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We consider the asymptotic behaviour of posterior distributions based on continuous observations from

a Brownian semimartingale model. We present a general result that bounds the posterior rate of

convergence in terms of the complexity of the model and the amount of prior mass given to balls

centred around the true parameter. This result is illustrated for three special cases of the model: the

Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some

examples for specific priors are discussed as well.
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1. Introduction

Suppose that we observe the stochastic process X n ¼ (X n
t , 0 < t < Tn) defined through the

stochastic differential equation (SDE)

dX n
t ¼ �Ł,n(t, X n)dt þ � n(t, X n)dBn

t , t 2 [0, Tn], X n
0 ¼ X0, (1:1)

where Bn is a standard Brownian motion. Based on a realization of X n, we wish to make

inference on the parameter Ł that determines the shape of the ‘drift coefficient’ �Ł,n. The
‘diffusion coefficient’ � n is considered known, as it can be determined without error from

continuous observation of the process. The natural number n 2 N serves as an indexing

parameter for our asymptotic set-up, in which n tends to infinity. The endpoint Tn of the

observational interval may be fixed or tend to infinity. This Brownian semimartingale model

contains the diffusion model as the special case in which �Ł,n and � n are measurable

functions of the process X n
t at time t only.

To set this up more formally, we assume that �Ł,n and � n are measurable functions that

satisfy regularity conditions that ensure that the SDE (1.1) has a unique weak solution. We

then let PŁ,n be the induced distribution on the Borel sets of the space C[0, Tn] of

continuous functions on [0, Tn] of a solution X n ¼ (X n
t , 0 < t < Tn), and consider the

statistical experiment (PŁ,n : Ł 2 ¨n) for a given parameter set ¨n. We are mostly
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interested in the case where the parameter set ¨n is infinite-dimensional, but our results

also apply to parametric models.

The Bayesian approach to statistical inference consists of putting a prior distribution —n

on the parameter set ¨n and making inference based on the posterior distribution —n(�jX n).

The latter is the conditional distribution of the parameter Ł given the observation X n if the

measures PŁ,n are considered the conditional distributions of X n given the parameter Ł. In
this paper we adopt the Bayesian framework to define the posterior distribution, but study

the properties of the posterior distribution from a frequentist point of view. This entails that

we assume that the observation X n is generated from a measure PŁ0,n in the model, where

the value Ł0 is referred to as the ‘true value’ of the parameter.

We are interested in the asymptotic behaviour of the posterior distributions, as n ! 1. If

the priors —n do not exclude Ł0 as a possible value of Ł, then we may expect posterior

consistency, meaning that the sequence of random measures —n(�jX n) converges weakly to

the degenerate measure at Ł0. In this paper we are interested in the rate of this convergence,

measured by the size of the largest shrinking balls around Ł0 that contain ‘most’ of the

posterior probability. Our main result is a characterization of this rate through a measure of

the amount of prior mass near Ł0 and a measure of the complexity of the parameter set ¨n

relative to the SDE model.

Earlier work on versions of this problem includes Ibragimov and Has’minskii (1981),

Kutoyants (1994, 2004), Zhao (2000), Shen and Wasserman (2001) and Ghosal and van der

Vaart (2004). The last paper relates the problem to general Bayesian inference, and we refer

to this paper for further references and a overview of the literature on Bayesian asymptotics.

Ghosh and Ramamoorthi (2003) give many examples of prior distributions in nonparametric

models, and discuss consistency. Results on non-Bayesian methods can be found in Prakasa

Rao (1999) and Kutoyants (1984).

Versions of the parametric Brownian semimartingale model, in which the process �Ł,n

depends smoothly on a Euclidean parameter, have been studied in detail. The Gaussian

white noise model, in which the drift coefficient is a deterministic function of time, the

diffusion coefficient is a sequence of constants tending to zero and the observational

interval is fixed, is well understood, also from a Bayesian point of view. Results on

parametric Bayesian estimation are summarized in Ibragimov and Has’minskii (1981:

Theorem II.5.1); they prove asymptotic normality and efficiency for Bayes estimators

under various loss functions under conditions that imply local asymptotic normality of the

statistical models. The rate of convergence in this case is equal to the size of the drift

constants � n. The perturbed dynamical system is an extension of the white noise model,

which allows the drift coefficient to depend on the solution X n
t in addition to t. This

model is treated in depth in the book by Kutoyants (1994). Under natural regularity

conditions these models are locally asymptotically normal, and Bayes estimators typically

converge at rate � n and are asymptotically normal (Kutoyants 1994: Theorem 2.2.3).

Results on non-standard situations, such as model misspecification or non-regular

parametrizations, can be found in that book too. In the ergodic diffusion model both

the drift and diffusion coefficients may depend on the solution X n
t , but they are assumed

to have a form independent of n. The asymptotics here is on the endpoint Tn of the

observational interval, which tends to infinity. Again these models are locally
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asymptotically normal under natural conditions, with scaling rate
ffiffiffiffiffiffi
Tn

p
. Results on these

models are derived in Kutoyants (2004).

Much less is known about the nonparametric Brownian semimartingale model, except for

the very special case of the Gaussian white noise model. The Gaussian white noise model

has been studied from many perspectives, and in the Bayesian set-up with many priors (see

Zhao 2000; Shen and Wasserman 2001). It was put in a more general framework of models

that are not independently and identically distributed (i.i.d.) in Ghosal and van der Vaart

(2004: Section 5). Unfortunately, the general Brownian semimartingale model is much more

complicated. The main focus of the present paper is on this general model.

A key difficulty of the general Brownian semimartingale model is that the Hellinger

semimetric is, in general, a random process rather than a true semimetric. The square of the

Hellinger semimetric hn is given by

h2n(Ł, Ł0) ¼
ðTn

0

�Ł,n � �Ł0,n

� n

� �2

(t, X n)dt:

It is the natural semimetric to use, as the log-likelihood process (with respect to PŁ0,n) of the

model can be written as M � 1
2
[M] for a certain continuous local martingale M and

the squared Hellinger semimetric h2n(Ł, Ł0) ¼ [M]Tn
is the quadratic variation of this martin-

gale M .

The best possible rate of convergence is of course determined by the likelihood process

of the model, and in a more technical way by the existence of appropriate tests of the true

parameter versus balls of alternatives. The martingale representation of the log-likelihood

and Bernstein’s inequality allow such tests to be constructed relative to the Hellinger

semimetric. Unfortunately, the randomness of this semimetric causes complications that

preclude straightforward extension of the Ghosal and van der Vaart (2004) result and

motivate the present paper. In part we follow ideas from van Zanten (2005), who considers

convergence rates for the maximum likelihood estimator of the Brownian semimartingale

model.

Our main theorem (Theorem 2.1) bounds the posterior rate of convergence in terms of

the complexity of the model and the amount of prior mass given to balls centred around the

true parameter. In the statement of the theorem, the distance from Ł to the true parameter

Ł0 is measured by the Hellinger semimetric, but it is often possible to translate this result in

terms of a deterministic semimetric dn. We illustrate the usefulness of our main result by

three classes of examples of SDEs: the Gaussian white noise model, the perturbed

dynamical system and the ergodic diffusion model. Explicit calculations using a variety of

priors are included. Priors based on series expansions yield a rate of posterior convergence

that is within the minimax rate of estimation up to a logarithmic factor provided the tuning

constants (truncation level, prior spread of the coefficients) satisfy broad inequalities. A

natural prior on montone functions based on the Dirichlet process is also nearly optimal,

without the need for tuning. These results indicate that certain natural priors may work well,

although ‘most’ priors can be expected to give suboptimal results. The logarithmic factors

in the results mentioned may be due to our method of proof. We also include an example

of an artificial prior that attains the minimax rate.
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In the examples, we treat in detail the case where the random Hellinger metric converges

at a deterministic rate to a non-random limiting metric. The latter is not crucial for our

results to be applicable, however. In certain null recurrent or transient diffusion models the

Hellinger metric converges, at a deterministic rate, to a random limit (see, for instance,

Dietz and Kutoyants 2003; Höpfner and Kutoyants 2003; Loukianova and Loukianov 2005).

