ON A REVERSE OF ANDO-HIAI INEQUALITY

YUKI SEO ${ }^{1}$
This paper is dedicated to Professor Lars-Erik Persson
Communicated by M. Fujii

Abstract. In this paper, we show a complement of Ando-Hiai inequality: Let A and B be positive invertible operators on a Hilbert space H and $\alpha \in[0,1]$. If $A \not \sharp_{\alpha} B \leq I$, then

$$
A^{r} \sharp_{\alpha} B^{r} \leq\left\|\left(A \sharp_{\alpha} B\right)^{-1}\right\|^{1-r} I \quad \text { for all } 0<r \leq 1 \text {, }
$$

where I is the identity operator and the symbol $\|\cdot\|$ stands for the operator norm.

1. Introduction

A (bounded linear) operator A on a Hilbert space H is said to be positive (in symbol: $A \geq 0)$ if $(A x, x) \geq 0$ for all $x \in H$. In particular, $A>0$ means that A is positive and invertible. For some scalars m and M, we write $m I \leq A \leq M I$ if $m(x, x) \leq(A x, x) \leq M(x, x)$ for all $x \in H$. The symbol $\|\cdot\|$ stands for the operator norm. Let A and B be two positive operators on a Hilbert space H. For each $\alpha \in[0,1]$, the weighted geometric mean $A \sharp_{\alpha} B$ of A and B in the sense of Kubo-Ando [6] is defined by

$$
A \not \sharp_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}}
$$

if A is invertible. In fact, the geometric mean $A \sharp_{\frac{1}{2}} B$ is a unique positive solution of $X A^{-1} X=B$.

Date: Received: 6 September 2009; Accepted: 7 February 2010.
2000 Mathematics Subject Classification. Primary 47A63; Secondary 47A30, 47A64.
Key words and phrases. Ando-Hiai inequality, positive operator, geometric mean.

To study the Golden-Thompson inequality, Ando-Hiai in [1] developed the following inequality, which is called Ando-Hiai inequality: Let A and B be positive invertible operators on a Hilbert space H and $\alpha \in[0,1]$. Then

$$
\begin{equation*}
A \sharp_{\alpha} B \leq I \quad \Longrightarrow \quad A^{r} \sharp_{\alpha} B^{r} \leq I \quad \text { for all } r \geq 1 \text {, } \tag{AH}
\end{equation*}
$$

or equivalently

$$
\left\|A^{r} \sharp_{\alpha} B^{r}\right\| \leq\left\|A \sharp_{\alpha} B\right\|^{r} \quad \text { for all } r \geq 1 \text {. }
$$

Löwner-Heinz inequality asserts that $A \geq B \geq 0$ implies $A^{r} \geq B^{r}$ for all $0 \leq r \leq 1$. As compared with Löwner-Heinz inequality, Ando-Hiai inequality is rephased as follows: For each $\alpha \in[0,1]$

$$
\begin{equation*}
\left(A^{r / 2} B^{r} A^{r / 2}\right)^{\alpha} \leq A^{r} \quad \Longrightarrow \quad\left(A^{1 / 2} B A^{1 / 2}\right)^{\alpha} \leq A \quad \text { for all } 0<r \leq 1 \tag{1.1}
\end{equation*}
$$

Now, Ando-Hiai inequality does not hold for $0<r \leq 1$ in general. In fact, put $r=1 / 2, \alpha=1 / 3$ and

$$
A=\frac{1}{5}\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right) \quad \text { and } \quad B=\frac{1}{25}\left(\begin{array}{cc}
45+14 \sqrt{5} & -5-7 \sqrt{5} \\
-5-7 \sqrt{5} & 50-14 \sqrt{5}
\end{array}\right) .
$$

Then we have

$$
A \sharp_{\frac{1}{3}} B=\frac{1}{25}\left(\begin{array}{cc}
15+2 \sqrt{5} & -5-\sqrt{5} \\
-5-\sqrt{5} & 20-2 \sqrt{5}
\end{array}\right) \leq I
$$

since $\sigma\left(A \not \sharp_{\frac{1}{3}} B\right)=\{1,0.4\}$. On the other hand, since
$A^{\frac{1}{2}} \sharp_{\frac{1}{3}} B^{\frac{1}{2}}=\left(\begin{array}{cc}0.866032 & -0.187030 \\ -0.187030 & 0.770683\end{array}\right) \quad$ and $\quad \sigma\left(A^{\frac{1}{2}} \sharp_{\frac{1}{3}} B^{\frac{1}{2}}\right)=\{1.01137,0.625347\}$,
we have $A^{\frac{1}{2}}{ }_{\sharp}{ }_{\frac{1}{3}} B^{\frac{1}{2}} \not \leq I$.
Thus, in [7], Nakamoto and Seo showed the following complement of Ando-Hiai inequality (AH):

