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Abstract. It is shown that the conditions of the validity of the Hardy inequal-
ity coincide with the conditions on the spectrum of some (nonlinear) differential
operators to be bounded from below and discrete.

1. Introduction and preliminaries

The aim of this paper is to show the mutual connection between the
(N -dimensional) Hardy inequality( ∫

Ω

|f |qu dx

)1/q

≤ C

( ∫
Ω

|∇f |pv dx

)1/p

, f ∈ C∞
0 (Ω) (1.1)

and the spectral problem

−div(v|∇f |p−2∇f) = λu|f |q−2f in Ω,

u = 0 on ∂Ω.
(1.2)

Here Ω is a domain in RN with boundary ∂Ω, p, q are real parameters, 1 < p, q <
∞, and u, v are weight functions on Ω, i.e. measurable and a.e. positive functions.

As an example, let us consider the special case p = q = 2, u = v ≡ 1. Then
inequality (1.1) is the Friedrichs-Poincaré inequality∫

Ω

|f |2dx ≤ C2

∫
Ω

|∇f |2dx,
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and the equation in (1.2) takes the form

−∆f = λf in Ω,

and it is well-known, that for the first eigenvalue λ0 of the Laplace operator ∆
we have

λ0 =
1

C2
.

A similar situation appears also in the general case: For the weak solution f
of the boundary value problem (1.2) we have the characterization∫

Ω

v|∇f |p−2∇f∇gdx = λ

∫
Ω

u|f |q−2fg dx

for every g ∈ C∞
0 (Ω). If we choose g = f , we have, using, moreover, inequality

(1.1), ∫
Ω

v|∇f |pdx = λ

∫
Ω

u|f |qdx ≤ λCq

( ∫
Ω

v|∇f |pdx

)q/p

and, if p = q,

1 ≤ λCp, i.e. λ ≥ 1

Cp
.

Hence, we have shown, that if the Hardy inequality (1.1) holds, then we have a
lower bound for the spectrum of (1.2).

If we denote (quite formally) by W 1,p
0 (Ω; v) the space of functions f on Ω with

the finite norm ( ∫
Ω

|∇f |pv dx

)1/p

and by Lq(Ω; u) the set of functions with the finite norm( ∫
Ω

|f |qu dx

)1/q

,

then the Hardy inequality (1.1) describes the imbedding of W 1,p
0 (Ω; v) into Lq(Ω; u),

and the assertion above can be formulated as follows:
If the Hardy inequality (1.1) holds [i.e., if the corresponding imbedding is

continuous:

W 1,p
0 (Ω; v) ↪→ Lq(Ω; u) ]

then the spectrum of (1.2) is bounded from below.

Now, let us consider the case N = 1, and take for Ω the interval (0,∞). Then
the Hardy inequality (1.1) can be rewritten as( ∫ ∞

0

|f(t)|qu(t) dt

)1/q

≤ C

( ∫ ∞

0

|f ′(t)|pv(t) dt

)1/p

(1.3)

and we will consider functions f = f(t) such that f(0) = 0. If we, moreover,
consider the case

1 < p ≤ q < ∞,
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then inequality (1.3) holds if and only if the so-called Muckenhoupt function

AM(x) :=

( ∫ ∞

x

u(t) dt

)1/q( ∫ x

0

v1−p′(t) dt

)1/p′

(1.4)

with p′ = p
p−1

is bounded. Moreover, for the best constant C in (1.3) we have

C ≈ sup
x∈(0,∞)

AM(x).

If we denote by W k,p
L (0,∞; v) the set of all absolutely continuous functions f

on [0,∞) such that f(0) = 0 and that

‖f ′‖p,v :=

( ∫ ∞

0

|f ′(t)|pv(t)dt

)1/p

< ∞,

then – similarly as in the N -dimensional case – the Hardy inequality (1.3) de-
scribes the fact, that the imbedding

W 1,p
L (0,∞; v) ↪→ Lq(0,∞; u) (1.5)

is continuous. Moreover, it is well-known (see, e.g., [4]) that this imbedding is
compact if and only if

lim AM(x) = 0 for x → 0 and x →∞.

Since the sixties, there are several schools dealing with the investigation of
the Hardy inequality, e.g. in Sweden, Canada, Czech Republic, . . . , but only
the Kazakhstan school has had a direct connection with (and a motivation in)
spectral problems of differential operators (compare, e.g., the titles of the books
[6, 8]). Therefore, it was a surprise as we observed that in 1958, Kac and Krein
[2] have obtained, during the investigation of the problem

−y′′ = λρ(t)y on (0,∞),

y(0) = 0, y′(0) = 1,
(1.6)

the following result:
(i) The spectrum of (1.6) is bounded from below if and only if

x

∫ ∞

x

ρ(t)dt ≤ C < ∞

and λ ≥ 1
4C

.

(ii) The spectrum is discrete if and only if

lim
x→∞

x

∫ ∞

x

ρ(t)dt = 0. (1.7)

The data in (1.6) correspond to the data in the Hardy inequality (1.3) for the
special choice

p = q = 2, v(t) ≡ 1, u(t) = ρ(t).
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Moreover, the expression x
∫∞

x
ρ(t)dt is connected with the corresponding Muck-

enhoupt function (see (1.4)): we have

x

∫ ∞

x

ρ(t)dt = A2
M(x).