Our general result applies in such situations as well – see also van Zanten (2005: Section

5.4) for the maximum likelihood estimator case.

The organization of the paper is as follows. In Section 2 we present our main result. We

specialize this result to three classes of SDEs in Section 3. The proof of the main result and

technical complements are deferred to Section 4.

2. Main result

For n 2 N, given numbers Tn . 0, and each Ł in an arbitrary set ¨n, let �Ł,n and � n be

measurable and non-anticipative functions on [0, Tn]3 C[0, Tn] such that the SDE (1.1)

possesses a unique weak solution X n ¼ (X n
t , t 2 [0, Tn]). Here Bn is a standard Brownian

motion. Denote the distribution of the process X n on the Borel sets C n of the space

C[0, Tn] by PŁ,n. The parameter value Ł0 2 ¨n, which may also depend on n, will refer to

the ‘true value’ of the parameter: throughout we consider the distribution of X n under the

assumption that X n satisfies the SDE with Ł0 instead of Ł.
Under regularity conditions the measures PŁ,n are equivalent and possess densities

pŁ,n(X n) ¼ exp

ðTn

0

�Ł,n

(� n)2

� �
(t, X n)dX n

t �
1

2

ðTn

0

�Ł,n

� n

� �2

(t, X n)dt

 !
(2:1)

relative to a common dominating measure. The following conditions are necessary and

sufficient for this to be true, and are assumed throughout the paper:

• There exists a standard filtered probability space (�n, F n, (F n
t , t > 0), Prn) and a

parameter value Ł0 on which the SDE (1.1) with Ł0 substituted for Ł possesses a

solution X n ¼ (X n
t , t 2 [0, Tn]).

• This solution satisfies
Ð Tn

0
(�Ł,n=� n)2(t, X n)dt , 1 Prn-almost surely and

E n exp

ðTn

0

�Ł,n � �Ł0,n

� n

� �
(t, X n)dBn

t �
1

2

ðTn

0

�Ł,n � �Ł0,n

� n

� �2

(t, X n)dt

 !
¼ 1:

The necessity of these conditions is clear (note that the exponential in the second

condition is the quotient pŁ,n=pŁ0,n(X n)), and the sufficiency follows readily with the help

of Girsanov’s theorem. There are several approaches in the literature to verifying the first

condition under more concrete conditions on the drift and diffusions functions. The second

condition is generally hardest to verify. Liptser and Shiryayev (1977) discuss this issue at

length and provide elementary sufficient conditions. We defer a discussion of their results to

the special examples in the next section.

We assume that the parameter set ¨n is equipped with some � -field Bn and that, for all
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n, the map (x, Ł) 7! pŁ,n(x) is jointly measurable relative to C n 3 Bn. Then, given a prior

distribution —n, a probability distribution on (¨n, Bn), the posterior distribution can be

defined by

—n(BjX n) ¼
Ð
B
pŁ,n(X n)d—n(Ł)Ð

¨ n pŁ,n(X n)d—n(Ł)
, B 2 Bn: (2:2)

Because the measures PŁ,n are equivalent (by assumption), the expression on the right is well

defined with probability one and, apart from definition on a null set, gives a Markov kernel.

In the Bayesian set-up it is the conditional distribution of the parameter given X n, but in this

paper we take (2.2) as a definition of the kernel on the left, and study its behaviour under the

measures PŁ0,n.

Under mild conditions —n(BjX n) ! 1 in PŁ0,n-probability as n ! 1 for any fixed

‘neighbourhood’ B of Ł0. We are interested in the maximal rate at which we can shrink

balls around Ł0, while still capturing almost all posterior mass. This can be formalized

using a semimetric dn on the parameter set ¨n by saying that the sequence of posterior

distributions converges to Ł0 (at least) at rate �n if for every sequence Mn ! 1,

PŁ0,n—n(Ł 2 ¨n : dn(Ł, Ł0) > Mn�njX n) ! 0:

The posterior rate of convergence reveals the size of Bayesian credibility regions (central

regions of mass 1� Æ in the posterior distribution). It also implies the same rate for a variety

of derived point estimators, such as the posterior mode and (under some conditions) the

posterior mean.

Our main result is formulated in terms of three semimetrics hn, dn and dn on the

parameter set ¨n. The first is the Hellinger semimetric hn given by

h2n(Ł, ł) :¼
ðTn

0

�Ł,n � �ł,n

� n

� �2

(t, X n)dt, Ł, ł 2 ¨: (2:3)

The Hellinger semimetric is random, unlike the other two semimetrics dn and dn we shall

employ, which are ordinary semimetrics. They are related to the Hellinger semimetric through

the following assumption. Let �n be the desired rate of convergence, a sequence of positive

numbers.

Assumption 2.1. For every ª . 0 there exist positive constants c ¼ cª, C ¼ Cª and a non-

negative constant D ¼ Dª such that

lim inf
n!1

PŁ0,n(cd n(Ł, Ł0) < hn(Ł, Ł0), 8Ł 2 ¨n with hn(Ł, Ł0) > D�n,

and hn(Ł, ł) < Cdn(Ł, ł), 8Ł, ł 2 ¨n with hn(Ł, ł) > D�n) > 1� ª:

The �-covering number of a set A for a semimetric r, denoted by N (�, A, r), is defined

as the minimal number of r-balls of radius � needed to cover the set A. The logarithm of

the covering number is referred to as the entropy.

Our main theorem poses two conditions: the first (2.4), measures the complexity of the
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model by the so-called local Kolmogorov entropy or Le Cam dimension; the second, (2.5),

requires that the prior puts sufficient mass close to the true parameter value Ł0. Denote by

Bn(Ł0, �) and Bn(Ł0, �) the balls of dn- and dn-radius � around Ł0.

Theorem 2.1. Let �n be a sequence of positive numbers that is bounded away from zero.

Suppose Assumption 2.1 is satisfied by the sequence �n and that, for every a . 0, there exists

a constant g(a) , 1 such that

sup
�.�n

log N (a�, Bn(Ł0, �), dn) < �2n g(a): (2:4)

Furthermore, assume that for every � . 0 there exists an integer J such that, for j > J,

—n(Bn(Ł0, j�n))

—n(Bn(Ł0, �n))
< e��

2
n j

2

: (2:5)

Then for every Mn ! 1, we have that

PŁ0,n—n(Ł 2 ¨n : hn(Ł, Ł0) > Mn�njX n) ! 0: (2:6)

If infª.0cª=Cª > a0 . 0, then the entropy condition (2.4) needs to hold for a ¼ a0=8 only. If

infª.0cª > c0 . 0, then the prior mass condition (2.5) needs to hold for � ¼ c20=9216 only.

The proof of the theorem is deferred to Section 4. The assertion of the theorem remains

true if hn in (2.6) is replaced by the lower semimetric dn.

In our examples the semimetrics satisfy dn ¼ cnd and dn ¼ cnd, for a sequence of

positive numbers cn and fixed semimetrics d and d. Scaling properties of entropies and

neighbourhoods then yield a rate of convergence �n ¼ cn�n (with respect to dn) for �n
satisfying the bounds

sup
�.�n

log N (a�, B(Ł0, �), d) < c2n�
2
n g(a): (2:7)

—n(B(Ł0, j�n))

—n(B(Ł0, �n))
< e�c

2
n�

2
nj
2

: (2:8)

Here B(Ł0, �) and B(Ł0, �) are the balls of radius � around Ł0 for the fixed semimetrics d and

d, respectively. These two equations replace (2.4) and (2.5) in the preceding theorem. It is

then still assumed that Assumption 2.1 holds, with �n ¼ cn�n, dn ¼ cnd and dn ¼ cnd.

