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Applications of the van Trees inequality:
a Bayesian Cramér—Rao bound

RICHARD D. GILL* and BORIS Y. LEVIT
Mathematical Institute, University af Utrecht, Budapestlaan 6, 3384 CD Utrecht, Netherlands

We use a Bayesian version of the Cramér—Rao lower bound due to van Trees to give an elementary proof that
the limiting distribution of any regular estimator cannot have a variance less than the classical information
bound. under minimal regularity conditions. We also show how minimax convergence rates can be derived in
various non- and semi-parametric problems from the van Trees inequality. Finally we develop multivariate
versions of the inequality and give applications.
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1. Introduction

Basic statistics textbooks like to present the Cramér—Rao lower bound together with an informal
description of large-sample distributional properties of maximum likelihood estimators (MLE) as
demoenstrating some kind of asympiotic optimality of the MLE. This approach is very unconvincing
on several counts. First, the Cramér—-Rao bound only says something nice about unbiased esti-
mators whereas most estimators in practice are biased, and the arguments for preferring unbiased
estimators are rather weak. Also, traditionally the Cramér—Rao bound makes a number of regularity
conditions which are difficult to check and the result only compares estimators satisfving these
conditions (see Borovkov (1984) for a more satisfactory version). Finally, the fact that a limiting
variance may not coincide with the variance of a limiting distribution produces another unpleasant
gap between the bound and the limit theory (many interesting estimators even have infinite variance).

Of course the beautiful theory of Hajek and Le Cam (local asymptotic minimax theorem. the
convolution theorem for regular estimators) solves all these problems in a mathematical sense.
However, the techniques used are very sophisticated and the notions involved are very delicate.

On the other hand. there is a theorv of ‘best asymptotically normal’ estimators due to Rao (1963)
and others, but this is very restrictive in its applications and somewhat neglected nowadays.

Here we show that a simple variation on the Cramér—Rao theme due to van Trees (1968) provides
the keystone of a short and elementary proof that the variance of the limiting distribution of
uniformly convergent-in-distribution estimators exceeds or equals the Cramér-Rao information
bound. “Uniformity’ of some kind is of course needed to rule out super-efficiency (actually just
Hajek regularity will do). The further regularity conditions involved are minimal.

* To whom correspondence should be addressed.
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We also give some other applications of the van Trees inequality, demonstrating its power and
versatility, in particular as a tool for obtaining optimal convergence rates in non-regular (and non-
parametric) problems, and for obtaining global bounds for estimating infinite-dimensional
parameters. In fact this is just the tip of the iceberg. The bound can also be used to investigate
asymptotic admissibility and second-order optimality (Levit and Oudshoorn 1992; Schipper 1992)
and we believe it will find many other applications.

Previous applications of the van Trees inequality have been given by Bobrovsky er al. (1987) and
Brown and Gajek (1990). A stronger type of inequality is given by Klaassen (1989); the right-hand
side of his equation 5.21 is the lower bound coming from the van Trees inequality.

2. The van Trees inequality

Let (X, F, Pg:# € 8) be a dominated family of distributions on some sample space A'; denote the
dominating measure by u. Take the parameter space © to be a closed interval on the real line. Let
f(x|#) denote the density of P; with respect to u. Let = be some probability distribution on © witha
density A(f) with respect to Lebesgue measure. Suppose that A and f(x|-) are both absolutely
continuous ( u-almost surely), and that A converges to zero at the endpoints of the interval 8. A
prime will denote a partial derivative with respect to 4.

Let # = #(X ) denote any estimator of #, X ~ Py We write E; for expectation with respect to 8.
When @ is drawn from the distribution =, and conditional on & = @, X from P;, we write E for
expectation with respect to the ensuing joint distribution of X and 8.

Apart from the absolute continuity of [ as function of 8, our last assumption is just the usual

Eg{log /(X |8)} =0. (1)

Define further

I(6) = Eg{log f(X |6)}'*
I()) = E{logA(6)}?,

the Fisher information for # and for a location parameter in A, respectively. We also often write T{ )
for the latter quantity. A well-known result of Hajek is that (1) follows from the continuity of Z(#);
in fact (1) holds almost everywhere if /I (#) is just locally integrable in 8, which is enough for our
purposes. For full details on both these results, and also for the multivariate case, see Borovkov
(1984, §16 and §20); see also Borovkov and Sakhanenko (1980). For our asymptotic bound in the
next section, Z(f) must be continuous in #.

MNow

j{ﬂx' B)M08)} dé = [f(x[8)A(#)] =0

by the convergence of A to zero at the endpoints of 8, and by partial integration and the same fact
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e
lﬁ'{fl;x‘ 8YA(B)Y d8 = [6f(x|0) A(B)] - Jf(x 16)A(8)d6 = — lf[x 9)n(dd).  (2)
Using both these equalities,
[ 166 - 037010930 dtutae) = | [ 710 ta0) i) = 1.
Cauchy—Schwarz now gives
“{ém OFf (x| 8)(d0) u(dx) - Jl{!og{f{x|E}A{E}}}’1f[x|E}w[dﬁ'}g(dx‘l >1.

