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Abstract. We study new conditions on a radial function f in order to have
the almost everywhere convergence of the spherical partial Fourier integrals.

1. Introduction and Preliminaries

Given a function f for which the Fourier transform is well defined, the spherical
partial Fourier integral is given by

SRf(x) =

∫
B(0,R)

f̂(ξ)e2πixξdξ

and it is an old and difficult open problem to show whether

lim
R→∞

SRf(x) = f(x), a.e. x ∈ Rn, (1.1)

whenever f ∈ L2(Rn) with n > 1. The case n = 1 was solved positively by L.
Carleson in [1] (see also [5] for the case f ∈ Lp(R), p > 1).

Looking for conditions on a function f in order to have the convergence (1.1),
it was proved in [7] that this is the case if f is a radial function belonging to
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Lp(Rn) with
2n

n + 1
< p <

2n

n− 1
·

To prove this it was shown that, for radial functions,

S̃f(x) = sup
R
|SRf(x)| ≤ C(n)

s(n−1)/2
(M + L + H̃ + C̃)(g)(s) (1.2)

where s = |x|, g(r) = f(r)r(n−1)/2χ(0,∞)(r), M is the Hardy–Littlewood maxi-

mal operator, H̃ is the maximal Hilbert transform, C̃ is the maximal Carleson
operator defined by

C̃f(x) = sup
y∈R

sup
ε>0

∣∣∣∣ ∫
ε<|x−t|

e−iytf(t)

x− t
dt

∣∣∣∣
and L is the Hilbert integral

Lf(s) =

∫ ∞

0

f(t)

s + t
dt.

Using (1.2) it is proved in [9] and [2] that

S̃ : L
pj ,1
rad −→ Lpj ,∞, j = 0, 1

is bounded with

p0 =
2n

n + 1
, p1 =

2n

n− 1
, (1.3)

and, for a space X of functions in Rn,

Xrad = {f ∈ X; f is radial}.
From this the almost everywhere convergence of SRf(x) at the end-point spaces

L
pj ,1
rad follows.
Again (1.2) is used in [8] to prove that if w is a radial weight such that u(s) =

w(s)|s|(n−1)(1− p
2
) is in the Muckenhoupt class Ap(R) (see [6]) then

||S̃f ||Lp(w) ≤ Cw,p||f ||Lp
rad(w). (1.4)

In fact, from (1.2) we have that, if w is radial,

||S̃f ||Lp(w) . ||Tg||
Lp

(
R+; w(s)s(n−1)(1− p

2 )

) = ||Tg||Lp(R;u)

where u(s) is as before and

Tg(s) = (M + L + H̃ + C̃)(g)(|s|).
Now, if u ∈ Ap(R), all the operators appearing in T are bounded on Lp(u) and
hence (1.4) is obtained.

However, no information is given in [8] about the behavior of the constant
Cw,p in (1.4). In the recent paper [3], this constant has been explicitly computed
showing that for every 1 < p < ∞ and u as before

C(w, p) . max

(
||u||

1
p−1

Ap
, ||u||Ap , inf

r>1

1

(r − 1)2
||u||

r
p
r−1

A p
r

)
. (1.5)
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Using this estimate, it was easy to see, for example, that if w is a radial function
such that w0 ∈ A1(R), where w0(r) = w(|x|) for |x| = r > 0 and w0(r) = w0(−r)
for r < 0 and where we recall that w0 ∈ A1(R) if

Mw0(s) ≤ Cw0(s), a.e. s ∈ R

and ||w0||A1 is the infimum of all the above constants C, then

Cw,p . ||w0||A1(R)

(
1

p− p0

)3

, (1.6)

for p0 < p ≤ 2 and p0 as in (1.3).

Definition 1.1. We shall say that a radial weight w defined in Rn is in A1(R) if
||w||A1(R) = ||w0||A1 < ∞. and we shall write

w ∈ A1(R).

Using (1.4), (1.6) and a Yano’s extrapolation argument (see [10]), the following
result was obtained in [3].

Theorem 1.2. If w is a radial function in Rn such that w ∈ A1(R) then (1.1)
holds for every radial function f satisfying∫

Rn

|f(x)|p0

(
1 + log+ |f(x)|

)p0β

w(x)dx < ∞

with β > 3.

On the other hand, in the other end-point p1, the result obtained in [3] reads
as follows.

Theorem 1.3. If w is a radial function in Rn such that w(s)|s|
−2n
n−1 ∈ A1(R) then

(1.1) holds for every radial function f satisfying∫
Rn

|f(x)|p1

(
1 + log+ |f(x)|

)p1β

w(x)dx < ∞

with β > 3.

