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We give sharp estimates in total variation and certain kinds of stop-loss metrics in signed Poisson

approximation of Poisson mixtures. We provide closed-form solutions to the problem of best choice of

the Poisson parameter in simple Poisson approximation with respect to the total variation distance.

The important special case of the negative binomial distribution is also discussed. To obtain our

results, we apply a differential calculus based on different Taylor formulae for the Poisson process

which allows us to give simple unified proofs.

Keywords: Charlier polynomials; finite signed measure; Poisson approximation; Poisson mixture;

probability metrics

1. Introduction

Mixtures of distributions, particularly Poisson mixtures, play an important role in many

areas of applied probability and statistics, such as biology, physics, reliability and insurance.

A variety of examples can be found in Johnson et al. (1992), Grandell (1997) and Denuit

and Van Bellegem (2001), among others. With a few exceptions, the probability distribution

of a Poisson mixture is quite complex to work with. It is therefore useful to approximate a

Poisson mixture by a Poisson distribution, provided the mixing random variable is close to a

constant. Early work in this direction goes back to Vervaat (1969) and Romanowska (1977).

A broader and deeper approach may be found in Barbour (1987) and Pfeifer (1987).

Recently, Roos (2003a; 2003b) has obtained sharp approximation results both in the

univariate and the multivariate cases.

Several techniques have been developed in connection with general Poisson approxima-

tion problems, such as the coupling method (Serfling 1978), the semigroup technique

(Deheuvels and Pfeifer 1986) and the Stein–Chen method (Chen 1975; Barbour et al.

1992). The degree of approximation is usually measured in terms of the total variation, the

Kolmogorov or the Wasserstein distance. However, in risk theory or insurance certain stop-

loss distances are used (see Rachev 1991; Roos 1999; 2001; Denuit and Van Bellegem

2001). On the other hand, a great deal of attention has been devoted to the approximation

of integer-valued random variables by signed compound Poisson measures, because the

degree of accuracy is better than with simple Poisson approximation (see Čekanavičius and

Kruopis 2000; Barbour and Čekanavičius 2002; Roos 2002; 2003b). Such measures, coming
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from a Poisson-type expansion in the exponent, were apparently first considered by Kornya

(1983) and Presman (1983).

The purpose of this paper is to obtain sharp estimates in signed Poisson approximation of

Poisson mixtures. Although for the sake of brevity we only consider the total variation and

certain kinds of stop-loss metrics, a similar treatment holds for other distances. The main

feature is that we apply a differential calculus for linear operators preserving convexity

which allows us to give simple unified proofs; see Adell and Lekuona (2000) for more

details. It may be of interest to see this method in the case of subordinators.

Recall that a centred subordinator X :¼ (X (t), t > 0) is a process starting at the origin,

having independent stationary increments and right-continuous non-decreasing paths, and

such that EX (t) ¼ t, t > 0. The Laplace transform of X (t) is given by Ee�ºX ( t)

¼ exp(�tºEe�ºUW ), º, t > 0, where U is uniformly distributed on [0, 1] and W is a

non-negative random variable independent of U which determines X and is called the

characteristic random variable of X . Under appropriate integrability assumptions on X and

smoothness assumptions on �, it is established in Adell and Lekuona (2000, Corollary 1

and Proposition 4) that

E�(X (t)) ¼
Xm�1

k¼0

(t � s)k

k!
E�(k) X (s) þ

Xk

i¼1

UiWi

 !

þ
ð t

s

E�(m) X (u) þ
Xm

i¼1

UiWi

 !
(t � u)m�1

(m � 1)!
du, 0 < s < t, m ¼ 1, 2, . . . ,

(1:1)

where (Ui)i>1 is a sequence of independent random variables distributed uniformly on the

interval [0, 1], (Wi)i>1 is a sequence of independent copies of W , and (Ui)i>1, (Wi)i>1 and X

are mutually independent. A striking feature is that, in many cases, a Taylor formula similar

to (1.1) is valid for non-smooth functions �. Therefore, in such cases, we can give a unified

treatment to the problem of estimating the distance between X (t) and X (s) in different

metrics by considering suitable sets of test functions �, even if the parameter t is replaced by

a random variable T . Signed Poisson approximation of Poisson mixtures fits into this

framework.

One of the referees has drawn our attention to a recent paper by Roos (2003a) dealing

with the same subject, in which sharp results are obtained by using similar techniques to

those outlined above. A detailed comparative discussion between the methods and the

results given both in Roos (2003a) and in this work will be given in the following sections.

From our point of view, both papers complement each other.

The contents of this paper are organized as follows. In Section 2 we introduce the main

tools, based on finite Taylor formulae for the standard Poisson process concerning arbitrary

exponentially bounded functions. In Sections 3 and 4 we give sharp estimates in total

variation and certain kinds of stop-loss metrics, respectively, in approximating Poisson

mixtures by Charlier-type finite signed measures. In Section 5 we obtain closed-form

solutions to the so-called best Poisson approximation problem, which consists of finding the

Poisson distribution closest to a Poisson mixture with respect to a given distance. This
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problem, first posed by Serfling (1978), was developed by Deheuvels and Pfeifer (1986),

Pfeifer (1987) and Deheuvels et al. (1989) in a more general setting, mainly from an

asymptotic point of view. In the aforementioned sections, our results are stated under the

weakest possible moment assumptions on the mixing random variable (see the comments

after Theorem 3.1). In contrast, in Section 6 we take advantage of the integrability and

limiting properties of the gamma distributions to give sharp estimates referring to the

negative binomial distribution. Such estimates are uniform in the mean s of the Poisson

distribution.