Theorem A. Let A and B be positive operators such that $m I \leq A, B \leq M I$ for some scalars $0<m<M, h=\frac{M}{m}$ and $\alpha \in[0,1]$. Then

$$
A \not \sharp_{\alpha} B \leq I \quad \Longrightarrow \quad A^{r} \not \sharp_{\alpha} B^{r} \leq K\left(h^{2}, \alpha\right)^{-r} I \quad \text { for all } 0<r \leq 1 \text {, }
$$

where the generalized Kantorovich constant $K(h, \alpha)$ is defined by

$$
K(h, p)=\frac{h^{p}-h}{(p-1)(h-1)}\left(\frac{p-1}{p} \frac{h^{p}-1}{h^{p}-h}\right)^{p} \quad \text { for all } p \in \mathbb{R}
$$

see $[5,(2.79)]$.
We remark that $K\left(h^{2}, \alpha\right)^{-r} \neq 1$ in the case of $r=1$, though $K\left(h^{2}, \alpha\right)^{-r}=1$ in the case of $\alpha=0,1$ in Theorem A. Thereby, in this paper, we consider another complement of Ando-Hiai inequality (AH) which differ from Theorem A.

2. Main Results

First of all, we state the main result:
Theorem 2.1. Let A and B be positive invertible operators and $\alpha \in[0,1]$. Then

$$
A \sharp_{\alpha} B \leq I \quad \Longrightarrow \quad A^{r} \sharp_{\alpha} B^{r} \leq\left\|A^{-1} \sharp_{\alpha} B^{-1}\right\|^{1-r} I \quad \text { for all } 0<r \leq 1 \text {, }
$$

or equivalently

$$
\left\|A^{r} \sharp_{\alpha} B^{r}\right\| \leq\left\|A^{-1} \sharp_{\alpha} B^{-1}\right\|^{1-r}\left\|A \sharp_{\alpha} B\right\|^{r} \quad \text { for all } 0<r \leq 1 \text {. }
$$

We remark that $\left\|A^{-1} \sharp_{\alpha} B^{-1}\right\|^{1-r}=1$ in the case of $r=1$.
We need the following lemmas to give a proof of Theorem 2.1. Lemma 2.2 is regarded as a reversal of Löwner-Heinz inequality:

Lemma 2.2. Let A and B be positive invertible operators. Then

$$
A \geq B \quad \Longrightarrow \quad\left\|A^{\frac{p}{2}} B^{-p} A^{\frac{p}{2}}\right\| B^{p} \geq A^{p} \quad \text { for all } 0<p \leq 1
$$

Proof. This lemma follows from Löwner-Heinz inequality. In fact, $A \geq B$ implies $A^{p} \geq B^{p}$ for all $0<p \leq 1$ and then

$$
I \geq A^{-\frac{p}{2}} B^{p} A^{-\frac{p}{2}} \geq\left\|A^{\frac{p}{2}} B^{-p} A^{\frac{p}{2}}\right\|^{-1}
$$

Lemma 2.3 ([3]). Let A be a positive invertible operator and B an invertible operator. For each real numbers r

$$
\left(B A B^{*}\right)^{r}=B A^{\frac{1}{2}}\left(A^{\frac{1}{2}} B^{*} B A^{\frac{1}{2}}\right)^{r-1} A^{\frac{1}{2}} B^{*} .
$$

Proof of Theorem 2.1. If we put $C=A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$, then the assumption implies $A^{-1} \geq C^{\alpha}$. By Lemma 2.2 and $0<1-r<1$, we have

$$
A^{r}=A^{\frac{1}{2}} A^{r-1} A^{\frac{1}{2}} \leq\left\|A^{\frac{r-1}{2}} C^{\alpha(r-1)} A^{\frac{r-1}{2}}\right\| A^{\frac{1}{2}} C^{\alpha(1-r)} A^{\frac{1}{2}} .
$$

On the other hand, it follows that $A \leq C^{-\alpha}$ implies $C^{\alpha-1} \leq\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{-1}$. By Lemma 2.2, we have

$$
\left\|\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{\frac{r-1}{2}} C^{(\alpha-1)(r-1)}\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{\frac{r-1}{2}}\right\| C^{(\alpha-1)(1-r)} \geq\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{r-1}
$$

Furthermore, by Lemma 2.3, we have

$$
\begin{aligned}
B^{r} & =\left(A^{\frac{1}{2}} C A^{\frac{1}{2}}\right)^{r}=A^{\frac{1}{2}} C^{\frac{1}{2}}\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{r-1} C^{\frac{1}{2}} A^{\frac{1}{2}} \\
& \leq\left\|\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{\frac{r-1}{2}} C^{(\alpha-1)(r-1)}\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{\frac{r-1}{2}}\right\| A^{\frac{1}{2}} C^{\frac{1}{2}} C^{(\alpha-1)(1-r)} C^{\frac{1}{2}} A^{\frac{1}{2}} .
\end{aligned}
$$