But by our assumption (1) the ‘information’ part of this expression, i.e. the second term in the
product on the left-hand side, reduces just to [Z(#)=({d#) + Z(A). Dividing out and abbreviating
the notation gives the final inequality (see van Trees 1968, p. 72)
1

— 3
EZO) 2200 (3)
We emphasize that the only assumptions made here were (1) and the regularity conditions in the first
paragraph of this section.

A more general inequality for estimating an absolutely continuous function of # is easily
obtained in exactly the same way. Replacing # by v(#), equation (2) becomes

Jt-w}{ftxlamm}’dﬂ={wtﬂn.ﬂxlﬂmmi—j '(8) f(x18) \(8) dO

E{f(Xx )-8} =

= —jw’m}ftxla}w{de).

Replacing now also 8(x) by 1(x) in the subsequent development gives

[E{u'(68)}]*

E{CX) - w0 > g = 700"

Example Estimation of 8 from a sample from the N(8, 1) distribution

Let X...., X, be a random sample from the N{#, 1) distribution; define v/(f) = #, where E = 0 and
0 < @ < 1. We show that the optimal rate of convergence for estimators of 4 is only n~*/ * when 8
can be arbitrarily close to zero. We apply equation (4) with X..... X replacmg X. The information
for 8 based on n independent and identically distributed observations is » times the information for
one observation. By (4), for an arbitrary estimator v,

( Ja“ lA(deﬂ)
sup Eo{t, — ¥(8)) = E{u, — ()} = n+Z(A) w
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where ) is a prior density on a closed bounded interval of [0, o¢), satisfying the conditions stated
above. Setting A(#) = a 'Ag(a"'#) and denoting

-

i (Jn“"kﬂ[u}du)_.

Aaz-'n—]?QE
n+ZI(Ag)a?

Choosing a = [T(A)a/{(1 — a)n}]'* so that for large n the prior ) concentrates more and more
mass closeto 0, we obtain

we obtain from (5)

sup Ey{v;, — v(0) Y=

(Jasa)ihgPio
n°I(Ag)'®

This inequality shows that no estimator can have a convergence rate (uniformly) better than n™™/2.
Fortunately a natural choice for v, | X, |® where X, is the sample mean. achieves this bound. This
follows by applying the c.-inequality (see Loéve 1963, p. 155);

NEJP=18|% €| & =0]% Oca=l

from which it follows that

sup Eg{t, — v(8)}* =

2°T{a+1)

o uE{ ¥ oo |:u=
SI;DE&[_X;T 181%) -»-.E-lXR | ﬁnn

by straightforward calculation,

Despite our lower bound on the (maximal) mean square error, the estimator v, actually converges
in distribution at the faster (usual) rate of n~ /2, provided we keep away from # = (. This case is
covered by our asvmptotic results in the next section.

3. An asymptotic Cramér—Rao bound

Suppose in the previous section, Py is replaced by its n-fold product, and X by X', ni.i.d. copies of
X. The information for # then gets multiplied by n. Let =; be a fixed distribution on [—1. 1] with
absolutely continuous density, zero at the end-points. Let 8; be a fixed point in the interior of © and
let # = x(H,n) be the rescaling of m; to the interval 4 = [f; T:i'l"zH 8y +n"'H| for given
H = 0. The information for m(H, ) is that for =, times n/H *.1f 8" is any estimator for 6 based on
X", the inequality (3) becomes

] 1

E(8™ —8) = :
( N 2 AT @)+

or

1
ExunmI(0)+I(m)/H?

E{va(d"™ —8)}* = (6)
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We assume that T(#) is continuous at #,. Then first letting n — oc and then H — ¢, the right-hand
side converges to 1/Z(f;), the usual asymptotic information bound.

Now suppose /n(8!" — @) converges in distribution, as n — cc, uniformly in #; suppose the
limiting distribution is also continuous in 8 at #. Then /n(#"™ — 6,) converges in distribution under
Py . to a fixed distribution Z, say. for all sequences g, of the form &, +nV2h, he(-H,H).
(Alternatively, one can just make this, weaker, assumption of Hajek regularity). This is the limiting
distribution of \/n(8'"™ — @,) under Py, in which we are interested. )

Truncate 8™ to the interval A. This is the same as truncating /n(8"" —4,) to the interval
[—H — h, H — h). The resulting random variable converges in distribution under Py to Z truncated
to the same interval; call this Z, 4. Since both are bounded, the mean square converges too.
Moreover, we have EZ7 ; < EZ2 Applying (6) to the truncated estimator and letting n — oo, this
gives
ff el ].

