx (∆) = sb and

sx ⊃ sb. Finally we solve the (SSE) with operators defined by χa (C (λ)Dτ ) +

s
(c)
x (C (µ)Dτ ) = s

(c)
b where χ is either s0, or s. These results extend some recent

results of Farés and de Malafosse [1] and de Malafosse [6, 10, 7, 8].

2. Notations and preliminary results.
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For a given infinite matrix Λ = (λnm)n,m≥1 we define the operators Λn for any
integer n ≥ 1, by

Λn (ξ) =
∞∑
m=1

λnmξm

where ξ = (ξm)m≥1, and the series are assumed convergent for all n. So we are
led to the study of the operator A defined by Λξ = (Λn (ξ))n≥1 mapping between
sequence spaces.

A Banach space E of complex sequences with the norm ‖‖E is a BK space
if each projection Pn:E → C with Pnξ = ξn is continuous. A BK space E is
said to have AK if every sequence ξ = (ξm)m≥1 ∈ E has a unique representation
ξ =

∑∞
n=1 ξne

(n) where e(n) is the sequence with 1 in the n-th position and 0
otherwise.

We will denote by s, c0, c, `∞ the sets of all sequences, the sets of sequences
that converge to zero, that are convergent and that are bounded, respectively. If ξ
and η are sequences and E and F are two subsets of s, then we write ξη = (ξnηn)n
and

M (E,F ) = {ξ = (ξn)n≥1 : ξη ∈ F for all η ∈ E} ,
M (E,F ) is called the multiplier space of E and F . We shall use the set U+ ={

(un)n≥1 ∈ s : un > 0 for all n
}

. Using Wilansky’s notations [16], we define for

any sequence a = (an)n≥1 ∈ U+ and for any set of sequences E, the set (1/a)−1 ∗
E = {(ξn)n≥1 ∈ s : (ξn/an)n ∈ E}. To simplify, we use the diagonal matrix Da

defined by [Da]nn = an for all n and write Da ∗ E = (1/a)−1 ∗ E and define

sa = Da ∗ `∞, s0
a = Da ∗ c0 and s

(c)
a = Da ∗ c, see for instance [4, 6, 5, 13].

Each of the spaces Dα ∗ χ, where χ ∈ {`∞, c0, c}, is a BK space normed by
‖ξ‖sa = supn≥1 (|ξn| /an) and s0

a has AK.
Now let a = (an)n≥1, b = (bn)n≥1 ∈ U+. By Sa,b we denote the set of infinite

matrices Λ = (λnm)n,m≥1 such that ‖Λ‖Sa,b
= supn≥1 [(1/bn)

∑∞
m=1 |λnm| am] <

∞. The set Sa,b is a Banach space with the norm ‖‖Sa,b
. Let E and F be any

subsets of s. When Λ maps E into F we write Λ ∈ (E,F ), see [3]. So we
have Λξ ∈ F for all ξ ∈ E, (Λξ ∈ F means that for each n ≥ 1 the series
Λn (ξ) =

∑∞
m=1 λnmξm is convergent and (Λn (ξ))n≥1 ∈ F ). It was proved in [11]

that A ∈ (sa, sb) if and only if Λ ∈ Sa,b. So we can write that (sa, sb) = Sa,b.
When sa = sb we obtain the Banach algebra with identity Sa,b = Sa normed

by ‖Λ‖Sa
= ‖Λ‖Sa,a

, see [5]. We also have Λ ∈ (sa, sa) if and only if Λ ∈ Sa.
If a = (rn)n≥1, the sets Sa, sa, s

0
a and s

(c)
a are denoted by Sr, sr, s

0
r and s

(c)
r ,

respectively; see [4]. When r = 1, we obtain s1 = `∞, s0
1 = c0 and s

(c)
1 = c,

and putting e = (1, 1, · · · ) we have S1 = Se. It is well known, see [3] that
(s1, s1) = (c0, s1) = (c, s1) = S1. We also have Λ ∈ (c0, c0) if and only if Λ ∈ S1

and limn→∞ λnm = 0 for all m ≥ 1.
In the sequel we will frequently use the fact that Λ ∈ (χa, χ

′
b) if and only if

D1/bΛDa ∈ (χe, χ
′
e) where χ, χ′ are any of the symbols s0, s(c), or s; see [11].