Throughout this paper, we shall use the following notation. A mixing random variable T

is a non-negative random variable independent of the standard Poisson process

(N (s), s > 0). The symbol N (T ) stands for the corresponding Poisson mixture, the law

of which is denoted by P(T ). We denote by N the set of non-negative integers, and

N� :¼ Nnf0g. For any real numbers x and y, we write x ^ y :¼ min(x, y),

x _ y :¼ max(x, y), xþ :¼ x _ 0, x� :¼ (�x)þ and bxc for the integer part of x. Every

function � is a real measurable function defined on [0, 1) and k�k is its usual supremum-

norm. We denote by 1A the indicator function of the set A. If f and g are two positive

functions, we write f (x) � g(x) whenever g�1(x) f (x) ! 1 as x ! 1. On the other hand,

for any m 2 N�, �m denotes a random variable having the beta density

rm(Ł) :¼ m(1 � Ł)m�1, Ł 2 [0, 1], while �0 :¼ 1. Given a sequence (Ui)i>1 of independent

and identically distributed random variables uniformly distributed on [0, 1], we set S0 :¼ 0

and Sk :¼ U1þ . . . þUk, k 2 N�. Finally, all of the random variables appearing under the

same expectation sign are supposed to be mutually independent.

2. Taylor formulae for the Poisson process

In this section, we introduce the main tools of the paper, the most important of which is

Corollary 2.1. We give two Taylor formulae for the standard Poisson process for arbitrary

exponentially bounded functions, written either in terms of the forward differences of the

function under consideration or in terms of the Charlier polynomials. Once such finite

Taylor expansions are established, it is clear how to choose the finite signed measures to

approximate Poisson mixtures.

We shall need the following ingredients. For any Æ > 0, we denote by E(Æ) the set of all

functions � such that j�(x)j < CeÆx, x > 0, for some constant C > 0. We denote by ˜m�
the mth forward difference of �, that is,

˜m�(x) :¼ (A � I)m�(x) ¼
Xm

k¼0

(�1)m�k m

k

� �
�(x þ k), x > 0, m 2 N, (2:1)

where A�(x) :¼ �(x þ 1), x > 0, I is the identity operator and (A � I)0 ¼ I . We denote by

Cm(s; x) the mth Charlier polynomial with respect to N (s), that is,

Cm(s; x) :¼
Xm

k¼0

m

k

� �
x

k

� �
k!(�s)�k , x > 0, s . 0, m 2 N: (2:2)
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Such polynomials satisfy the orthogonality property (cf. Chihara 1978, p. 4)

ECk(s; N (s))Cm(s; N (s)) ¼ m!

s m
�k,m, k, m 2 N: (2:3)

The following result relates Charlier polynomials to mth forward differences.

Lemma 2.1. Let � 2 E(Æ) and m 2 N. Let T be a mixing random variable taking values in

(0, 1) such that E exp((eÆ � 1)T ) , 1, and let X be a non-negative random variable such

that E exp(ÆX ) , 1. Then, for any k ¼ 0, . . . , m, we have

E�(N (T ) þ X )Cm(T ; N (T )) ¼ (�1)kE˜k�(N (T ) þ X )Cm�k(T ; N (T )): (2:4)

Proof. Let k ¼ 0, . . . , m. The formula

E�(N (s))Cm(s; N (s)) ¼ (�1)kE˜k�(N (s))Cm�k(s; N (s)), s . 0, (2:5)

may be found in Barbour et al. (1992, Lemma 9.1.4) or in Roos (1999, formula (6)).

Applying (2.5) to the function ~�� 2 E(Æ) defined by ~��(x) :¼ E�(x þ X ), x > 0, and taking

into account Fubini’s theorem and the fact that the operators E and ˜k commute, we obtain

(2.4) with T replaced by s. By (2.1), ˜m� 2 E(Æ). It therefore suffices to randomize s by T in

order to complete the proof of Lemma 2.1. h

We are in a position to state the following.

Theorem 2.1. Let t > 0, s . 0 and m 2 N�. Denote by ªm :¼ ªm(s, t) ¼ s þ (t � s)�m.

Then, for any � 2 E(Æ), we have

E�(N (t)) ¼
Xm�1

k¼0

(t � s)k

k!
E˜k�(N (s)) þ (t � s)m

m!
E˜m�(N (ªm))

¼
Xm�1

k¼0

(�1)k(t � s)k

k!
E�(N (s))Ck(s; N (s))

þ (�1)m(t � s)m

m!
E�(N (ªm))Cm(ªm; N (ªm)):

Proof. Let m 2 N�. Denote by Em(Æ) the set of m times differentiable functions � such that

�(k) 2 E(Æ), k ¼ 0, . . . , m. For any � 2 Em(Æ), we claim that

E�(N (t)) ¼
Xm�1

k¼0

(t � s)k

k!
E�(k)(N (s) þ Sk) þ (t � s)m

m!
E�(m)(N (ªm) þ Sm): (2:6)

Indeed, (2.6) follows from (1.1) by observing the following. First, the standard Poisson

process is a centred subordinator whose characteristic random variable W is degenerate at the

point 1. Second, if � 2 Em(Æ), the integrability conditions required in Adell and Lekuona
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(2000, Corollary 1 and Proposition 4) are fulfilled. Finally, the remainder term in (1.1) can be

rewritten as in (2.6) with the help of the random variable ªm.