The prior mass conditions (2.5) and (2.8) concern the relative amount of prior mass close

to Ł0 (denominator) and farther from Ł0 (numerator). Because the numerator is trivially

bounded above by 1, (2.5) is implied by the condition

—n(Bn(Ł0, �n)) > e��2n : (2:9)

This is a lower bound on the prior mass close to Ł0.
The entropy condition (2.4) is sometimes restrictive, because it treats the parameter set in

a uniform way, irrespective of the prior mass. The presence of a subset of parameters with

large entropy but small prior mass typically does not affect the rate of convergence. The

following lemma allows such situations to be dealt with. We first remark that the preceding
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theorem remains true if the prior measures —n are supported on larger parameter sets

¨n � ¨n, where the balls Bn(Ł0, �) ¼ fŁ 2 ¨n : dn(Ł, Ł0) < �g are still defined to be

subsets of the smaller set ¨n and the assertion (2.6) remains unchanged. Thus the entropy

(2.4) is measured only within ¨n, but the assertion also only concerns the posterior within

¨n. (The posterior distribution is now defined by (2.2) with ¨n replaced by ¨n, for

measurable sets B � ¨n.) The following lemma, whose proof is given in Section 4.4,

allows this to be complemented with a result for parameter values in ¨nn¨n. It shows that

sets ¨nn¨n with very small prior measure automatically have negligible posterior measure,

and hence can be ignored.

Lemma 2.2. If, for every ª . 0,

—n(¨nn¨n)

—n(Bn(Ł0, �n))
¼ o(e�(Cª_Dª)

2�2n), (2:10)

then

PŁ0,n[—n(¨nn¨njX n)] ! 0, n ! 1:

The proof is given in Section 4.4.

3. Special cases

In this section we consider a number of special cases of the Brownian semimartingale

model. We give examples of priors and derive the rate of convergence according to our

main theorem.

3.1. Signal in white noise

In the signal in white noise model we observe the process X n satisfying

dX n
t ¼ Ł0(t)dt þ � ndBt, t < T , X n

0 ¼ x0:

We observe the process X n up to a fixed endpoint T . The ‘noise level’ � n is a deterministic

sequence of positive numbers that tends to zero as n ! 1. The parameter Ł0 is a

deterministic function that belongs to a subset ¨ of L2[0, T ]. Write k � k for the L2[0, T ]

norm.

In this case the Hellinger semimetric is non-random and given by

hn(Ł, ł) ¼
1

� n

kŁ� łk:

It follows that Assumption 2.1 holds with ª ¼ 0, c ¼ C ¼ 1, D ¼ 0 and dn ¼ dn ¼ hn.

Theorem 2.1 then yields the following theorem.
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Theorem 3.1. Let �n be a sequence of positive numbers such that �n=� n is bounded away

from zero. Suppose that there exists a constant K , 1 such that

sup
�.�n

log N (�=8, fŁ 2 ¨n : kŁ� Ł0k , �g, k � k) < K(�n=� n)
2:

and assume that there exists an integer J such that, for j > J,

—n(Ł 2 ¨n : kŁ� Ł0k , j�n)

—n(Ł 2 ¨n : kŁ� Ł0k , �n)
< e j

2(�n=� n)
2=9216: (3:1)

Then for any sequence Mn ! 1 we have

PŁ0,n—n(Ł 2 ¨n : kŁ� Ł0k > Mn�njX n) ! 0: (3:2)

For � n ¼ n�1=2, we recover Theorem 6 in Ghosal and van der Vaart (2004), who also give

examples of priors. Note that the conditions are purely in terms of the L2 distance.

3.2. Perturbed dynamical system

The ‘perturbed dynamical system’ is described by the SDE

dX n
t ¼ Ł0(X

n
t )dt þ � n dB

n
t , t < T , X n

0 ¼ x0:

The ‘noise level’ � n is a sequence of positive constants that tends to zero. We observe the

process X n up to a fixed time T . The parameter Ł0 belongs to a class of functions ¨ on the

real line.

Under natural conditions, as n ! 1 the processes X n will tend to the solution t 7! xt of

the unperturbed ordinary differential equation (ODE)

dxt ¼ Ł0(xt)dt:

For instance, if Ł0 is Lipschitz, then the Gronwall inequality (Karatzas and Shreve 1991:

287–288) implies that

sup
0< t<T

jX n
t � xtj ¼ OPŁ0 ,n(� n):

It follows that the process X n will with probability tending to one take its values in a

neighbourhood of the range of the deterministic function t 7! xt, and hence in a compact set.

The nature of the functions Ł in the parameter set ¨ therefore matters only through their

restrictions to a compact set, and the semimetrics and entropies may be interpreted

accordingly.

The convergence of the processes X n is also the key to finding appropriate semimetrics

dn and dn. The Hellinger semimetric hn is given by

hn(Ł, ł) ¼
1

� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT
0

(Ł(X n
t )� ł(X n

t ))
2 dt

s
:

The convergence of X n to the solution t 7! xt of the corresponding ODE suggests that
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� 2
nh

2
n(Ł, Ł0) ! d2(Ł, Ł0),

for

d(Ł, Ł0) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT
0

(Ł(xt)� Ł0(xt))
2 dt

s
, (3:3)

We choose (1=� n) times the semimetric d as both the lower semimetric dn and upper

semimetric dn in the application of our main theorem. Typically, the solution of the ODE will

be sufficiently regular to ensure that the semimetric d is equivalent to the L2 semimetric on

the range fxt : t 2 [0, T ]g of this solution. Of course, the semimetric d is always bounded

above by the uniform norm on a neighbourhood of the range fxt : t 2 [0, T ]g of the solution

to the ODE, and hence we may use the uniform metric as well.

That the approximation d=� n of hn satisfies Assumption 2.1 is made precise under a

Lipschitz condition in the following theorem.

Theorem 3.2. Let �n be a sequence of positive numbers such that �n=� n is bounded away

from zero. Assume that

sup
Ł2¨

sup
x

jŁ(x)j , 1, sup
Ł2¨

sup
x 6¼ y

jŁ(x)� Ł(y)j
jx� yj , 1: (3:4)

Suppose there exists a constant K , 1 such that

sup
�.� n

log N (�=24, fŁ 2 ¨n : d(Ł, Ł0) , �g, d) < K(�n=� n)
2, (3:5)

where d is given in (3.3). Furthermore, assume there exists an integer J such that, for j > J,

—n(Ł 2 ¨n : d(Ł, Ł0) , j�n)

—n(Ł 2 ¨n : d(Ł, Ł0) , �n)
< e�

2
n j

2=(20 736� 2
n): (3:6)

Then for every Mn ! 1, we have, as M n ! 1,

PŁ0,n—n(Ł ! ¨n : d(Ł, Ł0) > Mn�njX n) ! 0: (3:7)

Proof. Under the Lipschitz condition (3.4) the Gronwall inequality mentioned previously

shows that

sup
Ł,ł2¨

j� n hn(Ł, ł)� d(Ł, ł)j ¼ OPŁ0 ,n(� n) (3:8)

(see the proof of Proposition 5.2 in van Zanten 2005). Using Lemma 4.3 from the appendix

with � ¼ 1
2
, we see that Assumption 2.1 is fulfilled for c ¼ 2

3
, C ¼ 2 and dn ¼ dn ¼ (1=� n)d.

The theorem now follows from Theorem 2.1. h
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3.2.1. Discrete priors

The current standard for Æ-regular functions on an interval [�M , M] � R is the Besov

space BÆ
p,1 of functions Ł : [�M , M] ! R with

kŁkÆp,1 :¼ kŁk p þ sup
t.0

1

tÆ
sup

0,h, t

k˜Æ
hŁk p , 1:

Here k � k p is the Lp norm with respect to Lebesgue measure, Æ is an integer strictly bigger

than Æ, and ˜Æ
h is the Æth difference operator, defined recursively by ˜r

h ¼ ˜r�1
h ˜h and

˜hŁ(x) ¼ Ł(xþ h)� Ł(x) (Devore and Lorentz 1993). This Besov space contains in

particular all functions that are Æ times differentiable with bounded Æth derivative. See

also Definition 9.2 (p. 104) and Corollary 9.1 (p. 123) in Härdle et al. (1998).