. nw(dk) = T(8y) + I(m)/H?'

where 7wy is the rescaling of m to the interval [-H H|. Now let H — oc, and we obtain
EZ® = 1/T(8,); in words, the mean square of the limiting distribution of \/n(#"™ — 8;) is at least
1/Z{f;). (A more general version of this elementary result is known as the Hajek's convolution
theoremn; see Héjek 1970. For a different approach see Klaassen 1989, Theorem 4.1.)

We can improve this bound on the mean square error of the asymptotic distribution to the same
bound on the variance of the asymptotic distribution. If the limiting distribution of /n(#'"' — #) has
mean a(#), simply apply the above to the new ‘estimator’ 8™ — n~12a(8,). Tts asymptotic
distribution under P; has mean zero but the same variance as before.

Obviously we can also obtain analogous results for estimating a function of .

In the next section we will derive genuine multidimensional versions of the van Trees inequalities
{3) and (4). For the moment, notice that one can obtain a multidimensional version of the just-
obtained asvmptotic bound by considering certain one-dimensional submodels, satisfying (by
assumption) the regularity conditions given above, Suppose # is now a (column) vector and the
matrix Z(f) exists and is non-simgular. Write T, = T(f;). Apply the preceding to estimation of the
linear combination ¢'# in the one-dimensional submodel 6 = 8, + n(c"T; '¢)"'T; ¢, where 7 is a
real parameter. The information for n=¢'(§ —8,) at =10 is (¢'T; '¢) "', The resulting bound
¢"T; "¢, holding for all ¢, on the variance of the asymptotic distribution of ¢’ /n(8™ — ;). implies
the bound ;' on the covariance matrix of the asymptotic distribution of /(#™ — 6.

Ezzaj

4. Multivariate extensions

Curiously there are many ways to extend the van Trees inequality to higher-dimensional parameters
{cf. van Trees 1968, p. 84; and Bobrovsky er al. 1987). Here we present a very general version
involving arbitrary choices of certain matrix weight functions. The inequality allows several
interesting special cases.

We consider immediately the case of estimating a possibly vector-valued function v of a vector
parameter #, p- and s-dimensional, respectively. Suppose also from the start that we have n
independent and identically distributed observations X; from a common distribution P, with
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density f(x,#) with respect to some measure g (all on an arbitrary measure space X'). Suppose
# € 8 C R’ Write X for a generic observation X,

We choose next a prior density (with respect to Lebesgue measure) A(# ). a symmetric p x p matrix
function B(#), and a p x s matrix function C(f). We need a number of regularity conditions on f, A,
B and C.

We will say that a real measurable function g(f ). # € 8, is nice if, for each j, it is absolutely
continuous in #, for almost all values of the other components of #. We will treat 6 and v as column
vectors; partial derivatives with respect to the components of & are set out in rows, so dv/d8 is a
p » 5 matrix. The symbol T denotes the transpose of a matrix. The operation ‘diag’ of a square
matrix replaces its off-diagonal elements by zeros.

Assumptions

I. fis measurable in x, # and nice in # for almost all x.
II. The Fisher information matrix

7(0) = Eﬂ{(ﬁlﬂg_;;.f,E})Té}]ogg;.r.ﬂ]}

exists and diag {T(8)}" is locally integrable in 6.
I11. The components of ¢ and C are nice.
IV. B is positive definite; suppose B(f) = A(8)T4(9) for a p x p matrix Ald).
V. A is nice; © is compact with boundary which is piecewise C'-smooth; ) is positive on the
interior of © and zero on its boundary.

Assumptions I and II imply (Borovkov 1984; Borovkov and Sakhanenko 1980) that the expected
score vector is zero for almost all #:

dlog f(X.6)
8¢ aa

E
af

=10.

Theorem 1 (Multivariate van Trees inequality) Under assumptions (I)-(V), for any estimator ¢,
R(ty, A) = j Es{v, — 0(8)} B(8) " {v, — v(0)} \(0) d8
&

(L tr{cwuawae}"‘}kw}dﬂ)"

= ]
n L tr {B(#)TCO)Z(8) C(A)TIA(8) A8 + ()

(7)

where

I0) = ]ﬁ( 5 B,J{e}a%{c',-k(emm}%{cﬂmmm}) ﬁde. (8)

ikt
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Proof

For random p-vectors X, ¥, we define the scalar product
(X,Y)=EXTY).

This makes the space of square-integrable random vectors a Hilbert space and we have the Cauchy-

Schwarz inequality i
(X, ¥y <(X,X)¥,Y).