Hence, by Araki-Cordes inequality [2, Theorem IX.2.10], we have

$$
\left\|\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{\frac{r-1}{2}} C^{(\alpha-1)(r-1)}\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{\frac{r-1}{2}}\right\| \leq\left\|\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{-\frac{1}{2}} C^{1-\alpha}\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{-\frac{1}{2}}\right\|^{1-r}
$$

since $0<1-r<1$. Let $r(A)$ be the spectral radius of A. Then we have

$$
\begin{aligned}
\left\|\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{-\frac{1}{2}} C^{1-\alpha}\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{-\frac{1}{2}}\right\| & =r\left(\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{-\frac{1}{2}} C^{1-\alpha}\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{-\frac{1}{2}}\right) \\
& =r\left(\left(C^{-\frac{1}{2}} A C^{-\frac{1}{2}}\right)^{-1} C^{1-\alpha}\right) \\
& =r\left(A^{-1} C^{-\alpha}\right) \\
& =r\left(A^{-\frac{1}{2}} C^{-\alpha} A^{-\frac{1}{2}}\right) \\
& \leq\left\|A^{-\frac{1}{2}} C^{-\alpha} A^{-\frac{1}{2}}\right\| .
\end{aligned}
$$

Therefore, it follows that

$$
\begin{aligned}
& A^{r} \sharp_{\alpha} B^{r} \\
& \leq\left\|A^{\frac{r-1}{2}} C^{\alpha(r-1)} A^{\frac{r-1}{2}}\right\|^{1-\alpha}\left\|\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{\frac{r-1}{2}} C^{(\alpha-1)(r-1)}\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{\frac{r-1}{2}}\right\|^{\alpha} \\
& \quad \times\left(A^{\frac{1}{2}} C^{(1-r) \alpha} A^{\frac{1}{2}} \not \sharp_{\alpha} A^{\frac{1}{2}} C^{(\alpha-1)(1-r)+1} A^{\frac{1}{2}}\right) \\
& \leq\left\|A^{-\frac{1}{2}} C^{-\alpha} A^{-\frac{1}{2}}\right\|^{(1-r)(1-\alpha)}\left\|\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{-\frac{1}{2}} C^{1-\alpha}\left(C^{\frac{1}{2}} A C^{\frac{1}{2}}\right)^{-\frac{1}{2}}\right\|^{(1-r) \alpha} \\
& \quad \times A^{\frac{1}{2}}\left(C^{(1-r) \alpha} \not \sharp_{\alpha} C^{(\alpha-1)(1-r)+1}\right) A^{\frac{1}{2}} \\
& =\left\|A^{-\frac{1}{2}} C^{-\alpha} A^{-\frac{1}{2}}\right\|^{1-r} A \not \sharp_{\alpha} B \leq\left\|\left(A \not \sharp_{\alpha} B\right)^{-1}\right\|^{1-r} I
\end{aligned}
$$

by $C^{(1-r) \alpha} \sharp_{\alpha} C^{(\alpha-1)(1-r)+1}=C^{\alpha}$ and the assumption of $A \sharp_{\alpha} B \leq I$. Hence the proof is complete.

By Theorem 2.1, we immediately have the following corollary in the case of $r \geq 1$.

Corollary 2.4. Let A and B be positive invertible operators on H. Then

$$
\left\|A^{-r} \sharp_{\alpha} B^{-r}\right\|^{1-r}\left\|A \sharp_{\alpha} B\right\|^{r} \leq\left\|A^{r} \sharp_{\alpha} B^{r}\right\| \quad \text { for all } r \geq 1 \text {. }
$$

Finally, Furuta [4] showed the following Knatorovich type operator inequality in terms of the condition number: Let A and B be positive invertible operators. Then

$$
\begin{equation*}
B \leq A \quad \Longrightarrow \quad B^{r} \leq\left(\|B\|\left\|B^{-1}\right\|\right)^{r-1} A^{r} \quad \text { for all } r \geq 1 \tag{2.1}
\end{equation*}
$$

By Theorem 2.1, we have the following Kantorovich type inequality of (1.1) which corresponds to (2.1):
Theorem 2.5. Let A and B be positive invertible operators and $\alpha \in[0,1]$. Then

$$
\left(A^{\frac{r}{2}} B^{r} A^{\frac{r}{2}}\right)^{\alpha} \leq A^{r} \quad \Longrightarrow \quad\left(A^{\frac{1}{2}} B A^{\frac{1}{2}}\right)^{\alpha} \leq\left\|A^{r} \sharp_{\alpha} B^{-r}\right\|^{1-\frac{1}{r}} A
$$

for all $r \geq 1$.

References

1. T. Ando and F. Hiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl. 197/198 (1994), 113-131.
2. R. Bhatia, Matrix Analysis, Springer, New York, 1997.
3. T. Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Algebra Appl. 219 (1995), 139-155.
4. T. Furuta, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. Appl. 2 (1998), 137-148.
5. T. Furuta, J. Mićić, J.E. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
6. F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246(1980), 205-224.
7. R. Nakamoto and Y. Seo, A complement of the Ando-Hiai inequality and norm inequalities for the geometric mean, Nihonkai Math. J. 18 (2007), 43-50.
${ }^{1}$ Faculty of Engineering, Shibaura institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-city, Saitama 337-8570, Japan.

E-mail address: yukis@sic.shibaura-it.ac.jp