For any subset E of s, we put ΛE = {η ∈ s : η = Λξ for some ξ ∈ E} . If F is
a subset of s, we write F (Λ) = FΛ = {ξ ∈ s : Λξ ∈ F}.
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3. The multiplier, the sum and the product of certain sets of
sequences

3.1. The multiplier of certain sets of sequences. First we need to recall
some well known results. By [6, Lemma 3.1, p. 648] and [6, Example 1.28, p.
157], we obtain the next result.

Lemma 3.1. We have
i) M (c, c0) = M (`∞, c) = M (`∞, c0) = c0 and M (c, c) = c;
ii) M (χ, `∞) = M (c0, χ

′) = `∞ for χ, χ′ = c0, c, or `∞.

We deduce from the preceding the next corollary.

Corollary 3.2. (i) M (s0
a, χ

′
b) = sb/a where χ′ is any of the symbols s0, s(c), or s;

(ii) M (χa, sb) = sb/a where χ is any of the symbols s(c), or s;

(iii) M
(
sa, s

(c)
b

)
= s0

b/a and M
(
s

(c)
a , s

(c)
b

)
= s

(c)
b/a.

In the sequel we will use the next lemma.

Lemma 3.3. Let a, b ∈ U+. Then

a/b ∈M (χ1, χ
′
1) if and only if χa ⊂ χ′b,

where χ, χ′ are any of the symbols s0, s(c), or s.

Proof. The proof comes from the fact that a/b ∈ M (χ1, χ
′
1) is equivalent to

Da/b ∈ (χ1, χ
′
1) and to I ∈ (Da ∗ χ1, Db ∗ χ′1) = (χa, χ

′
b). �

3.2. Sum and product of sets of the form χa, where χ is any of the
symbols s0, s(c), or s. In this section we recall some properties of the sum
χa + χ′b where χ and χ′ are any of the symbols s0, s(c), or s.

3.2.1. Sum E+F of sets of sequences.. We can state some results concerning the
sum of particular interesting sequence spaces.

Let E, F ⊂ s be two linear spaces. The set E + F is defined by

E + F = {ξ ∈ s : ξ = u+ v for some u ∈ E and v ∈ F} .
It can easily be seen that E + F = F if and only if E ⊂ F . This permits us to
show some of the next results that extend some results given in [6].

Theorem 3.4. Let a, b ∈ U+.
(i) a) sa ⊂ sb if and only if a/b ∈ `∞;

b) sa = sb if and only if there are K1, K2 > 0 such that K1 ≤ bn/an ≤ K2

for all n;
c) sa + sb = sa+b = smax(a,b), where [max (a, b)]n = max (an, bn);
d) sa + sb = sa if and only if b/a ∈ `∞.

(ii) a) s0
a ⊂ s0

b if and only if a/b ∈ `∞;
b) s0

a = s0
b if and only if sa = sb;

c) s0
a + s0

b = s0
a+b;

d) s0
a + s0

b = s0
a if and only if b/a ∈ l∞;

e) s
(c)
a ⊂ s

(c)
b if and only if a/b ∈ c.
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f) The condition an/bn → l 6= 0 for some scalar l, is equivalent to s
(c)
a = s

(c)
b ;

and if an/bn → l 6= 0, then sa = sb, s
0
a = s0

b and s
(c)
a = s

(c)
b .

(iii) a) s
(c)
a+b ⊂ s

(c)
a + s

(c)
b .

b) The conditions an/bn → L ∈ R+ ∪ {∞} is equivalent to

s(c)
a + s

(c)
b = s

(c)
a+b. (3.1)

c) The condition b/a ∈ c is equivalent to s
(c)
a + s

(c)
b = s

(c)
a+b = s

(c)
a .

Proof. The proof of this theorem was given in [6, 10] except for iii) b). Proof of

iii) b). First show an/bn → L ∈ R+∪{∞} implies (3.1). Let y ∈ s(c)
a + s

(c)
b . Then

there are ϕ and ψ ∈ c such that y = aϕ+ bψ. Then

y

a+ b
=

a

a+ b
ϕ+

b

a+ b
ψ =

a

b

1 +
a

b

ϕ+
1

1 +
a

b

ψ.