Since B = A"4 for non-singular A we can also apply this to U = (47')"X and V = AY getting
EX"Y)P={EUWV)P <EWUWTU)E(VTV)=EX B 'X)E(YTBY). (9)

Essentially without loss of generality, we prove the required result in the case n = 1 (after that,
simply apply it to the joint density of the » observations, by which I(#) becomes nZ(#). thanks to
the fact that the expected score is zero).
As before, the proof goes by Cauchy—Schwarz, in the form of (9), and integration by paris. Take
for Yand ¥
X =1, — (0],

L. 8 —
Y, = ;Ej{c}jtﬂlﬂfﬂ A0} aam)

where f(8) = f1( -.#) is the likelihood for #. In (9) we find
E(XTB'X) = R(¢,.\)

and, using integration by parts,

E(XTY) = JZ{’« r}-v{enzaﬂ {Ca(6) £(x.0) \0)} d0 u(dx)

. QLZ&;;: Cix(8) f(x.8) M) p(dx) d8

ik

‘ﬂ tr(C{E} (%’)T ) A(6) do.

Finally
8(Ci A X
Cu g+ XA Gy L)
E(Y'BY)=E B;; & :
ifhed f‘:"' f}‘
1 a a 18
{U - Jkaﬂ I'D'E f-'r Iﬁk( JE‘}L})( aﬂ lﬂgf-"' }la& EC;I")":I)}

= tr{B Tc(e)Z(8)C(e) I A(0)do + T(A)

using ‘expected score is zero” to get rid of the cross products. O
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Various natural choices of B and C lead to versions of (7) that are useful for different purposes.
The simplest choice, when p = 5 so that ¢ has the same dimension as @, is to take both matrix
functions equal to the identity. Using |-| to stand for the Euclidean norm of vectors and writing

divy = X, 8u;/86; = tr 8y:/88, we obtain
2
(Jdiv »(8) A8) cm)

thrI{E}A{E}dS +trI(A) ..

L Eg| ¥, — 0(8) |2A(6) d8 > (10)

where T(A) is the matrix information for A. We call (10) an L;-norm type inequality. The one-
dimensional case with ¢ the identity is our first version of the van Trees inequality.

In some respects more natural, and also available when p = s, is still to take B as the identity but
to choose

_ 91y
C(8) =55 (6)
Z(#) supposed invertible. Define also
a'l,lr .I.T

the inverse of which one could call the information for v/, We now find from (7)

(oo

0)0)
ju:r,,t )A(8)d6+Z(A)

L Es| 0, — 0(8) |*A(8) d6 >

ljtrJ (8)A(8)de — izirm (11)

where

- 1 a i
T(X) = — | = Cil@) A — Cy () A8) | df. 12
0= [ 555 (364030 (3, c020)) 12)
For s =1 this contains the so-called Borovkov-Sakhanenko inequality; see Borovkov and
Sakhanenko (1980, Theorem 3). We call (11) the natural multivariate van Trees inequality.

Apart from the identity, an alternative natural choice for B is the inverse information for v itself,
B(#) = J.(f). Generalizing the choice of C for our natural inequality (relation (11)), i.e.

cw}_aw}-'&’ (8!
we find the normalized risk inequality
b = (O T o(8) " {0 — ¥ 2P Y
| Eetwn - vy 70 - w0 0> P 527 (13)

where Z(A) is as in (12).
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Finally, the weighted quadratic risk inequality is obtained when B(#) = diag (J,(#)) and C(8) =
B(#)"'(8v/80)T(9) ", resulting in
3 {oni = vi(0)) r’ p_IN
A T A AaBYde s e 14
'[Eﬂ i=1 (JL:}H { ) 4 np + Il:}l:l # n 2 { )

where Z()) is given by (12) for the present choice of B and C.

Inequality (10) is sufficient for first- and second-order local investigations; see Section 6 and
Schipper (1992). Inequalities (11)—(14) can be used for first- and second-order global considerations;
see, for example, Levit and Oudshoorn (1992).

5. Semi-parametric models: rates of convergence

First we consider some non- or semi-parametric problems where the optimal rate of convergence is
not the square root of n but something smaller. In each case we use the univariate van Trees
inequality to derive an asymptotic lower bound to the maximum mean square error of an estimator
over a small neighbourhood of the parameter. The proof works by guessing a most difficult
parametric submodel for estimating the functional of interest. The procedure sometimes suggests ad
hoc estimators which achieve the lower bound, thereby demonstrating its optimality (at least as far
as the rate is concerned). The proof can also be adapted to give a lower bound to the variance of the
asymptotic distribution of a uniformly convergent-in-distribution estimator, just as in the regular
parametric case studied in the previous example.

The examples studied here have been considered by Bakker (1988), Groeneboom and Wellner
(1992) and Weits (1992) using other methods. They compare the constants appearing in their lower
bounds to those obtainable by the estimators under consideration.

The first example, ‘completely censored data’. occurs in biostatistical applications (carcinogen-
icity experiments) in which one is interested in the distribution of the time of a certain event. At
another random ‘observation time’ one can see whether or not the event has already occurred (e.g.
animal sacrifice to determine whether or not a tumour is already present).