Consequently, we can reformulate the result of Kac and Krein as follows:
(i) The imbedding (1.5) is continuous (≡ the Hardy inequality holds) if and

only if the spectrum of (1.6) is bounded from below.
(ii) The imbedding (1.5) is compact if and only if the spectrum is discrete.

Remark 1.1. In our example, we have only the condition that AM(x) → 0 for
x → ∞ (see (1.7)) but the second condition of compactness, AM(x) → 0 for
x → 0, is satisfied – for reasonable functions ρ – automatically.

Remark 1.2. Let us emphasize that the Hardy inequality was not mentioned by
Kac and Krein. On the other hand, conditions for the boundedness (from below)
and discreteness, which appear in the literature, are often expressed in terms
of the Muckenhoupt function, again without mentioning the Hardy inequality.
Moreover, in all these cases, only linear spectral problems have been considered,
which corresponds to the special choice

p = q = 2.

Therefore, it was our aim to show that also for a nonlinear problem we have a
close connection between (i) the continuity of the corresponding imbedding (i.e.,
the validity of the Hardy inequality) and the boundedness of the spectrum, and
(ii) the compactness of the imbedding and the discreteness of the spectrum.

Together with P. Drábek, we succeeded for the case

p = q (6= 2).

Let us consider the following spectral problem on (0,∞) with 1 < p < ∞:

(v(t)ϕ(x′(t)))′ + λu(t)ϕ(x(t)) = 0 on (0,∞),

x′(0) = 0, x(∞) = 0,
(1.8)

where
ϕ(s) = |s|p−2s = |s|p−1sgn s.

The corresponding Hardy inequality (1.3) has now the form (notice that p = q)( ∫ ∞

0

|f(t)|pu(t)dt

)1/p

≤ C

( ∫ ∞

0

|f ′(t)|pv(t)dt

)1/p

,

and since we consider functions f such that f(∞) = 0, the corresponding Muck-
enhoupt function has now a slightly modified form:

AM(t) :=

( ∫ t

0

u(s) ds

)1/p( ∫ ∞

t

v1−p′(s) ds

)1/p′

.
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We are looking for a weak solution of (1.8) in the space W 1,p
R (0,∞; v) of all

functions x = x(t) absolutely continuous on [0,∞) and such that x(∞) = 0 and
with finite norm

‖x‖1,p,v :=

( ∫ ∞

0

v(t)|x′(t)|p dt

)1/p

.

The condition

lim
t→∞

AM(t) = 0 (1.9)

which is connected with the compactness of the imbedding

W 1,p
R (0,∞; v) ↪→ Lp(0,∞; u) (1.10)

allows to obtain the following nonlinear extension of the well known Sturm–
Liouville theory (let us remark that the second condition of compactness, that is
limt→0 AM(t) = 0, is satisfied automatically for reasonable weight functions u, v):

Proposition 1.3. The set of eigenvalues of the spectral problem (1.8) forms an
increasing sequence {λn}∞n=1 such that

λ1 > 0 and lim
n→∞

λn = ∞.

Every eigenvalue λn, n = 1, 2, . . . , is simple (i.e., there exists a unique normal-
ized eigenfunction xλn associated with λn). Moreover, the eigenfunction xλn has
precisely n− 1 zeros in (0,∞). In particular, xλ1 does not change sign in (0,∞).
For n ≥ 3, between two consecutive zeros of xλn−1 in (0,∞), there is exactly one
zero of xλn.

The proof of this proposition is based on oscillatoricity properties of ordinary
differential operators and uses some sophisticated tools from nonlinear functional
analysis. All details can be found in [1].

Remark 1.4. If the important condition (1.9) is violated, but AM(t) is bounded
(i.e. sup(0,∞) AM(t) = AM < ∞), then only the continuous imbedding (1.10)
holds, which guarantees the boundedness of possible eigenvalues from below.

If (1.9) is violated, then we have

– either no eigenvalue at all, or
– a continuum of eigenvalues (i.e. the spectrum is bounded from below, but

not discrete).

Example 1.5. p = 2, u = v ≡ 1. No eigenvalue:

x′′(t) + λx(t) = 0, x′(0) = 0, x(∞) = 0

AM(t) =

( ∫ t

0

ds

)1/2( ∫ ∞

t

ds

)1/2

= ∞
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Example 1.6. p = 2, u ≡ 1, v(t) = (t + 1)2. Every λ ≥ 1
4

is an eigenvalue:

((t + 1)2x′(t))′ + λx(t) = 0, x′(0) = 0, x(∞) = 0

AM(t) =

( ∫ t

0

ds

)1/2( ∫ ∞

t

(s + 1)−2 ds

)1/2

=
( t

t + 1

)1/2

→ 1 for t →∞.

Several authors have derived conditions (necessary and sufficient) for the spec-
trum of a (linear) ordinary differential operator to be bounded from below and dis-
crete without mentioning any connection with the Hardy inequality (and maybe
not being is some cases aware that such a connection exists). Besides the result of
Kac and Krein mentioned above let us mention as a further example the following
result of Lewis: in [5] he has shown that for the spectrum of the (higher order)
equation

(−1)n(v(x)y(n))(n) = λu(x)y.

the corresponding condition reads

lim
x→∞

x2n−1

∫ ∞

x

1

v(t)
dt = 0

This condition is (for n = 1 and u = 1 ) a counterpart of the condition (1.9).

Remark 1.7. All details concerning the Hardy inequality can be found in the
books [4, 3, 7].
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