For p . 1=Æ the entropy of the unit ball of the Besov space BÆ
p,1 for the uniform norm

is of the order (1=�)1=Æ (Birgé and Massart 2000; Kerkyacharian and Picard 2004).

We choose a multiple of this unit ball as parameter set ¨, and define a prior —n by

choosing for given numbers �n . 0 a minimal �n=2-net over ¨ for the uniform norm and

defining —n to be the discrete uniform measure on this finite set of functions. If N n is the

number of points in the support of this prior, then log N n is of order (1=�n)1=Æ. A uniform

neighbourhood of radius �n around some Ł0 2 ¨ contains at least one point of the support,

and hence has prior mass at least 1=N n.

It follows that the entropy and prior mass conditions (3.5) and (3.6) are satisfied if

(1=�n)
1=Æ < K(�n=� n)

2,

exp(�(1=�n)
1=Æ) > e��2n=�

2
n :

(Bound the numerator of (3.6) by one.) This is satisfied for �n ¼ � 2Æ=(2Æþ1)
n . If the parameters

are also uniformly Lipschitz, then the rate of convergence relative to the semimetrics � n hn or

d is � 2Æ=(2Æþ1)
n .

3.2.2. Priors based on wavelet expansions

Consider as parameter space ¨ the set of all functions Ł : [�M , M] ! R with a bounded

Æth derivative, for some given natural number Æ. This parameter set is contained in the

Besov space BÆ
11 and therefore we can represent every parameter Ł in a suitable

orthonormal wavelet basis (ł j,k : j 2 N, k ¼ 1, . . . , 2 j) in the form

Ł(x) ¼
X1
j¼1

X2 j

k¼1

Ł j,kł j,k(x),

where the Fourier coefficients Ł j,k satisfy

kŁkÆ1,1 :¼ sup
j

2 jÆ2 j=2 max
k

jŁ j,k j , 1:

A prior on ¨ can be defined structurally as
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Ł¼d
XJ
j¼1

X2 j

k¼1

� j Z j,kł j,k ,

where J ¼ J n is chosen dependent on n at a rate to be determined later, � j are constants, and

(Z j,k : j 2 N, k ¼ 1, . . . , 2 j) are i.i.d. standard normal random variables.

We shall show that if 2J n � ��2=(2Æþ1)
n and � j ¼ 2� j=2, then the Bayesian rate of

convergence relative to the semimetrics hn=� n or d is equal to � 2Æ=(2Æþ1)
n up to a

logarithmic factor. The logarithmic factor is possibly a defect from our proof. The rate

� 2Æ=(2Æþ1)
n is known to be the sharp estimation rate for non-Bayesian procedures, and hence

also cannot be improved in the present context.

We derive the rate from Theorem 3.2, setting ¨n equal to the set of functions

Ł ¼
PJ

j¼1

P
kŁ j,kł j,k with coefficients Ł j,k bounded absolutely by M j,n :¼ � j2

J=2an for

k ¼ 1, . . . , 2 j and fang a sequence of positive numbers. Then

—n(¨n¨n) ¼ Pr(9 j, k : j� j Z j,k j . M j,n) <
XJ
j¼1

2 j2(1��(M j,n=� j))

<
XJ
j¼1

2 jþ1e�M2
j,n=2�

2
j < 2Jþ2e�2 J a2n=2:

We may then use Lemma 2.2 to show that (by an appropriate choice of the numbers fang)
the posterior mass within ¨n¨n is negligible, and concentrate on the posterior mass inside

¨n.

The uniform norm of a function Ł in the Besov space BÆ
11 is equivalent to the norm

kŁk1 ¼
X1
j¼1

2 j=2 max
k

jŁ j,k j

on the Fourier coefficients of the function. If the true parameter Ł0 is contained in BÆ
11, then

the uniform distance between Ł0 and its projection ŁJ
0 :¼

PJ
j¼1

P
kŁ0; j,kł j,k on the space

spanned by the wavelets of resolution up to J satisfies

kŁ0 � ŁJ
0 k1 ¼

X
j.J

2 j=2 max
k

jŁ0; j,k j <
X
j.J

kŁ0kÆ112� jÆ < 2�JÆkŁ0kÆ11:

See also Section 9.5 of Härdle et al. (1998), in particular formulae (9.34) and (9.35). By the

triangle inequality it follows that for 2�JÆkŁ0kÆ11 , �n,
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—n(Ł 2 ¨n : kŁ� Ł0k1 < 2�n) > Pr
XJ
j¼1

2 j=2 max
k

j� j Z j,k � Ł0; j,k j < �n

 !

>
YJ
j¼1

Pr 2 j=2 max
k

j� j Z j,k � Ł0; j,k j <
�n
J

� �

>
YJ
j¼1

Y
k

e�Ł20; j, k=�
2
j
1ffiffiffi
2

p Pr
1ffiffiffi
2

p jZ j,k j <
�n

J2 j=2� j

� �� �
:

In the last step we use the fact that the N (Ł, 1) density is bounded below by e�Ł2=
ffiffiffi
2

p
times

the N (0, 1
2
) density, so that Pr(jZ � Łj < �) > (e�Ł2=

ffiffiffi
2

p
)Pr(jZj=

ffiffiffi
2

p
< �). For �n=(J2 j=2� j)

bounded above, the right-hand side is bounded below by, for some positive constant C,

C2 J

exp �
XJ
j¼1

X
k

Ł20; j,k

�2j

 !YJ
j¼1

�n
J2 j=2� j

� �2 j

> C2 J

exp �
XJ
j¼1

2�2 jÆ

�2j
(kŁ0kÆ1,1)2

 !
exp �

XJ
j¼1

2 j log
J2 j=2� j

�n

� � !
:

We shall use these estimates to verify the prior mass condition (3.6).

To compute the entropy of ¨n we choose, for each fixed j, a minimal 2( j=2�J )M j,n�=an-

net over the interval [�M j,n, M j,n]
2 j � R2 j

for the maximum norm on R2 j

, and form a net

over ¨n by forming arrays Ł ¼ (Ł j,k) with the coefficients (Ł j,1, . . . , Ł j,2 j ) at each level

j 2 f1, . . . , Jg chosen equal to an arbitrary element of the net over [�M j,n, M j,n]
2 j

, and

Ł j,k ¼ 0 for j . J. The logarithm of the total number of points Ł is bounded by

log
YJ
j¼1

3M j,nan

2( j=2�J )M j,n�

� �2 j

<
XJ
j¼1

2 j log
3an

�
þ (J � j=2)

� �
( 2J log

1

�
þ log an þ J

� �
:

The uniform distance of an arbitrary point Ł 2 ¨n to the net is bounded above by

XJ
j¼1

2 j=22( j=2�J )M j,n�=an ¼ �2�J=2
XJ
j¼1

2 j� j:

If the right-hand side is bounded by �, then it follows that the �-entropy of ¨n for the

uniform norm is bounded above by 2J (log (1=�)þ J ).

Combining the foregoing with Lemma 2.2 and Theorem 3.2, we see that the rate of

convergence relative to the semimetrics � nhn or d is equal to �n if the following

inequalities are satisfied:
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XJ
j¼1

2 j log
J2 j=2� j

�n

� �
þ
XJ
j¼1

2�2 jÆ

�2j
<

�2n
� 2

n

,

�n
J2 j=2� j

( 1,

2�JÆ ( �n,

2J log
1

�n
þ log an þ J

� �
< K

�2n
� 2

n

,

2�J=2
XJ
j¼1

2 j� j ( 1,

where ( denotes inequality up to a fixed positive multiplicative constant.

The first three conditions ensure that the prior-mass condition is satisfied, whereas the

fourth and the fifth conditions take care of the entropy condition. It can be verified that the

above inequalities are satisfied for 2J � ��2=(2Æþ1)
n and �n ¼ � 2Æ=(2Æþ1)

n log(1=� n) if

an ¼ (log � n)
2.