It was not completely clear in [3] why the conditions on the weight w differs in
p0 and p1 and which other condition on a radial weight we can assume in order
to have the almost everywhere convergence in a space “near” Lp

rad(w) for other
values of 1 < p < ∞. This will be clarified in the present note.

Given two quantities A and B, we shall use the symbol A . B to indicate
the existence of a positive universal constant C such that A ≤ CB. Also for
simplicity, we write

log x = 1 + log+ x

with log+ x = max(log x, 0).
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2. Main results

Let us recall (see [4]) that a weight v ∈ Ap if and only if v = v0v
1−p
1 with

vj ∈ A1, j = 0, 1 and

||v||Ap ≤ ||v0||A1||v1||p−1
A1

.

Also, a power weight v(x) = |x|α ∈ A1(R) if and only if −1 < α ≤ 0 and ([3])

||v||A1 ≤
2

1 + α
·

With these estimates, let us assume now that

w(x) = v(x)|x|δ

for some δ ∈ R and v a radial weight in Rn such that v ∈ A1(R). Then if

u(s) = v(s)|s|δ+(n−1)(1− p
2
), s ∈ R

and

(n− 1)
(p

2
− 1

)
≤ δ <

n + 1

2
p− n (2.1)

we get that u ∈ Ap(R). Moreover,

‖u‖Ap . ||v||A1

(
1

δ + n− pn+1
2

)p−1

(2.2)

The area inside the cone together with the inferior boundary in the below
picture represents the set of pairs (p, δ) satisfying (2.1) and will be called the
admissible region.
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2 p1
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p

δ

p0

1

1

Theorem 2.1. If (p, δ) belongs to the admissible region and w is a radial function
satisfying that

w(x)|x|−δ ∈ A1(R)

then
S̃ : Lp

rad(w) −→ Lp(w)
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is bounded. Moreover, for every f radial function,

||S̃f ||Lp(w) .

(
1

δ + n− pn+1
2

)max(3,p−1)

||f ||Lp(w) (2.3)

Consequently, if f ∈ Lp
rad(w), (1.1) holds.

Proof. By (1.5) and (2.2) we have to compute

inf
r>1

1

(r − 1)2
||u||

r
p
r−1

A p
r

. inf
r>1

1

(r − 1)2

(
1

δ + n− p
r

n+1
2

)r

≤ inf
r>1

1

(r − 1)2

(
1

δ + n− pn+1
2

)r

.

Then, taking r such that r − 1 ≈ δ + n− pn+1
2

we get that

inf
r>1

1

(r − 1)2
||u||

r
p
r−1

A p
r

.

(
1

δ + n− pn+1
2

)3

and therefore

C(w, p) .

(
1

δ + n− pn+1
2

)max(3,p−1)

as we wanted to see. �

Our purpose now is to use (2.3) and some extrapolation argument in order to
obtain the almost everywhere convergence for a radial function in a space “near”
Lp

rad(w) with

w(x)|x|n−
n+1

2
p ∈ A1(R).

Observe that the pair (p, n+1
2

p−n) is in the upper boundary (and hence outside)

of the admissible region. Moreover, if p = 2n
n+1

, the above condition reads

w(x) ∈ A1(R)

and if p = 2n
n−1

w(x)|x|
−2n
n−1 ∈ A1(R),

which are the conditions in Theorems 1.2 and 1.3 respectively. With the same
proof than in those theorems, we now have the following result.

Theorem 2.2. Let 1 < p < ∞ and let w be a radial weight in Rn such that
w(s)|s|n−n+1

2
p ∈ A1(R) then (1.1) holds for every radial function f satisfying∫

Rn

|f(x)|p1

(
1 + log+ |f(x)|

)p1β

w(x)dx < ∞,

with β > max(3, p− 1).

Observe that if p ≤ p1, max(3, p − 1) = 3 and the above theorem extends
Theorems 1.2 and 1.3.
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Remark 2.3. In [3], it was consider the case δ = 0 and the estimate at the end-
point p = p0 was done by a Yano’s extrapolation argument applying (2.3) with
p > p0. Also, it was considered the end-point p = p1 taking δ = 2n

n−1
and p > p1

which is also inside the admissible region.
Another possibility, which is the one presented in our next theorem is to con-

sider p fixed and move δ vertically in such a way that (p, δ) is inside the admissible
region.

Theorem 2.4. Let pn = n+1
2

p− n and let w be a radial weight in Rn such that

w(x)|x|−pn ∈ A1(R).