We have

lim
n→∞

an
bn

1 +
an
bn

=

{ L

1 + L
if L <∞,

1 if L =∞;

and

lim
n→∞

1

1 +
an
bn

=

{ 1

1 + L
if L <∞,

0 if L =∞.

We conclude s
(c)
a + s

(c)
b ⊂ s

(c)
a+b.

Now let y ∈ s(c)
a+b. Then there is ζ ∈ c such that y/ (a+ b) = ζ, y = aζ + bζ

and y ∈ s(c)
a + s

(c)
b . This shows s

(c)
a+b ⊂ s

(c)
a + s

(c)
b . We conclude that an/bn → L ∈

R+ ∪ {∞} implies (3.1).
Conversely, show (3.1) implies an/bn → L (n→∞) for some L ∈ R+ ∪ {∞}.

Put ν = a/b. Since trivially we have a ∈ s(c)
a + s

(c)
b = s

(c)
a+b, then

a

a+ b
=

ν

1 + ν
= τ ∈ c.

Put L′ = limn→∞ τn. We then have ν = τ (1 + ν), ν = τ/ (1− τ) and

lim
n→∞

νn =

 L′

1− L′
if L′ 6= 1,

∞ if L′ = 1.

So we have shown an/bn → L′ ∈ R+ ∪ {∞} (n→∞). This concludes the
proof. �
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3.2.2. Product of sets of the form χξ where χ is any of the symbols s0, s(c), or s.
In this part we recall some properties of the product E ∗ F of particular subsets
E and F of s. These results can be found in [4, 6, 12].

For any given sets of sequences E and F , we write

E ∗ F =
⋃
ξ∈E

Dξ ∗ F = {ξη ∈ s : ξ ∈ E and η ∈ F} .

We immediately have the following results,

Proposition 3.5. Let a, b, γ ∈ U+. Then

(i) sa ∗ sb = sa ∗ s(c)
b = s

(c)
a ∗ sb = sab,

(ii) sa ∗ s0
b = s0

a ∗ s0
b = s

(c)
a ∗ s0

b = s0
ab,

(iii) s
(c)
a ∗ s(c)

b = s
(c)
ab ,

(iv) Let χ be any of the symbols s0, s(c), or s. Then the solutions of the (SSE)
χa ∗ s0

x = s0
γ are determined by K1γn/an ≤ xn ≤ K2γn/an for all n and for some

K1, K2 > 0.

4. Solvability of five (SSE)

In [1] we saw that we don’t know the solvability of sa + sx = sb, when a/b ∈
`∞\c0 and sa 6= sb. In this section we consider (SSE) of the form χa + χ′x = χ′b
where χ, χ′ are distinct and are either s0, s(c), or s. We show that the next

five equations s0
a + sx = sb, s

(c)
a + s0

x = s0
b , sa + s0

x = s0
b , sa + s

(c)
x = s

(c)
b and

s0
a + s

(c)
x = s

(c)
b can be totally solved. It remains the (SSE) s

(c)
a + sx = sb, that is

not solved until now for a/b ∈ `∞\c0.

4.1. Solvability of five (SSE) of the form χa+χ′x = χ′b where χ, χ′ are any

of the symbols s0, s(c), or s. The solvability of the equation sa + s
(c)
x = s

(c)
b for

a, b ∈ U+ consists in determining the set of all x ∈ U+ such that for every y ∈ s
we have yn/bn → l (n→∞) if and only if there are two sequences u, v such that
y = u+ v and

un
an

= O (1) and
vn
xn
→ l′ (n→∞) .

For χ, χ′ ∈
{
s0, s(c), s

}
we put

I (χ, χ′) =
{
x ∈ U+ : χ′b ⊂ χa + χ′x

}
,

I ′ (χ, χ′) =
{
x ∈ U+ : χa + χ′x ⊂ χ′b

}
,

and

S (χ, χ′) =
{
x ∈ U+ : χa + χ′x = χ′b

}
.

In the following we consider the equivalence relation on U+ defined by xRy if
sx = sy and we denote by cl (b) the equivalence class of b ∈ U+. Similarly let
cl(c) (b) be the equivalence class of b for the equivalence relation Rc defined on

U+ by xRcy if s
(c)
x = s

(c)
y . By Theorem 3.4 ii) f) we have

cl(c) (b) =
{
x ∈ U+ : xn ∼ kbn (n→∞) for some k > 0

}
.
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In the following we will use the next elementary result, if E, F and G are linear
subspaces of s, then E + F ⊂ G if and only if E ⊂ G and F ⊂ G. Now state the
following.