On the other hand, using induction, it can be checked that for any � 2 Em(Æ) we have

˜k�(x) ¼ E�(k)(x þ Sk), x > 0, k ¼ 0, . . . , m: (2:7)

This, together with (2.6), shows that the first equality in Theorem 2.1 holds for any

� 2 Em(Æ). Let � 2 E(Æ). Since (�(k), k 2 N) are the only relevant values of �, we can

assume without loss of generality that � is continuous. Therefore (cf. Adell and Sangüesa

2004) there is a sequence of functions (�n, n 2 N) � Em(Æ) such that

lim
n!1

˜k�n(x) ¼ ˜k�(x), x > 0, k ¼ 0, . . . , m:

Hence, the first equality in Theorem 2.1 follows from dominated convergence, while the

second readily follows from Lemma 2.1. The proof is complete. h

Setting � ¼ 1fng, n 2 N, in the second equality in Theorem 2.1, we obtain

P(N (t) ¼ n) ¼
Xm�1

k¼0

(�1)k(t � s)k

k!
Ck(s; n)P(N (s) ¼ n)

þ (�1)m(t � s)m

m!
E1fng(N (s þ (t � s)�m))Cm(s þ (t � s)�m; N (s þ (t � s)�m)):

(2:8)

We emphasize that (2.8) coincides, up to changes of notation, with the formula given by Roos

(2003a, Lemma 2 and formula (9)) which, according to the author, constitutes the main tool

in the argument of his paper. In turn, the formulae in Theorem 2.1 can be derived from (2.8)

by integration. Therefore, as far as signed Poisson approximation of Poisson mixtures is

concerned, the main tools developed both in Roos (2003a) and in this paper are, up to

changes of notation, essentially equivalent. Finally, a multivariate version of (2.8) can be

found in Roos (2003b, Lemma 1).

Let s . 0 be fixed and let (Tn, n 2 N) be a sequence of mixing random variables

converging to s as n ! 1. For any k, n 2 N, we write �k(n) :¼ �k,s(n) ¼ E(Tn � s)k ,

whenever the expectation exists. Let m, n 2 N and assume that EjTn � sjm , 1. In view of

Theorem 2.1 or (2.8), we consider the Charlier-type finite signed measure �(n)
m on N defined

by

�(n)
m (flg) :¼ �(n)

m,s(flg) ¼ e�ss l

l!

Xm

k¼0

(�1)k�k(n)

k!
Ck(s; l), l 2 N: (2:9)

Observe that �(n)
0 ¼ P(s). Also, �(n)

1 ¼ P(s), provided that ETn ¼ s. The following result,

which is an immediate consequence of Theorem 2.1, will be crucial throughout the rest of

this paper.

Corollary 2.1. Let s . 0 and m, n 2 N. Assume that EjTn � sjm , 1. Then, for any

� 2 E(Æ) such that k˜m�k , 1, we have
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E�(N (Tn)) �
ð
N

�(l)�(n)
m (dl) ¼ 1

m!
E(Tn � s)m ˜m�(N (s þ (Tn � s)�m)) � ˜m�(N (s))ð Þ:

In the following sections, we shall need to bound the term on the right-hand side in

Corollary 2.1. The following auxiliary result goes in this direction.

Lemma 2.2. Let s,t > 0. If k�k , 1, then

jE�(N (t)) � E�(N (s))j < (k�þk þ k��k)(1 � e�j t�sj):

Proof. Denote by w(�; �) the usual first modulus of continuity of �, that is,

w(�; E) :¼ sup fj�(x) � �(y)j: x, y > 0, jx � yj < Eg, E > 0:

Using the inequalities j�(x) � �(y)j < w(�; jx � yj) < k�þk þ k��k, x, y > 0, we have

jE�(N (t)) � E�(N (s))j < Ew(�; jN (t) � N (s)j) ¼ Ew(�; N (jt � sj))

< (k�þk þ k��k)P(N (jt � sj) > 1),

thus completing the proof. h

3. Total variation distance

If � and � are finite signed measures on N, the total variation distance between � and � is

defined by

dTV(�, �) :¼ sup
A�N

����
ð
N

1A(l)(�� �)(dl)

����:
In this section, we give upper bounds and exact estimates – up to a remainder term – for

dTV(P(Tn), �(n)
m ). As an application, we estimate the total variation distance between two

Poisson distributions with different means.

Theorem 3.1. Let s . 0 and m, n 2 N.

(a) If EjTn � sjm , 1, then

dTV(P(Tn), �(n)
m ) <

2m

m!
EjTn � sjm(1 � e�jTn�sj�m ):

(b) If EjTn � sjmþ1 , 1, then����dTV(P(Tn), �(n)
m ) � j�mþ1(n)j

(m þ 1)! 2
EjCmþ1(s; N (s))j

���� < 2mþ1

(m þ 1)!
EjTn � sjmþ1(1 � e�jTn�sj�mþ1 ):
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Proof. (a) For any m 2 N and A � N, let bm(A) :¼ k(˜m1A)þk þ k(˜m1A)�k. From

Corollary 2.1, Lemma 2.2 and Fubini’s theorem, we have

dTV(P(T n), �(n)
m ) <

1

m!
sup
A�N

jE(T n � s)m(˜m1A(N (s þ (Tn � s)�m)) � ˜m1A(N (s)))j

<
1

m!
EjTn � sjm(1 � e�jTn�sj�m )sup

A�N

bm(A): (3:1)

It is readily seen from (2.1) that b0(A) ¼ 1 and bm(A) < 2m�1 þ 2m�1 ¼ 2m, m 2 N�,

A � N. Thus, part (a) follows from (3.1).