So,let X,.... X, beiid. with unknown d.f. Fand let ¥7,.... Y, be independent of the X;s and
i.i.d. with density g. The data consist of the pairs Z;, = (A, ¥), i =1,...,n, where

Ay =HXis T}
define also
An=1=-4;=1{X;> ¥}
The target functional of F to be estimated is
Y(F ) = F(xp),

where x; is fixed. We consider g also fixed; whether it is known or not is irrelevant. Let
Tei= Tl e v Z,) denote an estimator of F(x;). We make the following two assumptions.
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Assumptions
VI FeF= {F:D < Flxy) < 1 and 3 +(F), %(F), %(F) > 0 such that

F(x)) = F(x;) _

Fi=
’.*1[ ) R

Pa(F) ¥y, %2 1 %9 — 1(F) < %) < %3 < xp+ 'r';{F:I}.

VIL. g({x;) > 0, g is continuous at x;.

On F we introduce a topology T generated by the neighbourhoods

Ves(F) = '[G eF: “ =l ||[.r¢---:.x.;~f] < ‘5}
where
IFllc=sup | F(x)| + sup LEC)=FC)
xel x el |.T|_ x!l

Theorem 2 Let Fy € F and V' = Vs(Fy) be fixed. Then there exists C{¥) > 0 and ny < oc such
that

(V) = inf sup E{T, - F(xg)} > 93 ).

r =
Ta FEV nif3

where the infimum is taken over all possible estimators T,.

Proof
Let v satisfy
¥(x) =0, x| =1
w(0) =1
il = 1.
Choose B > 0 fixed and let, for given h > 0, {F,.( - )} denote the family
Fulx) = Fy(x) + cw(x =), Je|<Bh (15)

B can be chosen so that for small enough h,
{F.:le|]<Bh} CVCF (16)
and of course we have
F.(xy) = Fylxo) + ¢

For use in the proof of Theorem 3 below, note that if, moreover, B < 7 (Fy) then + (F,) is uniformly
bounded away from zero (in ¢ and &, for sufficiently small A).
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Let v be counting measure on {0, 1} and let f,(§;, 8, y) be the density of (&, A;2, ¥;) with respect
to 1 x 1 x Lebesgue measure;

f(81.8,) = F {1 = ()} "2(5)
for & = 1 — & € {0, 1}; zero otherwise. The score [, is given by

ooes, () (5)
ac  Fly)  1-F(y

and the conditional information given T; is

;11,2 (:_%rﬂ) 1*._‘1 (J" _h xﬂ)

) 1-Fd)

h

Frl:}'j{l = Fr[}’}}

I =

E(l2|Y;=y) =

L2 — Xy
i (_)
- h
= Fol {1 = Fol 1)} {1+0(1)}

The unconditional information is therefore

as A — 0, uniformly in y.

I{—:}=EU;=}={1+m;1:.}J”°"' Vi)

xa—h Fol ¥){1 — Fo(y J}g[}?jd‘il

£(xp) N N
~ Folxo){1 - Fylwo)} J—Jt ey

= ARh{1 +o(1)},

say, using assumptions VI and VIL
Let Aq be a prior density on (-1, 1) satisfying the conditions of the van Trees inequality and let

_ [t Aate?
L= L Dol0) O
1 ¢
0= 5p(57)
Then

ro(V) = inf sup Ep{T, - F.(xo)}’
T || < BR 5

1nf sup Ep [{T, — Fnhu]}—f]z
T | e = Bh

;ian Er (T, — ¢ Me)de
T l-m °°
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I 2 =l
= (nJHh I[f}ﬁn[ddc+lﬂ' o] de)

—Bh —m Alc)

= [ndh{l + o(1)} + I/(B*K*)]""
=n"3A4 + To/B*) 1 +0(1)}

if we take h = n~'° and where the last inequality is obtained by the van Trees inequality. O

The rate n~"/? is known to be achieved in this problem by the nonparametric maximum likelihood

estimator (NPMLE) of F; see Groeneboom and Wellner (1992). They make slightly stronger
assumnptions than ours, but on the other hand derive the limiting distribution of the NPMLE. The
lower bound is given in Groeneboom (1987) using a different approach. The problem is very similar
to that of estimating a density, known to be monotone, for which the rate n~'/* also applies: see
Groeneboom (19835).

A simple ad hoc estimator of Fx;) achieving this rate is given by the following modification of a
histogram estimator; in fact a histogram with appropriate bin-width is also an optimal rate density
estimator under weak smoothness conditions.