Theorem 4.1. [8] Suppose a/b ∈ c0. Then the solutions of the equation

χa + χ′x = χ′b

where χ is any of the symbols s0, s(c), or s, and χ′ is any of the symbols s0, or s
are given by x ∈ cl (b).

Corollary 4.2. If a/b ∈ c0, then S1 (χ, s) = S1 (χ, s0) = cl (b) where χ is any of
the symbols s0, s(c), or s.

Proposition 4.3. [8] Let χ, χ′, χ′′ be any of the symbols s0, s(c), or s. If
a/b /∈M (χ1, χ

′′
1), then the equation

χa + χ′x = χ′′b

has no solution.

Now put

s∗b =
{
x ∈ U+ : xn ≥ Kbn for some K > 0 and for all n

}
,

and

s
∗(c)
b =

{
x ∈ U+ : lim

n→∞

xn
bn

= l for some l ∈ ]0,+∞]

}
.

Notice that cl(c) (b) = s
(c)
b \s0

b . It can easily be seen that

s
∗(c)
b =

{
x ∈ U+ : s

(c)
b ⊂ s(c)

x

}
.

Indeed limn→∞ xn/bn = l ∈ ]0,+∞] means that limn→∞ bn/xn = 1/l ∈ [0,+∞[

and b ∈ s(c)
x . Since b/x ∈M (c, c) = c we have s

(c)
b ⊂ s

(c)
x .

State the next results.

Theorem 4.4. Let a, b ∈ U+. Then
i) a) We have

S
(
s0, s

)
=

{
cl (b) if a/b ∈ `∞,
∅ if a/b /∈ `∞;

b) S
(
s(c), s0

)
= S (s, s0) and

S
(
s, s0

)
=

{
cl (b) if a/b ∈ c0,
∅ if a/b /∈ c0;

ii) a)

S
(
s0, s(c)

)
=

{
cl(c) (b) if a/b ∈ `∞,
∅ if a/b /∈ `∞;

b)

S
(
s, s(c)

)
=

{
cl(c) (b) if a/b ∈ c0,
∅ if a/b /∈ c0.
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Proof. i) a) Show I (s0, s) = s∗b if a/b ∈ `∞. Let x ∈ I (s0, s). Since sb ⊂ s0
a + sx

and b ∈ sb, there are ε ∈ c0 and h ∈ `∞ such that b = aε + xh. We then have
1 = (a/b) ε + (x/b)h and since a/b ∈ `∞ we deduce ε′ = (a/b) ε ∈ c0. Since
1− ε′n → 1 (n→∞) we conclude

b

x
=

h

1− ε′
∈ `∞

and I (s0, s) ⊂ s∗b if a/b ∈ `∞.
Conversely let x ∈ s∗b . We then have sb ⊂ sx and trivially sb ⊂ sx ⊂ s0

a + sx,
for all x ∈ U+. So we have shown that if a/b ∈ `∞, then I (s0, s) = s∗b .

Now determine I ′ (s0, s). We see that x ∈ I ′ (s0, s) is equivalent to s0
a ⊂ sb and

sx ⊂ sb. We then have a/b ∈M (c0, `∞) = `∞ and x/b ∈M (`∞, `∞) = `∞. So

I ′
(
s0, s

)
=

{
sb if a/b ∈ `∞,
∅ if a/b /∈ `∞.

We conclude S (s0, s) = I (s0, s) ∩ I ′ (s0, s) = sb ∩ s∗b = cl (b) if a/b ∈ `∞ and
S (s0, s) = ∅ if a/b /∈ `∞. So we have shown i) a).

i) b) Let χ be any of the symbols s0, or s(c). By Theorem 4.1, we have
S (χ, s0) = cl (b) if a/b ∈ c0. Then by Proposition 4.3 since we have

M
(
s

(c)
1 , s0

1

)
= M (c, c0) = c0 and M

(
s1, s

0
1

)
= M (`∞, c0) = c0,

we deduce that if a/b /∈ c0, then S (χ, s0) = ∅. This concludes the proof of i).

ii) a) Show I
(
s0, s(c)