3.3. Ergodic diffusion

In this subsection we consider the SDE

dX t ¼ Ł0(X t)dt þ � (X t)dBt, t < Tn,

for a given measurable function � . Under regularity conditions (see Karatzas and Shreve

1991: Section 5.5), this equation generates a strong Markov process on an interval I � R,

with scale function sŁ0 given by

sŁ0 (x) ¼
ðx
x0

exp �2

ð y

x0

Ł0(z)

� 2(z)
dz

� �
dy

(x0 is an arbitrary, but fixed point in the state space) and speed measure

mŁ0 (dx) ¼
dx

s9Ł0 (x)�
2(x)

:

We assume that mŁ0 has finite total mass, mŁ0 (I) , 1. Then the diffusion is ergodic, and the

normalized speed measure �0 ¼ mŁ0=mŁ0 (I) is the unique invariant probability measure. For

simplicity, the initial law of the diffusion is supposed to be degenerate at some point x 2 I .

The endpoint Tn of the observation interval is assumed to tend to infinity as n ! 1. The

parameter set ¨ is a collection of real functions on the interval I .

In this model the square of the Hellinger semimetric hn in (2.3) is given by

h2n(Ł, ł) ¼
ðTn

0

Ł(X t)� ł(X t)

� (X t)

� �2

dt:
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Using the occupation time formula
Ð t
0
f (X s)ds ¼

Ð
I
f l tdm0, we can rewrite this semimetric

in terms of the diffusion local time (l t(x), t > 0, x 2 I) of the process X relative to its speed

measure mŁ0 (see Itô and McKean 1965) as

h2n(Ł, ł) ¼
ð
I

Ł(x)� ł(x)

� (x)

� �2

lTn
(x)dmŁ0 (x):

An immediate consequence is that for any interval I� � I ,

inf
x2 I�

lTn
(x)

�����Ł� ł

�
1 I�

�����
2

L2(mŁ0 )

< h2n(Ł, ł) < sup
x2 I

lTn
(x)

�����Ł� ł

�

�����
2

L2(mŁ0 )

: (3:9)

Because the infimum and supremum over the scaled local time (1=Tn)lTn
are appropriately

bounded away from zero and infinity (see the proof below), we can choose
ffiffiffiffiffiffi
Tn

p
times the L2

metrics appearing on the left and right of this display as the semimetrics dn and dn in the

application of our main theorem.

This leads to the following theorem.

Theorem 3.3. Let �n be a sequence of positive numbers such that Tn�2n is bounded away from

zero. Let I� be a compact subinterval of I. Suppose that for every a . 0 there exists a

constant K , 1 such that

sup
�.� n

log N (a�, fŁ 2 ¨ : k(Ł� Ł0)1 I�=�kL2(�0) , �g, L2(�0)) < KTn�
2
n: (3:10)

Furthermore, assume that for every � . 0 there is a constant J such that for j > J,

—n(Ł 2 ¨ : k(Ł� Ł0)1 I�=�kL2(�0) , j�n)

—n(Ł 2 ¨ : k(Ł� Ł0)=�kL2(�0) , �n)
< e�Tn�2n j

2

: (3:11)

Then for every Mn ! 1, we have that

PŁ0,n—n(Ł 2 ¨n : k(Ł� Ł0)1 I�=�kL2(�0) > Mn�njX n) ! 0: (3:12)

Proof. The assertion follows from Theorem 2.1 once it has been established that Assumption

2.1 is satisfied for dn :¼
ffiffiffiffiffiffi
Tn

p
d and dn :¼

ffiffiffiffiffiffi
Tn

p
d, where d and d are the L2 metrics appearing

on the left and right of (3.9).

Now, according to Theorems 3.1 and 3.2 of van Zanten (2003) we have, with

M ¼ mŁ0 (I), that

sup
x2 I

lTn
(x) ¼ OP(Tn),

sup
x2 I�

���� 1Tn

lTn
(x)� 1

M

����!p 0:

Hence, for ª . 0 there exists a constant C ¼ Cª . 0 such that
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PŁ0,n 1

Tn

sup
x2 I

lTn
(x) < C

� �
> 1� ª,

and we have that

PŁ0,n inf
x2 I�

1

Tn

lTn
(x) >

1

2M

� �
> PŁ0,n sup

x2 I�

���� 1Tn

lTn
(x)� 1

M

���� < 1

2M

 !
! 1:

Therefore, the events U n ¼ f1=(2M) < (1=Tn)lTn
(x) < C 8x 2 I�g have probability satisfy-

ing lim inf n!1PŁ0,n(U n) > 1� ª, and on U n we have 1=(2M)d2n < h2n < Cd 2
n for all Ł,

ł 2 ¨n. Thus Assumption 2.1 is satisfied with �n ¼ 1. h

From a modelling perspective the most interesting case is that the state space I of the

diffusion is a bounded open interval. Then we shall never observe the full state space in

finite time, as the sample paths t 7! X t are continuous functions with range strictly within

the state space. A model will specify the parameters Ł : I ! R on an interval containing

the range of the observed sample path. (Note that correspondingly the preceding theorem

gives consistency of the estimator on compact subintervals of the state space only.) These

parameters should also be specified so that the resulting diffusion equation possesses an

ergodic solution that remains within the interval. The most interesting (and simplest) case is

that the diffusion function � is strictly positive on the state space I and tends to zero at its

boundaries, so that the diffusion part of the differentials dX t become negligible as the

sample path t 7! X t approaches the boundary. The drift parameters Ł should then be

positive near the left boundary of I and negative near the right boundary, so that the

differentials dX t become positive and negative at these two boundaries, thus deflecting the

sample path near the boundaries of the state space.

Following Liptser and Shiryayev (1977), we give conditions that make the foregoing

precise and ensure that the conditions at the beginning of Section 2 are satisfied. Then, we

discuss examples of prior distributions. For simplicity of notation we take the state space

equal to the open unit interval I ¼ (0, 1). We assume that the drift function � : (0, 1) 7! R

is strictly positive and Lipschitz, with, for some numbers p, q > 0,

� (x) � x1þ p, as x # 0, � (x) � (1� x)1þq, as x " 1,

where f � g denotes that the quotient of the functions f and g tends to a strictly positive

finite constant. Then the diffusion equation

dX t ¼ Ł(X t)dt þ � (X t)dBt, t < Tn, X 0 ¼ x0

possesses a unique strong solution X for any initial value x0 2 (0, 1) for any Lipschitz

function Ł : (0, 1) ! R that is positive and bounded away from zero in a neighbourhood of 0

and negative and bounded away from zero in a neighbourhood of 1. The corresponding scale

function sŁ can be seen to satisfy sŁ(x) ! �1 as x # 0 and sŁ(x) ! 1 as x " 1 and hence

maps I onto R (Proposition 5.22(a) in Karatzas and Shreve 1991). It follows that the

diffusion X is recurrent on the state space I with speed measure mŁ that has a continuous

density, which is bounded by
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C1

x2þ2 p
e�C2x

�1�2 p

and
C1

(1� x)2þ2q
e�C3(1�x)�1�2q

near 0 and 1, respectively. Here C1, C2 and C3 are positive constants. In particular, the speed

measure mŁ is finite, so that the diffusion is positive recurrent and ergodic. We also have thatÐ 1
0
� �2(x)dmŁ(x) , 1, so thatðTn

0

W
�

� �2

(X t)dt < sup
x

LWTn
(x)

ð t
0

W
�

� �2

(x)dmŁ(x) , 1,

for any bounded function W : (0, 1) ! R. According to Theorems 7.19 and 7.20 of Liptser

and Shiryayev (1977), the induced distributions PŁ,n on the Borel sets of C[0, Tn] of the

solutions are equivalent, and their likelihood process is given by (2.1).

Thus for a diffusion function � as given we obtain a valid statistical model for the

parameter set ¨ equal to the set of Lipschitz functions Ł : [0, 1] ! R that are positive and

bounded away from zero near 0, and negative and bounded away from zero near 1. In the

following sections we discuss examples of priors on this parameter set.