(b) Let m 2 N and Am :¼ N \ fx > 0: Cm(s; x) > 0g. By (2.5) and (2.3), we see that

sup
A�N

jE˜m1A(N (s))j ¼ sup
A�N

jE1A(N (s))Cm(s; N (s))j

¼ jE1Am
(N (s))Cm(s; N (s))j

¼ 1
2

EjCm(s; N (s))j: (3:2)

On the other hand, let � 2 E(Æ) be such that k˜mþ1�k , 1. By considering one more term

in the expansion given in Corollary 2.1, we can write

E�(N (Tn)) �
ð
N

�(l)�(n)
m (dl) ¼ �mþ1(n)

(m þ 1)!
E˜mþ1�(N (s))

þ 1

(m þ 1)!
E(Tn � s)mþ1

�
˜mþ1�(N (s þ (Tn � s)�mþ1))

� ˜mþ1�(N (s))
�
: (3:3)

Applying (3.3) to � ¼ 1A, A � N, and recalling (3.2), we obtain as in part (a) that����dTV(P(Tn), �(n)
m ) � j�mþ1(n)j

(m þ 1)! 2
EjCmþ1(s; N (s))j

����
< sup

A�N

����E1A(N (Tn)) �
ð
N

1A(l)�(n)
m (dl) � �mþ1(n)

(m þ 1)!
E˜mþ11A(N (s))

����
<

2mþ1

(m þ 1)!
EjTn � sjmþ1(1 � e�jTn�sj�mþ1 ):

This shows (b) and completes the proof. h

Observe that the estimates in Theorem 3.1 are given under the weakest possible moment

assumptions on Tn. This follows from the fact that the finiteness of the mth moment of Tn

is needed to define the signed measure �(n)
m and, at the same time, the error bound is finite

without any further assumptions on T n. However, it should be mentioned that estimates

under the weakest possible moment assumptions on Tn are not always good estimates. This
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can be seen by considering the case m ¼ 0 in Theorem 3.1(a), which gives us

dTV(P(Tn), P(s)) < E(1 � exp(�jTn � sj)).
Similar estimates to those given in Theorem 3.1 have been shown by Roos (2003a,

Theorem 2), who obtains

dTV(P(Tn), �(n)
m ) < min

U
(mþ1)
1

m! 2
E

����
ðTn

s

jTn � yjm

y(mþ1)=2
dy

����, 2m

(m þ 1)!
EjTn � sjmþ1

( )
, (3:4)

where U
(mþ1)
1 is a positive constant. For m ¼ 2, 3 and whenever ETn ¼ s, Roos (2003a,

formulae (23) and (45)) has shown that the first upper bound in (3.4) can in turn be bounded

above by

U
(3)
1

2
ffiffiffi
s

p E
jTn � sj3

(
ffiffiffiffi
T

p
n þ

ffiffiffi
s

p
)2

� �
and

U
(4)
1

12s
E

(Tn � s)4

Tn þ 2s

� �
, (3:5)

respectively. The quantities in (3.5) are finite if E(Tn � s)2 , 1 and EjTn � sj3 , 1,

respectively. This means that, in the cases at hand, the estimates in (3.4) are also given under

the weakest possible moment assumptions on Tn.

Using a semigroup approach, Pfeifer (1987) obtained for m ¼ 1 the same main term as in

Theorem 3.1(b), with different error bound. On the other hand, exact values of

EjCm(s; N (s))j for m ¼ 1, 2, in terms of the integer parts of the roots of Cm(s; x) were

obtained by Deheuvels and Pfeifer (1986). Finally, sharp upper bounds for EjCm(s; N (s))j,
m 2 N, can be found in Roos (2003a, Lemmas 3 and 4) and Roos (1999, 2001).

As an application of Theorem 3.1, we give the following.

Corollary 3.1. For any 0 , s < t, we have

dTV(P(t), P(s)) < min 1 � e�( t�s),

ð t

s

P(N (y) ¼ byc)dy

� �

< min 1 � e�( t�s), (t � s)P(N (s) ¼ bsc)
	 


(3:6)

and

jdTV(P(t), P(s)) � (t � s)P(N (s) ¼ bsc)j < (t � s)2: (3:7)

Proof. As shown by Deheuvels and Pfeifer (1986), we have EjC1(s; N (s))j ¼
2P(N (s) ¼ bsc), s . 0. Therefore, by Theorem 2.1 and (3.2), we have
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sup
A�N

jE1A(N (t)) � E1A(N (s))j < (t � s)

ð1

0

sup
A�N

jE˜11A(N (s þ (t � s)Ł))jdŁ

¼ t � s

2

ð1

0

EjC1(s þ (t � s)Ł; N (s þ (t � s)Ł))jdŁ

¼
ð t

s

P(N (y) ¼ byc) dy < (t � s)P(N (s) ¼ bsc),

the last inequality because the function g(y) :¼ P(N (y) ¼ byc), y > 0, is non-increasing.