)
= s

∗(c)
b if a/b ∈ `∞. Let x ∈ I

(
s0, s(c)

)
. Since s

(c)
b ⊂

s0
a + s

(c)
x and b ∈ s(c)

b there are ε ∈ c0 and ϕ ∈ c such that b = aε+ xϕ. Then we
have 1 = (a/b) ε+ (x/b)ϕ and since a/b ∈ `∞ we deduce ε′ = (a/b) ε ∈ c0. Since
1 − ε′n → 1 (n→∞) we conclude b/x = ϕ/ (1− ε′) ∈ c. Thus we have proved

I
(
s0, s(c)

)
⊂ s

∗(c)
b if a/b ∈ `∞.

Conversely let x ∈ s
∗(c)
b . We then have s

(c)
b ⊂ s

(c)
x and trivially s

(c)
b ⊂ s

(c)
x ⊂

s0
a + s

(c)
x , for all x ∈ U+. So we have shown s

∗(c)
b ⊂ I

(
s0, s(c)

)
and we conclude

that I
(
s0, s(c)

)
= s

∗(c)
b for a/b ∈ `∞.

Now determine the set I ′
(
s0, s(c)

)
. We see again that x ∈ I ′

(
s0, s(c)

)
is equiv-

alent to s0
a ⊂ s

(c)
b and s

(c)
x ⊂ s

(c)
b , this means that a/b ∈ M (c0, c) = `∞ and

x/b ∈M (c, c) = c. So

I ′
(
s0, s(c)

)
=

{
s

(c)
b if a/b ∈ `∞,
∅ if a/b /∈ `∞.

We conclude S
(
s0, s(c)

)
= s

∗(c)
b ∩ s(c)

b = cl(c) (b) if a/b ∈ `∞ and S
(
s0, s(c)

)
= ∅ if

a/b /∈ `∞.
ii) b) Show I

(
s, s(c)

)
= s

∗(c)
b if a/b ∈ c0. Let x ∈ I

(
s, s(c)

)
. Since sb ⊂ sa + s

(c)
x

and b ∈ s(c)
b there are h ∈ `∞ and ϕ ∈ c such that b = ah + xϕ. We then have

1 = (a/b)h + (x/b)ϕ and since a/b ∈ c0 we deduce ε = (a/b)h ∈ c0. Since
1− εn → 1 (n→∞) we conclude

b

x
=

ϕ

1− ε
∈ c.
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This means that bn/xn → L for some L ≥ 0 and xn/bn → 1/L ∈ ]0,+∞]. Thus

we have proved that if a/b ∈ c0, then I
(
s, s(c)

)
⊂ s

∗(c)
b .

Conversely let x ∈ s
∗(c)
b . We then have s

(c)
b ⊂ s

(c)
x and trivially s

(c)
b ⊂ s

(c)
x ⊂

s0
a + s

(c)
x , for all x ∈ U+. So we have s

∗(c)
b ⊂ I

(
s, s(c)

)
and we conclude that

I
(
s, s(c)

)
= s

∗(c)
b if a/b ∈ c0.

Now we need to determine I ′
(
s, s(c)

)
. We see that x ∈ I ′

(
s, s(c)

)
if and only

if sa ⊂ s
(c)
b and s

(c)
x ⊂ s

(c)
b , which is equivalent to a/b ∈ M (`∞, c) = c0 and

x/b ∈M (c, c) = c. So

I ′
(
s, s(c)

)
=

{
s

(c)
b if a/b ∈ c0,
∅ if a/b /∈ c0.

We conclude S
(
s, s(c)

)
= s

∗(c)
b ∩ s(c)

b = cl(c) (b) if a/b ∈ c0. �

We immediately deduce the next corollary.

Corollary 4.5. Let a, b ∈ U+. Then
i) a) S (s0, s) = S

(
s(c), s0

)
= S (s, s0) = cl (b) for a/b ∈ c0;

b) S (s0, s) = S
(
s(c), s0

)
= S (s, s0) = ∅ if a/b /∈ `∞;

ii) a) S
(
s, s(c)

)
= S

(
s0, s(c)

)
= cl(c) (b) for a/b ∈ c0;

b) S
(
s, s(c)

)
= S

(
s0, s(c)

)
= ∅ if a/b /∈ `∞.