3.3.1.Monotone drift functions

Let the parameter set ¨ be the set of all monotone Lipschitz functions Ł : [0, 1] ! R with

Ł(0) . 0 and Ł(1) , 0. Given a finite measure Æ with a continuous positive density on

(0, 1) and a positive integer L, we define a prior on this parameter set through the following

steps:

• (D(1=L), D(2=L)� D(1=L), . . . , D(1)� D(1� 1=L)) is Dirichlet distributed on the

unit simplex in RL with parameter vector (Æ(0, 1=L], Æ(1=L, 2=L], . . . , Æ(1� 1=L, 1)).
• D is extended to a function D : (0, 1) ! [0, 1] by setting D(0) ¼ 0, D(1) ¼ 1, and

linearly interpolating on the intervals (( j� 1)=L, j=L].
• U and V are independent random variables, both independent of D. U is uniformly

distributed on (0, 1) and V has a distribution on [0, 1) with bounded, strictly positive

density such that P(V > v) < e�ev for large values of v.

• Ł¼d VU � VD.

Thus D is a random distribution function on (0, 1) that is reflected (�D) shifted up to cross

the horizontal axis at a random location (U � D) and finally scaled by multiplication with V .

We shall now show that for any Ł0 2 ¨ the rate of convergence relative to the L2 metric

on a compact subinterval I� � I is at least T�1=3
n log Tn. The rate T�1=3

n is known to be the

minimax rate of estimation for this problem, and hence our natural prior yields a posterior

which concentrates at a nearly optimal frequentist rate.

We apply Theorem 3.3 with ¨n equal to fŁ 2 ¨ : kŁk1 < Kng for Kn � (log Tn)
2.

Because a function VU� VD decreases from VU at 0 to V (U � 1) at 1, its absolute value

can take values larger than K only if V > K. Consequently, for n sufficiently large,

—n(¨n¨n) < Pr(V > Kn) < e�eKn

:

With the help of Lemma 2.2 we shall be able to discard this part of the prior.
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The set ¨n consists of monotone functions Ł : [0, 1] ! [�Kn, Kn]. The measure Q0

defined by dQ0(x) ¼ � �2(x)d�0(x) is finite. Therefore the �-entropy of ¨n relative to the

L2(Q) semimetric is bounded above by a multiple of Kn=� (van der Vaart and Wellner

1996).

To lower-bound the prior mass of a neighbourhood of Ł0 we first note that, by the

triangle inequality, with D0 ¼ (Ł0(0)� Ł0)=(Ł0(0)� Ł0(1)),

kVU � VD� Ł0k1 < jVU � Ł0(0)j þ kD0 � Dk1(Ł0(0)� Ł0(1))þ jŁ0(0)� Ł0(1)� V j:

Here Ł0(0) and Ł0(0)� Ł0(1) are positive numbers by assumption, and hence the probability

of the intersection of the events that jVU � Ł0(0)j , � and jŁ0(0)� Ł0(1)� V j , � is of

order �2 as � # 0. By Lemma 3 in Ghosal and van der Vaart (2003) we also have that, for

J� < 1 and positive constants c and C,

Pr
XL
j¼1

����D j� 1

L
,
j

L

� �
� pj

���� , �

 !
> Ce�cL log(1=�),

uniformly in ( p1, . . . , PL) in the unit simplex. The function D0 is the cumulative distribution

of a probability distribution on (0, 1) and is Lipschitz. It can be seen that

kD0 � Dk1 < kD0kLip
1

L
þ
XL
j¼1

����D j� 1

L
,
j

L

� �
� D0

j� 1

L
,
j

L

� �����:
Here, the Lipschitz norm of a function f is defined by k f kLip ¼ supx 6¼ yj f (x)� f (y)j=jx� yj.
Combining these facts, it follows that

—n(Ł 2 ¨ : kŁ� Ł0k1 < 3�)

> Pr(jVU � Ł0(0)j , �, jŁ0(0)� Ł0(1)� V j , �)Pr(kD0 � Dk1 , �)

*�2e�cJ log(1=�):

If we choose J � T1=3
n log Tn, Kn ¼ (log Tn)

2 and �n � T�1=3
n log Tn, then the entropy and

prior mass conditions are satisfied.

3.3.2. Parametric models

Consider the ergodic diffusion model with the drift function taking a parametric form. We

shall denote the parameter again by Ł and write the drift function in the form �Ł. Thus the

process X satisfies the SDE

dX t ¼ �Ł(X t)dt þ � (X t)dBt,

for a given measurable function � .
Let the parameter Ł range over a subset of k-dimensional Euclidean space (Rk , k � k),

and assume that there exist functions � and � satisfying
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0 ,

ð
I�

�

�

� �2

d�0(x),

ð
I

�

�

 !2

d�0(x) , 1,

and such that, for all x 2 I and all Ł, ł 2 ¨,

�(x)kŁ� łk < j�Ł(x)� �ł(x)j < �(x)kŁ� łk:

For our purpose it suffices that the first inequality be satisfied for x 2 I� � I.

Under this assumption the entropy and prior mass conditions of Theorem 3.3 can be

expressed in terms of corresponding conditions with respect to Euclidean distance, and we

obtain the following corollary.

Corollary 3.4. Let the prior —n be independent of n and possess a Lebesgue density that is

bounded and bounded away from zero on a neighbourhood of Ł0. Let functions � and � exist

as in the foregoing. Then for every Mn ! 1, we have, as n ! 1,

PŁ0,n—n Ł ! ¨n : kŁ� Ł0k > Mn=
ffiffiffiffiffiffi
Tn

p
jX n

� 	
! 0: (3:13)

Proof. The assumptions imply the existence of positive constants L, U such that

LkŁ� łk <

����� Ł� ł

�
1 I�

�����
L2(�0)

<

����� Ł� ł

�

�����
L2(�0)

< UkŁ� łk:

These inequalities allow the calculations for Theorem 3.3 to be carried out using Euclidean

balls and distances.

First, the bounds imply that the left-hand side of (3.10) is bounded above by

sup
�.�n

log N (a�=U , fŁ : kŁ� Ł0k < �=Lg, k � k) < k log
5�=L

a�=U

� �
,

(Pollard 1990: Lemma 4.1) which is bounded above by a constant, independently of �.
Secondly, the comparison of norms shows that the quotient on the left-hand side of (3.11)

is bounded above by

—n(Ł ! ¨n : kŁ� Ł0k < j�=L)

—n(Ł ! ¨n : kŁ� Ł0k < �=U )
<

M

m

j�=L

�=U

� �k

¼ M

m

jU

L

� �k

,

where m and M are lower and upper bounds on the density of the prior. h

The rate of convergence T�1=2
n is sharp and was previously obtained by Kutoyants (2004).
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4. Proofs

4.1. Proof of Theorem 2.1

For given �n and Mn ! 1, denote by U n the random set

U n ¼ fŁ 2 ¨n : hn(Ł, Ł0) > Mn�ng:

For given positive constants c, C, D, define events

An,C,D :¼ fø : hn(Ł, ł)(ø) < Cdn(Ł, ł), 8Ł, ł 2 ¨n with hn(Ł, ł)(ø) > D�ng,

An,c,D :¼ fø : hn(Ł, Ł0)(ø) > cd n(Ł, Ł0)), 8Ł 2 ¨n with hn(Ł, Ł0)(ø) > D�ng,

According to Assumption 2.1, there exist positive constants c, C, D such that the events

An,c,D \ An,C,D have probability arbitrarily close to one as n ! 1. It therefore suffices to

show that the sequence PŁ0,n—n(U njX n)1
An,c,D\An,C,D

tends to zero for fixed positive constants

c, C, D. Furthermore, if the constants cª, Cª in Assumption 2.1 satisfy infª.0cª=
Cª > a0 . 0 and/or infª.0cª > c0 . 0, then it suffices to consider c, C, D satisfying these

restrictions only.