This shows the second upper bound in (3.6). The first upper bound in (3.6) follows from

Theorem 3.1(a) by choosing T n ¼ t and m ¼ 0. Similarly, inequality (3.7) follows from

Theorem 3.1(b). h

In the setting of Corollary 3.1, Roos (2003a, formula (5)) gives the bound

dTV(P(t), P(s)) < min t � s,

ffiffiffi
2

e

r
(
ffiffi
t

p
�

ffiffiffi
s

p
)

( )
: (3:8)

It can be shown by calculus that P(N (y) < byc) < (2ey)�1=2, y . 0, with equality if and

only if y ¼ 1
2
. This implies that the first upper bound in (3.6) is better than that in (3.8).

However, the more explicit estimate given by the second bound in (3.6) is not uniformly

better than that in (3.8). Notwithstanding this fact, the second upper bound in (3.6) is less

than 1 and asymptotically optimal in the sense that if t is close to s and s tends to infinity,

then we have from (3.7) that

dTV(P(t), P(s)) � (t � s)P(N (s) ¼ bsc) � (t � s)
1ffiffiffiffiffiffiffiffi
2�s

p :

4. Stop-loss distances

If � and � are finite signed measures on N and r 2 N, we define

d r,1(�, �) :¼ 1

r!
sup
n2N

����
ð
N

(l � n)r
þ(�� �)(dl)

����, d r,1(�, �) :¼ 1

r!

X1
n¼0

����
ð
N

(l � n)r
þ(�� �)(dl)

����,
where it is understood that (x � a)0

þ ¼ 1[a,1)(x), a, x > 0. If � and � are probability

measures, d0,1 is the Kolmogorov distance, d0,1 is the Wasserstein distance, while for

r 2 N�, d r,1 and d r,1 are called stop-loss distances (see Rachev (1991)). For the sake of

brevity, we shall only give in this section estimates for d r,1(P(Tn), �(n)
m ) analogous to those

stated in Theorem 3.1(b).

Let s . 0, m 2 N� and r 2 N. Denote by

cr(m, s) :¼
X1
n¼0

jE˜m�r,n(N (s))j, �r,n(x) :¼ 1

r!
(x � n)r

þ, x > 0: (4:1)
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It turns out that cr(�, �) are the constants appearing in the main terms of the approximation.

Such constants are estimated in the following auxiliary result.

Lemma 4.1. Let s . 0 and m 2 N�. We have

(a) c0(m, s) ¼ EjCm�1(s; N (s))j.
(b) If r 2 N�, then

cr(m, s) ¼ 1

(r � m)!
E(N (s) þ Sm)r�m(b(N (s) þ Sm)�r�mc þ 1), if m < r,

c1(m, s) ¼ c0(m � 1, s), if m . r ¼ 1,

cr(r þ 1, s) ¼ 1,

and

cr(m, s) < c0(m � r, s), if m . r þ 1 . 2:

Proof. Part (a) follows from Roos (1999, Corollary 2).

Assume that r 2 N�. If m < r, we have from (2.7) that

E˜m�r,n(N (s)) ¼ 1

(r � m)!
E(N (s) þ Sm � n)r�m

þ : (4:2)

On the other hand, if X is a non-negative random variable, we claim that

X1
n¼0

E(X � n)r
þ ¼ EX r(bX�rc þ 1): (4:3)

Indeed, it can be checked that (x � n)r
þ ¼ x rE1[n,1)(x�r), x > 0, n 2 N, thus implying that

X1
n¼0

(x � n)r
þ ¼ x rE(bx�rc þ 1), x > 0:

This, together with Fubini’s theorem, shows claim (4.3). Therefore, the first equality in (b)

follows from (4.2) and (4.3).

If m . r, we again have from (2.7) that

E˜m�r,n(N (s)) ¼ E˜m�r1[n,1)(N (s) þ Sr) ¼ E˜m�r1[n,1)(N (s) þ bSrc): (4:4)

Thus, the remaining three statements in part (b) follow from (4.4). h

We are now in a position to state the following.

Theorem 4.1. Let s . 0 and m, n, r 2 N. Assume that EjT n � sj(m_r)þ1 , 1. Then,

(a) if m þ 1 < r, then
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����d r,1(P(Tn), �(n)
m ) � j�mþ1(n)j

(m þ 1)!
cr(m þ 1, s)

���� < Xr

k¼mþ2

j�k(n)j
k!

cr(k, s) þ EjTn � sjrþ1

(r þ 1)!
;

(b) if m þ 1 . r, then

����d r,1(P(Tn), �(n)
m ) � j�mþ1(n)j

(m þ 1)!
cr(m þ 1, s)

���� < 2mþ1�r

(m þ 1)!
EjTn � sjmþ1(1 � e�jTn�sj�mþ1 ):

Proof. (a) Let i 2 N and assume that m þ 1 < r. By (2.7), we have

˜rþ1�r,i(x) ¼ E˜11[i,1)(x þ Sr) ¼ E1[i�1,i)(x þ Sr), x > 0: (4:5)

Hence, applying Corollary 2.1 to �r,i, we obtain from (4.5) that

E�r,i(N (Tn)) �
ð
N

�r,i(l)�(n)
m (dl)

¼ �mþ1(n)

(m þ 1)!
E˜mþ1�r,i(N (s)) þ

Xr

k¼mþ2

�k(n)

k!
E˜k�r,i(N (s))

þ 1

(r þ 1)!
E(Tn � s)rþ11[i�1,i)(N (s þ (Tn � s)�rþ1) þ Sr): (4:6)

Thus, part (a) follows from (4.6) and (4.1) as in the proof of Theorem 3.1(b).