Remark 4.6. It can easily be seen that each of the equations s0
a + sx = sb, or

s0
a + s

(c)
x = s

(c)
b has a solution if and only if a/b ∈ `∞, and each of the equations

s
(c)
a +s0

x = s0
b , sa+s0

x = s0
b , or sa+s

(c)
x = s

(c)
b has a solution if and only if a/b ∈ c0.

Remark 4.7. If anyone of the five equations has a solution, then a/b ∈ `∞.

Illustrate the previous results with the next example, where we put cl (r2) =
cl ((rn2 )n) and cl(c) (r2) = cl(c) ((rn2 )n).

Example 4.8. Let r1, r2 > 0 and consider the next two statements
P1: For every y, z ∈ s the conditions yn/r

n
1 → l1 and zn/xn → l2 imply together

(yn + zn) /rn2 → l3 (n→∞) for some scalars l1, l2 and l3;
P2: For every t ∈ s we have tn/r

n
2 → 0 (n→∞) if and only if there are u and

v ∈ s such that t = u + v and un/r
n
1 → L and vn/xn → 0 (n→∞) for some

scalar L.
The set S1 of all x ∈ U+ such that P1 and P2 hold is determined by the next

system

s(c)
r1

+ s(c)
x ⊂ s(c)

r2
(4.1)

and

s(c)
r1

+ s0
x = s0

r2
. (4.2)

It can easily be seen that (4.1) is equivalent to r1 ≤ r2 and x ∈ s
(c)
r2 and by

Theorem 4.1 i) b) (SSE) (4.2) is equivalent to x ∈ cl (r2) if (r1/r2)n → 0 (n→∞),
that is for r1 < r2. We conclude that if r1 < r2, then the set S1 is equal to

s
(c)
r2 ∩ cl (r2) = cl(c) (r2), so x ∈ S1 if and only if xn ∼ krn2 with k > 0. If r1 ≥ r2,

then S1 = ∅.
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5. Application to special (SSE) with operators

In this section we consider two systems of (SSE) with operators defined by

s0
a + sx (∆) = sb, sx ⊃ sb and sa + s

(c)
x (∆) = s

(c)
b , s

(c)
x ⊃ s

(c)
b . Then we solve the

(SSE) defined by χa (C (λ)Dτ ) + s
(c)
x (C (µ)Dτ ) = s

(c)
b where χ is either s0, or s.

5.1. The sets Ĉ and Ĉ1. In the following we need the next definitions and
results. First recall that for any nonzero sequence η = (ηn)n≥1, the triangle C (η)
is defined by

[C (η)]nm =


1

ηn
if m ≤ n,

0 otherwise.

It can be shown that the matrix ∆ (η) defined by

[∆ (η)]nm =

 ηn if m = n,
−ηn−1 if m = n− 1 and n ≥ 2,
0 otherwise;

is the inverse of C (η), that is C (η) (∆ (η) ξ) = ∆ (η) (C (η) ξ) for all ξ ∈ s. It is
well known that ∆ = ∆ (e) ∈ (s, s) is the operator of first-difference and we have
∆ξn = ξn − ξn−1 for all n ≥ 1 with ξ0 = 0. The inverse ∆−1 = Σ is defined by
Σnm = 1 for m ≤ n. We also use the sets

Ĉ1 =
{
a ∈ U+ : C (a) a ∈ `∞

}
and Ĉ =

{
a ∈ U+ : C (a) a ∈ c

}
.

Note that if a, b ∈ Ĉ1 then the sum a + b and the product ab are in Ĉ1. It
can easily be seen that any sequence of the form (Rn)n with R > 1 belongs to

Ĉ1. It is known that Ĉ which is equal to the set Γ̂ of all x ∈ U+ such that
limn→∞ (xn−1/xn) < 1. Here we use the next lemmas which are consequences of
[5, Proposition 2.1, p. 1786], and [6] and of the fact that sa (∆) ⊂ sa is equivalent

to Σ ∈ (sa, sa) and D1/aΣDa ∈ S1, which in turn is a ∈ Ĉ1.

Lemma 5.1. Let a ∈ U+. Then
i) The following statements are equivalent

a) a ∈ Ĉ1,
b) sa (∆) ⊂ sa,
c) sa (∆) = sa.

ii) s
(c)
a (∆) = s

(c)
a if and only if a ∈ Γ̂.