In Lemma 4.1 we construct test functions jn : � ! [0, 1] that are consistent for the null

hypothesis H0 : Ł ¼ Ł0, that is, PŁ0,njn ! 0 as n ! 1. Since 1 ¼ jn þ (1� jn), we can

bound

PŁ0,n—n(U njX n)1
An,c,D\An,C,D

< PŁ0,njn þ PŁ0,n—n(U njX n)(1� jn)1
An,c,D\An,C,D

: (4:1)

Here the first term on the right tends to zero by consistency, and hence it suffices to

concentrate on the second term. We rewrite the posterior distribution (2.2) as

—n(BjX n) ¼
Ð

B p
Ł,n=pŁ0,n(X n)d—n(Ł)Ð

¨ n pŁ,n=pŁ0,n(X n)d—n(Ł)
, B 2 Bn: (4:2)

The set of interest is the union U n ¼ [i>Mn
¨n

i of the random rings defined by

¨n
i ¼ fŁ 2 ¨n : i�n < hn(Ł, Ł0) , (iþ 1)�ng, i 2 N:

Therefore, we can bound the second term on the right in (4.1) by

X
i>Mn

PŁ0,n

Ð
¨ n

i
pŁ,n=pŁ0,n d—n(Ł)Ð

pŁ,n=pŁ0,n d—n(Ł)
(1� jn)1

An,c,D\An,C,D

" #
: (4:3)

The main part of the proof is to construct the test functions in such a way that the terms in

this sum are small. Here we bound the denominator from below by a constant, and use

Fubini’s theorem to bound
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PŁ0,n

ð
¨ n

i

pŁ,n

pŁ0,n
d—n(Ł)(1� jn)1

An,c,D\An,C,D

<

ð
PŁ,n1fŁ2¨ n

i g(1� jn)1
An,c,D\An,C,D

d—n(Ł):

The following two lemmas assert the existence of appropriate test functions jn and give the

lower bound on the denominator.

Lemma 4.1. If condition (2.4) holds, then for every positive constant �n, c, C, D and

sufficiently large integer I there exists a test jn (depending on �n, c, C, D, I) such that

PŁ0,njn < exp �2n g
c

8C

� 	� 	X
i> I

e�i2�2n=512 (4:4)

and, for all i > I ,

PŁ,n(1� jn)1fŁ2¨n
i g1An,c,D\An,C,D

< e�i2�2n=1152: (4:5)

Lemma 4.2. For every � . 0 and K . 0,

PŁ0,n

ð
pŁ,n

pŁ0,n
d—n(Ł) < exp � 1

2
(C2�2 _ D2�2n)þ K�2

� �� �
—n(Bn(Ł0, �)), An,C,D

� �

< exp � K2�4

2(C2�2 _ D2�2n)

� �
:

The proofs of these lemmas are deferred to Sections 4.2 and 4.3. We first proceed with the

proof of the main theorem. Choose I ¼ Mn ! 1 and let jn be tests as in Lemma 4.1.

Since g(c=8C) , 1, assertion (4.4) of Lemma 4.1 implies that PŁ0,njn ! 0 if �n is

bounded away from zero and I ¼ I n ! 1.

By Lemma 4.2, applied with � ¼ �n, expression (4.3) can be bounded by

X
i>Mn

PŁ0,n

Ð
¨ n

i
pŁ,n=pŁ0,n d—n(Ł)

exp � 1

2
(C _ D)2 þ K

� �
�2n

� �
—n(Bn(Ł0, �n))

(1� jn)1
An,c,D\An,C,D

þ exp � K2�2n
2(C _ D)2

� �
:

The second term can be made arbitrarily small by choice of K. The first term can be handled

using Fubini’s theorem as in (4.4), and inequality (4.5). Here, since ¨n
i (ø) � Bn(Ł0, 2i�n=c)

if ø 2 An,c,D and i > D _ 2, we may restrict the integral to the (non-random) set

Bn(Ł0, 2i�n=c). Thus, for n sufficiently large, we obtain the bound
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X
i>Mn

—n(Bn(Ł0, 2�ni=c))

—n(Bn(Ł0, �n))
exp

1

2
(C _ D)2 þ K

� �
�2n �

i2�2n
1152

� �
:

Taking � ¼ c2=(8 � 1152) in condition (2.5), we see that the latter is, for sufficiently large n,

bounded by

X
i>Mn

exp
1

2
(C _ D)2 þ K

� �
�2n �

i2�2n
23 1152


 �
,

which tends to zero, as Mn ! 1, for any fixed C, D, K. This concludes the proof of the

main theorem.

4.2. Proof of Lemma 4.1

The proof is based on the following version of Bernstein’s inequality: if M is a continuous

local martingale vanishing at 0 with quadratic variation process [M], then, for any stopping

time T and all x, L . 0,

P sup
0< t<T

jMtj > x, [M]T < L

� �
< e�x2=(2L)

(see, for instance, Revuz and Yor 1999: 153–154). We shall apply this inequality to two local

martingales derived from the log-likelihood.

First (cf. (2.1)), the log-likelihood ratio process can be written as

‘(Ł) :¼ log
pŁ,n

pŁ0,n
(X n) ¼ MŁ,n

Tn
� 1

2
[MŁ,n]Tn

,

where MŁ,n is the PŁ0,n-local martingale

MŁ,n
t ¼

ð t
0

�Ł,ns � �Ł0,ns

� n
s

� �
dBn

s , t > 0, Ł 2 ¨, (4:6)

for Bn a Brownian motion under PŁ0,n. The quadratic variation of MŁ,n at Tn is precisely the

square Hellinger semidistance h2n(Ł, Ł0) ¼ [MŁ,n]Tn
.

Under PŁ,n the process MŁ,n is not a local martingale. However, by Girsanov’s theorem

the process

BŁ,n
t ¼ Bn

t �
ð t
0

�Ł,ns � �Ł0,ns

� n
s

� �
ds

is a PŁ,n-Brownian motion, and we can write

‘(Ł1) ¼ Z
Ł1,Ł,n
Tn

þ 1
2
[ZŁ1,Ł,n]Tn

þ
ðTn

0

�Ł1,nt � �Ł0,nt

� n
t

 !
�Ł,nt � �Ł1,nt

� n
t

 !
dt, (4:7)

for the PŁ,n-local martingale ZŁ1,Ł,n defined by
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ZŁ1,Ł,n
t ¼

ð t
0

�Ł1,ns � �Ł0,ns

� n
s

� �
dBŁ,n

s , Ł 2 ¨n:

The quadratic variation of the process ZŁ1,Ł,n at Tn is again equal to the squared Hellinger

semidistance h2n(Ł1, Ł0) ¼ [ZŁ1,Ł,n]Tn
. (The process ZŁ1,Ł0 n is equal to the process MŁ1,n

introduced earlier.)

For fixed natural numbers i and n, let Ł1, . . . , ŁN 2 ¨n be a minimal �ni=(4C)-net for
dn over the set Bn(Ł0, 2i�n=c). For sufficiently large i we have 2i�n=c > �n, and hence by

condition (2.4) the number of points in the net is bounded by

N < N
�ni

4C
, Bn Ł0,

2i�n

c

� �
, dn

� �
< exp �2ng

c

8C

� 	� 	
: (4:8)

Define for each i 2 N a deterministic map �ni : ¨n ! fŁ1, . . . , ŁNg by mapping each

Ł 2 Bn(Ł0, 2i�n=c) into a closest point of the net and mapping each other Ł 2 ¨n in an

arbitrary point of the net. For each Ł 2 ¨n and i 2 N define a test by

jŁ,n
i :¼ 1f‘(Ł) . 0, i�n=2 , hn(Ł, Ł0) , 2i�ng,

and set

jn :¼ sup
i> I

sup
Ł2�ni(¨ n)

jŁ,n
i ,

We shall show that the latter tests satisfy (4.4) and (4.5) if I is sufficiently large.