Let

&= 1Y€ (xo—hxo+h)}
= 1{Y; € (xo = h, xo + ), X; < ¥}

zn: T
i=1

Fy(x) ==

where h = h, > 0,
h, — 0 and ahe™ — oo

as n — oc for some & > 0. We show that under our assumptions VI and VII, uniformly on any
neighbourhood V,;(Fy) with F, £ F,

F(xp){] = F(x)}
2g(xg)hn

Er{Fu(x) — F(xo)) < ( A {*?;{F}fr}l){l +o(1)}

U3 results in the optimal rate

as n — oc. From this, choosing h = n"
Ee{F,(xo) = F(x)} = n>".
To demonstrate this, let
a=Ez§ =Epff

8=Erm =Eni.
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One then obtains

xy=h
u=[ g(y) dy = 2g(x) {1 + o(1)}

xy—h
xg+h
5= [ FOIe()ar = (Flxo) + e
Xo—
say, where for sufficiently large » (and hence small enough /) we have o > 0 and
| 7| < 7(F)h
All these arguments carry through uniformly on the given neighbourhood ¥, ;. Denoting further

_ I =
£H=E;m—au

-E M
_r' o [ i -'j #
i M;{ﬂ )
a simple calculation gives
Ty — -F[xl.'l:lgu T .
1+&a

Let p=p, = (nk*)"""* and define the event 4 =4, = {|&,| < p,}. Thus p, — 0, and by
Hoeffding's inequality (see, for example, Pollard 1984, p. 192)

Fulxg) — F{x{!} e

{3 |
P(A5) < 2exp (— er ) = O((nk?) "8/ = o((nh) ™)

for m — oc. by our assumptions on &, and p,. Notice also that
Er | {7, — F(xo) &} 7|14 < 207" || P(AL) = o{(nk)™").
Therefore, for n — oo
Er{F,(x0) — F(x0)}* = Ep{F, (%) = F(x0) Ly, + o{(m)™")
= [Ep{fis — F(x0) &} 1s, +77]{1 + Olpn)} + ol(nh) ")
< [Be{f — Flx0) &} + 7 H{1+ o(1)} + o((nh) ")
< [ la 2 Epfn - Flxg)&1}F +73{1 + o(1)} + o{(nk™"))
= [n"'a T Er{n] — 2F(xo)m& + F(xo)’&7} + v H{1 + o(1)} + o{(nh)™")
= (n""a  [Flxg){1 = F(xo)} + {1 = 2F(x0)} 7] +7){1 + o(1)} + o((nh™"))

- (Rl=Fol, 7)1 +.o)

which is the required result.
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This estimator does have two disadvantages compared to the NPMLE: one must make an
arbitrary choice of the constant in the bin-width; and the estimator of F(xp) is not a monotone
function of x;.

Our next example is a modification of the first one: now there are two ‘observation times’ instead
of one. Most of the information for estimating F{x,) comes from those observations for which the
two observation times are close to each other and on each side of x;. and when the event of interest
occurs between these two times. This leads to a different (higher) optimal rate of convergence
provided the joint density of the observation times is positive at (xp, xp).

Tet Xis.o-s X, be i.id. with d.f. F as in Example 1; let (F ). F and T be as in that example. Let
(Y. ¥ia)i=1,....n beiid. pairs independent of the X;'s with joint density g and with ¥;; < ¥},.
The data consist of 2, ... Z, with

Zi =4y, 83, ¥y, ¥ia)

where

A= HX; 5 Yy)

Ap =Yy < Xi € ¥}
define alsc

A=Y < X}

Assumption VII is replaced by:

VII' g( .y, is positive and continuous at (xy, x); its marginals g, and g, are also positive and
continuous at x,.

Theorem 3 For all ¥ = V,;(F;) there exists ¢(V') > 0 and ny such that

e(V)

Vy=inf sap EAT, = Fixp)P s ——L .
(V) I'Il"l, .E:E 3 (xo}} }(n]ugn]l"'j

n;"ﬂ.

Proof

We define the family {F.(-):]¢| < Bh} asin (15) and (16). B is taken so that the positive constants
1{F.), 72(F.) and v F,) can be chosen uniformly in ¢ for sufficiently small &, as we mentioned in the
proof of Theorem 2. The joint density of (A, &1, &3, ¥y, Fia) is now

fo = E(y)™{Fy2) = F(2)}2{1 = F.(32)}72(51,2)

and the score is

L e IR B ) IR

e F.(72) - E(3) TT-F(n)
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The conditional information for ¢ given (¥, ¥;2) = (¥, 0) is

25, PO O BT

F(n) F.(y) - Fn) T1=FdA»m)

The unconditional information T{¢) can be correspondingly split into three terms, /{c) = fi{¢) +
be) + Ii(¢).
By the same calculations as in Theorem 2,

(L L I O T
L(c) + Ie) = (Fﬂ[m+]_ﬁ{xﬂ}) LL, () dt-h-{1 +o(1)}.