We also have the next elementary result.

Lemma 5.2. Let a, b ∈ U+ and assume sa = sb. Then a ∈ Ĉ1 if and only if

b ∈ Ĉ1.

5.2. Solvability of two systems of (SSE) with operators defined by s0
a +

sx (∆) = sb, sx ⊃ sb and sa + s
(c)
x (∆) = s

(c)
b , s

(c)
x ⊃ s

(c)
b . Now consider the next
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statement: what are the sequences x ∈ U+ such that for every y ∈ s we have
yn/bn = O (1) (n→∞) if and only if there are u, v ∈ s such that y = u+ v and

un
an
→ 0,

vn − vn−1

xn
= O (1) (n→∞) and xn ≥ Kbn for all n ?

This statement is equivalent to the system

s0
a + sx (∆) = sb and sx ⊃ sb. (5.1)

We then have the following.

Proposition 5.3. Let S1 be the set of all x ∈ U+ such that (5.1) holds. Then

i) if b /∈ Ĉ1 then S1 = ∅;

ii) if b ∈ Ĉ1 then

S1 =

{
cl (b) if a/b ∈ `∞,
∅ otherwise.

Proof. i) First show S1 6= ∅ implies b ∈ Ĉ1. Let x ∈ S1. Then by (5.1) we have

sx (∆) ⊂ sx and x ∈ Ĉ1 by Lemma 5.1. Then

sx = sx (∆) ⊂ s0
a + sx (∆) = sb ⊂ sx

and sb = sx. By Lemma 5.2 we conclude b ∈ Ĉ1. So we have shown i).

ii) Let b ∈ Ĉ1. Then

sx (∆) ⊂ s0
a + sx (∆) = sb ⊂ sx

and as we have just seen this implies x ∈ Ĉ1 and sx = sb. Then by Lemma 5.1
we have x ∈ S1 if and only if s0

a + sx = sb and we conclude by Theorem 4.4 i)
a). �

Now consider the next question. What are the sequences x ∈ U+ such that for
every y ∈ s we have yn/bn → L (n→∞) if and only if there are u, v ∈ s such
that y = u+ v, and

un/an = O (1) , (vn − vn−1) /xn → L′ (n→∞) and xn/bn → L′′ ∈ ]0,∞] ,

for some scalars L, L′, and L′′ ?
The answer to this question is given by the following proposition, which can

be shown as in Proposition 5.3.

Proposition 5.4. Let S be the set of all x ∈ U+ such that

sa + s(c)
x (∆) = s

(c)
b and s(c)

x ⊃ s
(c)
b .

We have

S =

{
cl(c) (b) if a/b ∈ c0 and b ∈ Γ̂,
∅ otherwise.

Example 5.5. Let r1, r2 > 0. The system sr1 + s
(c)
x (∆) = s

(c)
r2 and rn2/xn → l for

some scalar l, has solutions if and only if r1 < r2 and r2 > 1, and they are given
by xn ∼ krn2 (n→∞) for some k > 0.
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5.3. On the (SSE) with operators χa (C (λ)Dτ )+s
(c)
x (C (µ)Dτ ) = s

(c)
b where

χ is either s0, or s. Here let Φ
(
χ, s(c)

)
be the set of all x ∈ U+ such that

χa (C (λ)Dτ ) + s(c)
x (C (µ)Dτ ) = s

(c)
b where χ is either s0, or s. (5.2)

For χ = s0 the solvability of (SSE) (5.2) consists in determining all the se-
quences x ∈ U+ such that the condition yn/bn → l (n→∞) holds if and only if
there are u, v ∈ s such that y = u+ v and

τ1u1 + · · ·+ τnun
λnan

→ 0 and
τ1v1 + · · ·+ τnvn

µnxn
→ l′ (n→∞) for all y ∈ s,

and for some scalars l, l′.
To state the next theorem we need a lemma where we use the set

S ′ (χ) =
{
x ∈ U+ : χaλ + s(c)

µx = s
(c)
bτ

}
,

where χ is either s0 or s. We have the following.

Lemma 5.6. We have

Φ
(
χ, s(c)

)
=

{
S ′ (χ) if bτ ∈ Ĉ,
∅ if bτ /∈ Ĉ1.

where χ is either s0, or s.