(b) Let i 2 N and assume that m þ 1 . r. Applying Corollary 2.1 to �r,i and taking into

account (4.4), we have

E�r,i(N (Tn)) �
ð
N

�r,i(l)�(n)
m (dl) ¼ �mþ1(n)

(m þ 1)!
E˜mþ1�r,i(N (s))

þ 1

(m þ 1)!
E(Tn � s)mþ1 hi(Tn, m, s), (4:7)

where

hi(Tn, m, s) :¼ ˜mþ1�r1[i,1)(N (s þ (Tn � s)�mþ1) þ bSrc) � ˜mþ1�r1[i,1)(N (s) þ bSrc):

Let u, v . 0 and k 2 N�. Using (2.1) and Theorem 3.1(a) with m ¼ 0, we have
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X1
i¼0

jE˜k1[i,1)(N (u)) � E˜k1[i,1)(N (v))j

¼
X1
i¼0

jE˜k�11fi�1g(N (u)) � E˜k�11fi�1g(N (v))j

<
Xk�1

j¼0

k � 1

j

 !X1
i¼0

jE1fi�1� jg(N (u)) � E1fi�1� jg(N (v))j

< 2k�12dTV(P(u), P(v)) < 2k(1 � e�ju�vj): (4:8)

Therefore, part (b) follows from (4.1), (4.7) and (4.8). h

Stop-loss distances of a different kind in a general Poisson approximation setting have

been considered by Roos (1999, 2001, 2003a). Specifically, if � and � are finite signed

measures on N, Roos (2003a, formula (10)) defines the distances

d�r,1(�, �) :¼ sup
n2N

����
ð
N

˜�r1fng(l)(�� �)(dl)

����, d�r,1(�, �) :¼
X1
n¼0

����
ð
N

˜�r1fng(l)(�� �)(dl)

����,
where r 2 N�, ˜�1 f (l) :¼ �( f (0) þ . . . þ f (l)) and ˜�(rþ1) f (l) :¼ ˜�r(˜�1 f )(l), l 2 N,

r 2 N�. Using induction, it can be seen that

˜�r1fng(l) ¼ (�1)r l � n þ r � 1

r � 1

� �
1[n,1)(l), l, n 2 N, r 2 N�:

Thus, d�r,1 and d�r,1 measure the l1 and the l1 distances between truncated factorial moments

of � and �, respectively. Whenever m þ 1 > r, upper bounds for d�r,1(P(Tn), �(n)
m ) and

d�r,1(P(Tn), �(n)
m ) analogous to those given in (3.4) can be found in Roos (2003a, Theorem 2).

5. Best Poisson approximation

In this section, we give closed-form solutions to the problem of best choice of the

Poissonian mean in the setting of simple Poisson approximation of Poisson mixtures.

Attention will be focused on the total variation distance.

Let s . 0 be fixed and assume that the sequence of mixing random variables (Tn, n 2 N)

satisfies ETn ¼ s, n 2 N. For any real a, let Pa(s; x) be the quadratic polynomial

Pa(s; x) :¼ C2(s; x) � a

s
C1(s; x) ¼ 1

s2
(x2 � (2s þ 1 � a)x þ s(s � a)), (5:1)

where the last equality follows from (2.2). The roots of Pa(s; x) are

ri(a) :¼ s þ 1 � a

2
þ (�1)i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s þ 1 � a

2

� �2
s

, i ¼ 1, 2: (5:2)
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It turns out that the integer parts of these roots are relevant to the problem at hand. It is easily

verified that r1(a) is a decreasing function, r1(a) , 0 for a . s, and

lim
a!�1

r1(a) ¼ s, lim
a!1

r1(a) ¼ �1: (5:3)

Similarly, r2(a) is decreasing, r2(a) > s for any real a, and

lim
a!�1

r2(a) ¼ 1, lim
a!1

r2(a) ¼ s: (5:4)

Finally, for any real a, denote by ni(a) :¼ bri(a)c, i ¼ 1, 2, and by

js(a) :¼ E(1fn1(a)g � 1fn2(a)g)(N (s)) C1(s; N (s)) � a

s

� �
: (5:5)

Theorem 5.1. Assume that �2(n) ! 0 as n ! 1. Then, for any a < (2s2)=�2(n), we have����dTV N (Tn), N s � a

2s
�2(n)

� �� �
� �2(n)

2
js(a)

����
< 2EjTn � sj2(1 � e�jTn�sj�2 ) þ a

2s
�2(n)

� �2

: (5:6)

Moreover, js(a) is a piecewise linear convex function which attains its minimum at

a� :¼ inf a < s:
s n1(a)

n1(a)!
<

s n2(a)

n2(a)!

� �
: (5:7)

Proof. Let n 2 N and let � be a function such that k˜2�k , 1. Using a Taylor expansion

around N (s) as in Corollary 2.1 and Theorem 2.1, we obtain

E�(N (Tn)) � E� N s � a

2s
�2(n)

� �� �
¼ �2(n)

2
E�(N (s))Pa(s; N (s)) þ Rn(�), (5:8)

where Pa(s; x) is the polynomial defined in (5.1) and

Rn(�) :¼ 1

2
E(Tn � s)2 ˜2�(N (s þ (Tn � s)�2)) � ˜2�(N (s))ð Þ

þ a

2s
�2(n)E ˜1� N s � a

2s
�2(n)�1

� �� �
� ˜1�(N (s))

� �
: (5:9)

Recalling (5.1) and (5.2), and using (2.3) and (2.5), we have

sup
A�N

jE1A(N (s))Pa(s; N (s))j ¼ �E1[n1(a)þ1,n2(a)](N (s))Pa(s; N (s)) ¼ js(a): (5:10)

On the other hand, by Lemma 2.2, we have as in the proof of Theorem 3.1(a) that
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sup
A�N

jRn(1A)j < 2EjTn � sj2(1 � e�jTn�sj�2 ) þ jaj
s

�2(n)E(1 � e�(jaj=2s) �2(n)�1 )

< 2EjTn � sj2(1 � e�jTn�sj�2 ) þ a

2s
�2(n)

� �2

: (5:11)

As in the proof of Theorem 3.1(b), (5.6) follows from (5.8)–(5.11).