Now I,(c) is an integral over the set
{{yix2) iy < yeomin( |y — x|, |y —x0|) € A}
We further split the integral >(c) as
Lic)=dy+ i+ N+ 0+ 0

(see Fig. 1) according to

xg—4 xg—k xo+h Xo+h xy+h my+b e
( j d}'| -+ J d_]-'i) J d_'l'z -+ J d}'i ( J d._'l'z <+ J d-_'l'z - J dr'l-'l) 4
-0 Xg=h Ky—h =i ¥i K+ X+

Here, & — 0 as i — 0, in such a way that &|logh| — 2c (s0 i — 0 much faster than §); the
interesting terms will come from J; and J,.
From the assumptions on F, g and {F,} (using the fact that +(F,) is bounded away from zero

b
i g
I i
1 E
d 1
% L5
:
SR S — i _:'-"I,:.-'-a
: " :
I xn+h
B O B T B L T
a2}
=
39 ;
= i
"“_:;:-":U-a E
n
]
L]
]
]

Figm 1. L) =Jy + 15 +J_: +J, =+ J_i.
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uniformly in ¢ and h, for small enough #)

const, [X+h h
Ji+Js< E—hl {fi{fJ"'g:f?}}df:O(m)

Xg=h

-

1 = V2
xy=h pxg+h
7y < const. [ [ qgi,ﬁr}ﬂd}‘zd}'l — o(h)
Xl

xp—k Jy Yoo

2V — Xy

; L1 — X

ekt Jeys Fi) = Foln)® e F.(y2) = E.(n) F{n}
x g1, dyy dy;

< const. {1 + (1)} g(x;, x5)
zf¥a— xu)

xpHh [ ag—h (T Xp+h [ o+ '“-':’2 (-']L;jj
[+ [ AL anan
xg—k Jxg—E ¥:=Fi xp—h Jxp+h =N
1
_ 2 Lrdid
= const. g{xp, xp ) {1 + 0(1)} J_I (1) h I4:1~g(m +h)dI
it B, Y] log.&lj w20 de{1 + o(1)}
1
=Ah|logh| {1 +o(l)}

say,
Now the van Trees inequality, just as in Theorem 2, gives

-1
V)= [nA,hl!og.‘al {1+ 0o(1}} -%)

= (? + %){nlugn]'g’"s{l +o(l)}

if we take h = (nlogn)™3. &

This optimal rate has been found by Bakker (1988) and is shown in Groeneboom and Wellner (1992)
also to be achieved by the NPMLE. A reasonably simple ad hoc estimator achieving this rate has been
constructed by L. Birgg, in fact a kind of weighted histogram estimator. The NPMLE itself can only be
computed by an iterative procedure, unlike in the first example where a simple calculation is available.

6. Semi-parametric models: asymptotic global bounds

We now use the multivariate van Trees inequality to derive asymptotic bounds for an infinite-
dimensional estimator in a semi-parametric model, i.e. we consider the estimator in its entirety
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instead of at a single point. For simplicity we consider the simple and familiar example of estimating
an unknown distribution function based on a random sample from the distribution itself. We show
that the ordinary empirical distribution function achieves a local asymptotic minimax lower bound
for the integrared mean square error of an arbitrary estimator. Such results have been established
earlier by Levit (1978) and Millar (1979). using the theory of local asymptotic normality. The
approach here, based on the elementary inequalities obtained above, can also be applied to more
elaborate examples. The difficulty will be to show that certain estimators achieve the bounds rather
than to obtain the bounds themselves.

Truncation arguments as in Section 3 can be used to turn the results into bounds on the integrated
risk of an asymptotic distribution of an estimator sequence, under uniformity and continuity
conditions (or under Hajek regularity).

Let X).....X, be independent vector observations in R with unknown distribution function F;
write X for a generic observation. Let F,, denote an arbitrary estimator of F. We study the integrated
mean square error

R,(F,. F) = nE; L,{ﬂ{x] — F(x)}u(dx),

where yu is a fixed finite measure on &°.
For x and y in B® we denote by x A v the vector containing the coordinatewise minima of the
components of x and y, while y(x) is the indicator function of the closed positive orthant in R

(x Ay} =x Ay
x(x) = 1{x; > 0 vi}.

Let F,(x) = 1/nEx(x — X;) be the empirical d.f. We have

R,(F,.F)= ]F{-\‘HI — F(x)} p(dx) = Ro(F), (17)

say.

We do not necessarily assume that F is completely unknown. However, the class of possible F
must be rich encugh if Ry(F ) is to figure as a lower bound for R,(F,. F). In order to specify exactly
w‘l;nat is a rich enough class, introduce a complete orthonormal system of functions {¢;(x)} in
L;(R"). Define functions g; by

80) = [x(x =) oi(x) u(ax) (18)
Let F be a set of distribution functions on ' endowed with the topology T induced by total
variation distance. The following assumption is now essential (Levit 1978; Millar 1979): we say that

F is rich enough if for each Fy € F and any k = 1,2, . .. there exists a sequence of functions g;;( y),
i=1,....k j=1.... and neighbourhoods C; of zero in R, such that

fim [{,(0) - (NP dR() =0, i=1...k (19)
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and for each j = 1,2,... the family of distributions F; = {F,:¢ € C;} on R’ defined by

&
)= exp(quU{_r} —m:cj) (20)

i=1

belongs to F.
Now we can state our main result (Theorem 4).