Then, for 1 < p < ∞ and f a radial function,

sup
t>0

∥∥∥ min
(
1, t

|x|

)1/p

S̃f
∥∥∥

Lp(w)

(log t)max(p−1,3)
.

( ∫
{|x|≥1/4}

|f(x)|pw(x)dx

)1/p

+
∞∑
i=0

( ∫
{2−2i+1≤|x|<2−2i}

|f(x)|p
(

log
1

|x|

)p max(p−1,3)

w(x)dx

)1/p

.

Consequently, if f satisfies that the right term is finite, (1.1) holds.

Proof: Let us take δ in such a way that (p, δ) is inside the admissible region.
Let us write θ = pn − δ and take δ in such a way that 0 < θ < 1. It is clear that,
for every t > 0,

min
(
1, t

|x|

)
tθ

≤ |x|−θ,

and hence, using (2.3) we have that for every radial function f ,∥∥∥ min
(
1,

t

|x|

)1/p

S̃f
∥∥∥

Lp(w)
≤ tθ/p|| |x|−θ/pS̃f ||Lp(w) = tθ/p||S̃f ||Lp(w(x)|x|−θ)

.
tθ/p

θmax(p−1,3)
||f ||Lp(w(x)|x|−θ).

Using Hölder’s inequality we have that, for every t > 0 and every 0 < δ < 1,∥∥∥ min
(
1,

t

|x|

)1/p

S̃f
∥∥∥

Lp(w)
. tθ/pθmax(p−1,3)|| |x|−1/pf ||θLp(w)||f ||1−θ

Lp(w)

and taking the infimum in θ in the right hand side, we get that∥∥∥ min
(
1,

t

|x|

)1/p

S̃f
∥∥∥

Lp(w)
. ||f ||Lp(w)

(
log

t1/p|| |x|−1/pf ||Lp(w)

||f ||Lp(w)

)max(3,p−1)

. (log t)β||f ||Lp(w)

(
log

|| |x|−1/pf ||Lp(w)

||f ||Lp(w)

)max(3,p−1)

Let us decompose

f = f0 +
∞∑
i=1

fi
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with fi = fχ{2−2i+1≤|x|<2−2i}, i ≥ 1. Then, by sublinearity, S̃f ≤
∑∞

i=0 S̃fi and

since fi is also radial, we have that∥∥∥ min
(
1,

t

|x|

)1/p

S̃fi

∥∥∥
Lp(w)

. (log t)max(3,p−1)||fi||Lp(w)

(
log

|| |x|−1/pfi||Lp(w)

||fi||Lp(w)

)max(3,p−1)

. (log t)max(3,p−1)||fi||Lp2imax(3,p−1).

Summing in i we obtain the result. �

As an immediate consequence of the previous theorem, we have the following.

Corollary 2.5. Under the condition of Theorem 2.4 we have that if f is a radial
function satisfying that∫

Rn

|f(x)|p
(

log
1

|x|

)p max(p−1,3)(
log log

1

|x|

)q

w(x)dx < ∞,

with q > p− 1, the almost everywhere convergence (1.1) holds.

Proof. The proof follows easily by observing that if Ii = {2−2i+1 ≤ |x| < 2−2i}
with i ≥ 1, then log log 1

|x| ≈ 1 + i for every x ∈ Ii and hence, since q > p− 1,

∞∑
i=0

( ∫
Ii

|f(x)|p
(

log
1

|x|

)p max(p−1,3)

w(x)dx

)1/p

≈
∞∑
i=0

1

(1 + i)q/p

( ∫
Ii

|f(x)|p
(

log
1

|x|

)p max(p−1,3)(
log log

1

|x|

)q

w(x)dx

)1/p

.

( ∑
i≥1

1

(1 + i)q/(p−1)

)1/p′

×
( ∫

Rn

|f(x)|p
(

log
1

|x|

)p max(p−1,3)(
log log

1

|x|

)q

w(x)dx

)1/p

< ∞.

�

Finally, as a consequence of Theorems 2.2 and 2.4 we can conclude our last
result.

Corollary 2.6. Let 1 < p < ∞ and let w satisfy the hypothesis of Theorem 2.4.
Then, for every f ∈ Lp

rad(w) such that for some constants A, B > 0,

sup
|x|≤A

|f(x)| ≤ B,

condition (1.1) holds.

Proof. The proof reduces to decompose the function in the sum of two functions
f = f0 + f1 such that f0(x) = f(x)χB(0,A)(x) and apply Theorem 2.2 to f0 and
Theorem 2.4 to f1. �
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