Proof. Since C−1 (ν) = ∆ (ν) for any nonzero sequence ν, we have (5.2) equivalent
to

D1/τ∆ (λ)χa +D1/τ∆ (µ) s(c)
x = D1/τ∆χaλ +D1/τ∆s

(c)
µx = s

(c)
b

and to

χaλ + s(c)
µx = s

(c)
b

(
D1/τ∆

)
= s

(c)
bτ (∆) . (5.3)

So if bτ ∈ Ĉ, then we have s
(c)
bτ (∆) = s

(c)
bτ and since (5.3) is equivalent to (5.2),

we conclude Φ
(
χ, s(c)

)
= S ′ (χ).

It remains to show that Φ
(
χ, s(c)

)
6= ∅ implies bτ ∈ Ĉ1. For this let ξ ∈

Φ
(
χ, s(c)

)
, that is χaλ + s

(c)
µξ = s

(c)
bτ (∆). First we have s0

aλ ⊂ χaλ ⊂ saλ and

s
(c)
µξ ⊂ sµξ which imply together

s0
aλ+µξ = s0

aλ + s0
µξ ⊂ χaλ + s

(c)
µξ ⊂ saλ + sµξ = saλ+µξ.

Then

s0
aλ+µξ ⊂ s

(c)
bτ (∆) ⊂ saλ+µξ. (5.4)

The first inclusion gives I ∈
(
s0
aλ+µξ, s

(c)
bτ (∆)

)
and D1/bτ∆Daλ+µξ ∈ (c0, c). Since

(c0, c) ⊂ (c0, s1) = S1 we deduce

anλn + µnξn
bnτn

≤ K for all n and for some K > 0.

The second inclusion of (5.4) yields ∆−1 = Σ ∈
(
s

(c)
bτ , saλ+µξ

)
, that is

D1/(aλ+µξ)ΣDbτ ∈ (c, `∞) = S1
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and
b1τ1 + · · ·+ bnτn
anλn + µnξn

≤ K ′ for all n and for some K ′ > 0.

We deduce

b1τ1 + · · ·+ bnτn
bnτn

=
b1τ1 + · · ·+ bnτn
anλn + µnξn

anλn + µnξn
bnτn

≤ KK ′ for all n.

We conclude bτ ∈ Ĉ1. This concludes the proof. �

As a direct consequence of Lemma 5.6 and Theorem 4.4 we obtain the next
result.

Theorem 5.7. Let a, b, λ, µ, τ ∈ U+. Then

i) a) if bτ /∈ Ĉ1 then Φ
(
s0, s(c)

)
= ∅;

b) if bτ ∈ Ĉ then

Φ
(
s0, s(c)

)
=

{
cl(c) (bτ/µ) if aλ/bτ ∈ c0,
∅ otherwise.

ii) a) if bτ /∈ Ĉ1 then Φ
(
s, s(c)

)
= ∅;

b) if bτ ∈ Ĉ then

Φ
(
s, s(c)

)
=

{
cl(c) (bτ/µ) if aλ/bτ ∈ `∞,
∅ otherwise.

We are led to state the next corollary where the (SSE) is totally solved.

Corollary 5.8. Let a, λ, µ ∈ U+ and R > 0. Let ΦR

(
χ, s(c)

)
be the set of the

solutions of the equation

χa (C (λ)) + s(c)
x (C (µ)) = s

(c)
R ,

where χ is either s0, or s. We have
i) a) if R ≤ 1 then ΦR

(
s0, s(c)

)
= ∅;

b) if R > 1, then

ΦR

(
s0, s(c)

)
=

{
cl(c) ((Rn/µn)n) if anλn/R

n → 0 (n→∞) ,
∅ otherwise.

ii) a) if R ≤ 1 then ΦR

(
s, s(c)

)
= ∅;

b) if R > 1, then

ΦR

(
s, s(c)

)
=

{
cl(c) ((Rn/µn)n) if (anλn/R

n)n≥1 ∈ s1,
∅ otherwise.

Proof. The proof is a direct consequence of Theorem 5.7. Indeed, if R ≤ 1, then

(Rn)n≥1 /∈ Ĉ1. Since Ĉ = Γ̂ and limn→∞ (Rn−1/Rn) = 1/R < 1 we deduce that if

R > 1, then (Rn)n≥1 ∈ Ĉ. �
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