To show the last statement in the theorem, observe that by (5.5) the function js(a) is

piecewise linear with slope given by

ms(a) :¼ � 1

s
P(N (s) ¼ n1(a)) � P(N (s) ¼ n2(a))ð Þ:

On the other hand, it follows from (5.3) and (5.4) that n1(a) and n2(a) are decreasing

functions with n1(a) < bsc < bsc þ 1 < n2(a), for any real a. Let a < a9. Since the function

ps(n) :¼ P(N (s) ¼ n), n 2 N, is increasing in f0, . . . , bscg and decreasing in fbsc,

bsc þ 1, . . .g, we have

P(N (s) ¼ n1(a9)) < P(N (s) ¼ n1(a)), P(N (s) ¼ n2(a)) < P(N (s) ¼ n2(a9)):

This implies that ms(a) < ms(a9) and shows the convexity of js(a). Finally, since n1(a) , 0

for a . s, we see that ms(a) . 0 for a . s. Therefore, the convex function js(a) attains its

minimum at

a� ¼ inf a < s : ms(a) > 0f g ¼ inf a < s:
s n1(a)

n1(a)!
<

s n2(a)

n2(a)!

� �
:

The proof of the theorem is complete. h

Thanks to (5.7), we can obtain explicit values of a� for small values of s, as was done in

Deheuvels et al. (1989). Also, (5.7) provides an algorithm to evaluate a� in a finite number

of steps. This algorithm can be implemented in a system for mathematical computation

such as MAPLE. Actually, it is not hard to see that the sequences of points

fr�1
1 (i), i < bsc � bbscs�1cg and fr�1

2 (i), i > bsc þ 1g are the interpolation points of js,

where it is understood that i is an arbitrary integer. Since js is convex, we can compute a�
as js(a�) ¼ js(r�1

1 (K)) ^ js(r�1
2 (M)), where

r�1
1 (K) :¼ minfr�1

1 (i) : js(r�1
1 (i)) < js(r�1

1 (i þ 1)), i < bsc � bbscs�1c � 1g

and

r�1
2 (M) :¼ min r�1

2 (i): js(r�1
2 (i)) < js(r�1

2 (i þ 1)), i > bsc þ 1
	 


:

6. The negative binomial distribution

Recall that a gamma process (X (t), t > 0) is a centred subordinator such that X (t) has the

gamma density
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r t(Ł) :¼ Ł t�1e�Ł

ˆ(t)
, Ł . 0, t . 0:

For any b > 1 and s . 0, we consider the mixing random variable Tb(s) :¼ b�1 X (bs).

Observe that ETb(s) ¼ s. It is well known that the random variable N (Tb(s)) has the negative

binomial distribution given by

P(N (Tb(s)) ¼ k) ¼ bs þ k � 1

k

� �
1

1 þ b

� �k
b

1 þ b

� �bs

, k 2 N:

For notational simplicity, we shall consider in this section a continuous parameter b > 1

and denote by �(b)
m the finite signed measure defined in (2.9), where n 2 N is replaced by

b > 1. Our aim is to obtain uniform estimates in the mean s for dTV(P(Tb(s)), �(b)
m ) as

b ! 1. To do this, we bound the remainder term in Corollary 2.1 in a different way than

done in the previous sections. It turns out that in approximating P(Tb(s)) by �(b)
2m and �(b)

2mþ1,

we obtain the same rate of convergence b�(mþ1) with different leading constants. This is due

to the moment properties of Tb(s) stated in the following.

Lemma 6.1. Let b > 1, s . 0 and m ¼ 2, 3, . . .. If m is odd (even), then

�m(b, s) :¼ E(Tb(s) � s)m ¼ s

b

� �m=2

EZ m þ
Xm�2

l¼1
l: odd (even)

Æ(l)(bs)� l=2

0
B@

1
CA > 0,

where Z is a standard normal random variable, Æ(l), l ¼ 1, . . . , m � 2, is a positive constant

not depending on b or s, and
P0

1 :¼ 0.

Lemma 6.1 may be derived from Von Bahr (1965, Theorems 1 and 3), except for two

minor details. First, Von Bahr’s results are stated for normalized sums of independent

random variables in a discrete time setting. Second, it is not clear from Von Bahr’s paper if

the coefficients Æ(l) are positive. In its actual form, Lemma 6.1 is proved by Adell (2004).

To give a closed-form expression for the constants appearing in the main terms of the

approximation, we introduce, for any b > 1 and s . 0, the sequence of polynomials

(Qk(b, s; x), k 2 N) defined by

Q2m(b, s; x) :¼ bmþ1

2

�2mþ2(b, s)

(2m þ 2)!
C2mþ2(s; x) � �2mþ1(b, s)

(2m þ 1)!
C2mþ1(s; x)

� �
,

Q2mþ1(b, s; x) :¼ bmþ1

2

�2mþ2(b, s)

(2m þ 2)!
C2mþ2(s; x), x > 0, m 2 N:

(6:1)

Henceforth, C stands for a positive constant independent of b and s whose value may change

from line to line. We shall need the following.