Theorem 4 If F is rich enough, then

lim lim inf sup R,(F,, F) = Ry(F,) (21)
Vi{Fs} n—x F. FeV

where the infimum is taken over all possible estimators F,. and V' | {F;} denotes the limit in the net
of shrinking neighbourhoods (with respect to the variation distance) of F.

Proof

Since R,(F,,F)= Ry(F) and this quantity is continuous in the variation distance topology,
Ry(F;) is certainly an upper bound to the left-hand side of (21). We must show that the latter also
cannot be less than Ry(Fy). Suppose Ryl Fy) > 0, since otherwise the result is trivial. Now let us
define

6(F) = [F) ot u(@x) = [3)aF ()
and for a given estimator F, we let
bu=|F0o(u@).  and 6= @ .-
Note that by Parseval’s identity

Ry(FuF)=Epn (6w — &i(F))"

The reader may also verify that for given F; and £, j, the family of distributions F..c € C; C R" is
continuous in ¢ with respect to the topology 7.

Now let ¥ be any neighbourhood of F = F;, and for any given k. j let C; be a neighbourhood of
0 € R* such that F.e V for all e € C ;- Choose a prior density A(c) with C, the support of A,
contained in C;, together satisfying the assumptions of the multivariate van Trees inequality. Then
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by the Ly-norm version (equation (10)) of the van Trees inequality
r(¥ ) = lim inf sup R,(F,, F) = lim inf sup R,(F,. F.)
n Fy FeVw n F, teC

= lim inJ Ry(Fy, F.) Me) de
" " C

k
;ﬁminrj Ern {bu— Gi(F)P M) de
n FlJc ¢ i

A i
H(L:Z 5 Ale) dr:‘)
k

=1

L n j.rzvar;rgu{l’ YA(e)de +.’Z'[Ju.}

]
- da(F.) -
(L; Bc; Ale)de
: 3 (22)
Jr: ; varg g;;(X ) Ale) de

provided the denominator of the final term is non-zero. We have used here the fact from exponential
family theory that the b(c) in (20) satisfy the relations

b )
o, (O =Ergy(X), i=l...k
Observe next that the functions g;(y) in (I18) are uniformly bounded (by ( W(RN'A),
and

B—ﬂ—aéffj s Jg:[}‘]{g;,-{_v} - Erg,;(X)) dF,

= covp (g:/(X ). g:;(X )
and hence according to (19) and (20)
d¢i(Fe)

PR g s )

lim lim varg g;;(X ) = varg g,(X)

J=og e—0

Thus letting C | {0} in (22) and then j — oc we find

k
HV ) = Zvar;ug,-{_r}

=1
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and, since & 15 arbitrary, again using Parseval's identity

~

a0
f(V)> Y varrg(X)
=1

.im{ yY dFRy(y) - i( jg.-{ y) dFy( J'J)_
fm] i=1

T

= [ [t - aut ara() - 3 outroy

]

= [Fo(x) dput) —jfu{xfdmxa = Ro{Fo)

concluding the proof of the theorem. B

The approach we have just given works, without any changes being needed at all, for well-
behaved semi-parametric models. Suppose, for instance, we still want to estimate a distribution
function, which is not the distribution of the data but an infinite-dimensional parameter of its
distribution. Considering integrated mean square error, the problem is converted into estimating
a sequence of real functionals of F and then by truncation into estimating just a finite number
of real functionals. We next consider the finite-dimensional submodel whose score functions are
exactly the optimal influence functions for these functionals (the projections into the tangent
space of the gradients of the functionals). As in our calculations above, the denominator in the
final line of (22) is the same, when squared, as the numerator, giving as the lower bound the sum
of the lower bounds for each functional separately. This lower bound corresponds to the
integrated mean square error of the optimal limiting distribution found in the convolution or local
asymptotic minimax theorems. Indeed, denoting the projected or canonical gradients by g;(x),
) k. the general theory says that provided JF is rich enough, zk jvargg;(X ) is the required
lower bound for estimating the finite number of functionals with respect to sum of squared error
losses.

One could apply this to the usual random censorship model. Weits (1991) shows that » times the
mean square error of the Kaplan—Meier estimator is equal to the mean square error of its limiting
distribution. up to an error of order 1/m, provided one stays away from the right tail of the
distribution of the data; this limiting distribution is known to be optimal in the sense just mentioned.,
Therefore, the estimator has asymptotically optimal integrated mean square error with respect to
measures p with support strictly inside the support of the observations. It would be nice to extend
this to a result on the whole line under appropriate integrability conditions. We believe Weits's
striking results on second-order properties of the Kaplan—Meier estimator could possibly have been
obtained more easily by exploiting the van Trees inequality.
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