The error of the first kind (4.4) of these tests satisfies

PŁ0,njn <
X
i> I

X
Ł2�ni(¨n)

PŁ0,njŁ,n
i < sup

i> I

#�ni(¨
n)

� �X
i> I

max
Ł2�ni(¨ n)

PŁ0,njŁ,n
i :

Here the cardinality of the sets �ni(¨n) is bounded above in (4.8). The probabilities on the

right of the last display can be bounded with the help of Bernstein’s inequality

PŁ0,njŁ,n
i ¼ PŁ0,n M

Ł,n
Tn

� 1
2
h2n(Ł, Ł0) . 0, i�n=2 , hn(Ł, Ł0) , 2i�n

� 	

< PŁ0,n M
Ł,n
Tn

. 1
2
(i�n=2)

2, [MŁ,n]Tn
, (2i�n)

2
� 	

< e�i2�2n=512,

uniformly in Ł ! ¨n. Inserting this bound and the bound (4.8) in the preceding display, we

obtain (4.4).

The expectation in (4.5) is restricted to the intersection of the events An,C,D \ An,c,D and

Ł 2 ¨n
i . By construction of the net Ł1, . . . , ŁN ,

dn(Ł, �ni(Ł)) <
�ni

4C
, if Ł 2 Bn Ł0,

2i�n

c

� �
:

We have ¨n
i (ø) � Bn(Ł0, 2i�n=c) if ø 2 An,c,D and i > D _ 2. Furthermore, if ø 2 An,C,D,

then either hn(Ł, �ni(Ł)) < D�n or the Hellinger semimetric is bounded above by Cdn. It

follows that for i > I > 4D, if ø 2 An,C,D \ An,c,D and Ł 2 ¨n
i (ø), then
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hn(Ł, �ni(Ł)) <
�ni

4
: (4:9)

By the triangle inequality it then follows that

3i�n

4
< hn(Ł0, �ni(Ł)) < (iþ 1þ 1

4
i)�n , 2�ni, i > 2: (4:10)

Therefore, if ø 2 An,c,D \ An,C,D and Ł 2 ¨n,i(ø),

1� jn < 1� j�ni(Ł),n
i < 1f‘(�ni(Ł)) < 0g:

We write the log-likelihood ratio ‘(�ni(Ł)) in terms of the process Z �ni(Ł),Ł,n as in (4.7), where

by the Cauchy–Schwarz inequality the inner product in (4.7) can be bounded as����
ðTn

0

��ni(Ł),nt � �Ł0,nt

� n
t

 !
�Ł,nt � ��ni(Ł),nt

� n
t

 !
dt

���� < hn(�ni(Ł), Ł0)hn(Ł, �ni(Ł))

<
1

3
h2n(�ni(Ł), Ł0),

for ø 2 An,c,D \ An,C,D and Ł 2 ¨n,i(ø), since hn(Ł, �ni(Ł)) < �ni=4 < hn(Ł0, �ni(Ł))=3 on

this event, by (4.9) and (4.10). It follows that the variable ‘(�ni(Ł)) is bounded below by

Z
�ni(Ł),Ł,n
Tn

þ [Z �ni(Ł),Ł,n]Tn
=6, and therefore

PŁ,n(1� jn)1fŁ2¨n
i g1An,c,D\An,C,D

< PŁ,n(Z
� ni(Ł),Ł,n
Tn

þ [Z �ni(Ł),Ł,n]Tn
=6 < 0, fŁ 2 ¨n

i g)

< PŁ,n jZ�ni(Ł),Ł,n
Tn

j > 1

12
�2ni

2, [Z �ni(Ł),Ł,n]Tn
< 4�2ni

2

� �

< e�i2�2n=1152,

by Bernstein’s inequality.

4.3. Proof of Lemma 4.2

Let ~——n be equal to the measure —n restricted and renormalized to be a probability measure

on Bn(Ł0, �). By Jensen’s inequality, with MŁ,n the local martingale in (4.6),

log

ð
pŁ,n

pŁ0,n
d—n(Ł)

—n(Bn(Ł0, �))
>

ð
log

pŁ,n

pŁ0,n
d ~——n(Ł) (4:11)

¼
ð
(M

Ł,n

T
� 1

2
h2n(Ł, Ł0))d ~——

n(Ł)

> Z n
T � 1

2
(C2�2 _ D2�2n),

on An,C,D, where the process Z n is defined by
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Z n
t :¼

ð
MŁ,n

t d ~——n(Ł) ¼
ð t
0

ð
�Ł,ns � �Ł0,ns

� n
s

� �
d ~——n(Ł)dBŁ0

s :

The last equality follows from the stochastic Fubini theorem (see Theorem 64 of Chapter IV

in Protter 2004). The process Z n is a continuous local martingale with respect to PŁ0,n with

quadratic variation process

[Z n] t ¼
ð t
0

ð
�Ł,ns � �Ł0,ns

� n
s

� �
d ~——n(Ł)

� �2

ds,

By Jensen’s inequality and Fubini’s theorem,

[Z n]T <

ðT
0

ð
�Ł,nt � �Ł0,nt

� n
t

 !2

d ~——n(Ł)dt ¼
ð
h2n(Ł, Ł0)d ~——

n(Ł):

Thus [Z n]T < C2�2 _ D2�2n on the event An,C,D. In view of (4.11) the probability in the

lemma is bounded by

PŁ0,n(Z n
T < �K�2, [Z n]T < C2�2 _ D2�2n) < exp � K2�4

2(C2�2 _ D2�2n)

� �
,

by Bernstein’s inequality for continuous local martingales.

4.4. Proof of Lemma 2.2

By Fubini’s theorem and the fact that PŁ0,n( pŁ,n=pŁ0,n) < 1,

PŁ0,n

ð
¨ nn¨ n

pŁ,n

pŁ0,n
d—n(Ł)

" #
< —n(¨nn¨n):

By Lemma 4.2 with � ¼ �n and arbitrary K . 0 on the event An,C,D the denominator of the

posterior distribution is bounded below by exp((�1
2
(C _ D)2 þ K)�2n)—

n(Bn(Ł0, �n)) with

probability at least 1� exp(�K2�2n=2(C _ D2). Choosing C ¼ Cª, D ¼ Dª, and combining

this with the previous display, we obtain

PŁ0,n[—n(¨nn¨njX n)1
An,C,D

] <
—n(¨nn¨n)exp((�1

2
(C _ D)2 þ K)�2n)

—n(Bn(Ł0, �n))
þ exp � K2�2n

2(C _ D)2

� �

< o(1)exp((�1
2
(C _ D)2 þ K)�2n)þ exp � K2�2n

2(C _ D)2

� �
,

by assumption (2.10).

If �n ! 1, then we choose K , (C _ D)2=2, and both terms on the right tend to zero. If

�n remains bounded, then so is the factor exp(�(C _ D)2=2þ K)�2n) and hence the first

term on the right tends to zero for any fixed K. Furthermore, the second term on the right

can be made arbitrarily small by choosing large K in this case.

Thus we have proved the assertion of the lemma on the event An,C,D for each ª . 0.
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This suffices, since the probability of this event can be made arbitrarily large by choice

of ª.

4.5. A technical result

The following lemma is helpful in checking Assumption 2.1. It gives a sufficient condition

for Assumption 2.1 with �n ¼ 1 (and hence also �n ! 1).

Lemma 4.3. If hn and dn are random semimetrics on a set ¨n with

sup
Ł,ł2¨ n

jhn(Ł, ł)� dn(Ł, ł)j ¼ OPŁ0,n (1), (4:12)

then for all ª . 0 there exists a positive constant L such that, for all � 2 (0, 1),

lim inf
n!1

PŁ0,n
1

2� �
dn(Ł, ł) < hn(Ł, ł) <

1

�
dn(Ł, ł)

�

for all Ł, ł 2 ¨n with hn(Ł, ł) >
L

1� �

�
> 1� ª:

Proof. For any ª . 0 there exists a constant Lª , 1 such that, on an event with probability

at least 1� ª,

hn(Ł, ł)� Lª < dn(Ł, ł) < hn(Ł, ł)þ Lª, 8Ł, ł 2 ¨n:

If hn(Ł, ł) > Lª=(1� �), then on the same event

�hn(Ł, ł) < dn(Ł, ł) < (2� �)hn(Ł, ł), 8Ł, ł 2 ¨n:

This is the same event as in the assertion of the lemma. h
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