Lemma 6.2. For any k 2 N, we have
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sup
b>1,s.0

EjQk(b, s; N (s))j < C: (6:2)

In addition, we have

sup
b>1,s.0

EjQ0(b, s; N (s))j ¼ 1

4
sup
s.0

sEjC2(s; N (s))j ¼ 3

4e
: (6:3)

Proof. By Lemma 6.1, inequality (6.2) will follow once we show that

EjCm(s; N (s))j < C(1 ^ s�m=2), s . 0, m 2 N: (6:4)

Indeed, from (2.2) we have by calculus that EjCm(s; N (s))j < C, 0 , s < 1, m 2 N.

Therefore, (6.4) follows from (2.3), thus completing the proof of inequality (6.2).

By considering the roots of C2(s; x), it can be seen by calculus that

sEjC2(s; N (s))j < EjC2(1, N (1))j ¼ 3e�1, 0 , s < 1. On the other hand, Roos (2003a,

Lemma 4) has shown that sEjC2(s; N (s))j < 3e�1, 1 < s. This shows (6.3) and completes

the proof of the lemma. h

Keeping in mind (6.1), we have the following.

Theorem 6.1. Let b > 1, s . 0 and m 2 N. Then,����dTV(P(Tb(s)), �(b)
2m) � b�(mþ1) EjQ2m(b, s; N (s))j

���� < Cb�(mþ2) (6:5)

and ����dTV(P(Tb(s)), �(b)
2mþ1) � b�(mþ1) EjQ2mþ1(b, s; N (s))j

���� < Cb�(mþ2): (6:6)

In particular, setting m ¼ 0 in (6.5) or (6.6), we have����dTV(P(Tb(s)), P(s)) � s

4b
EjC2(s; N (s))j

���� < C

b2
: (6:7)

Proof. The proof of (6.6) being similar, we shall only show (6.5). Let b > 1 and s . 0. Let

� 2 E(Æ) be such that k˜2mþ4�k , 1. By (2.5) and Corollary 2.1, we can write

E�(N (Tb(s))) �
ð
N

�(l)�(b)
2m(dl)

¼ 2b�(mþ1)E�(N (s))Q2m(b, s; N (s)) � �2mþ3(b, s)

(2m þ 3)!
E�(N (s))C2mþ3(s; N (s))

þ 1

(2m þ 4)!
E(Tb(s) � s)2mþ4˜2mþ4�(N (s þ (Tb(s) � s)�2mþ4)): (6:8)

Concerning the main term in (6.8), we have as in (3.2) that
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sup
A�N

jE1A(N (s))Q2m(b, s; N (s))j ¼ 1
2
EjQ2m(b, s; N (s))j: (6:9)

By (3.2), Lemma 6.1 and (6.4), it can be verified that

sup
A�N

�2mþ3(b, s)jE1A(N (s))C2mþ3(s; N (s))j < Cb�(mþ2): (6:10)

Finally, by Lemma 2.1 and (6.4), we have

sup
A�N

jE(Tb(s) � s)2mþ4˜2mþ41A(N (s þ (Tb(s) � s)�2mþ4))j

< Cmin E(Tb(s) � s)2mþ4, E
Tb(s) � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s þ (Tb(s) � s)�2mþ4

p
 !2mþ4

8<
:

9=
;: (6:11)

Choose a constant � large enough so that if bs > � the second expectation on the right-hand

side in (6.11) exists. Then,

sup
0,bs<�

E(Tb(s) � s)2mþ4 ¼ 1

b2mþ4
sup

0, t<�
E(X (t) � t)2mþ4 <

C

b2mþ4
(6:12)

and

sup
bs>�

E
Tb(s) � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s þ (Tb(s) � s)�2mþ4

p
 !2mþ4

<
C

bmþ2
, (6:13)

where the last inequality follows from the central limit theorem and the strong law of large

numbers for the gamma process. As in the proof of Theorem 3.1(b), (6.5) follows from

(6.8)–(6.13). h

Many authors have obtained estimates in total variation between negative binomial and

Poisson distributions. For instance, Barbour (1987, p. 758) has shown that

dTV(P(Tb(s)), P(s)) <
1 � e�s

b
<

s ^ 1

b
(6:14)

and Roos (2003a, formula (31)) has given the estimate

dTV(P(Tb(s)), P(s)) <
1

b
s ^ 3

4e

� �
: (6:15)

For other upper bounds, we refer to Roos (2003a, formulae (32)–(35)). By calculus, we have

EjC2(s; N (s))j ¼ 2(2 � s)e�s, 0 , s , 2 �
ffiffiffi
2

p
. Therefore, by (6.7), estimate (6.14) is sharp

as s ! 0. Also, (6.3) and (6.7) show that the constant 3=4e in (6.15) is sharp (this fact has

already been noted by Roos (2003a, Theorem 1) in a more general setting). Finally, using the

central limit theorem and the strong law of large numbers for the Poisson process, it is not

hard to see that sEjC2(s; N (s))j ! (8=(�e))�1=2 as s ! 1. In this sense, Roos (2003a,

formula (38)) has obtained the asymptotic relation
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jb
ffiffiffiffiffiffiffiffi
2�e

p
dTV(P(Tb(s)), P(s)) � 1j < C

1

s
þ 1

b
ffiffiffi
s

p þ 1

b

� �
: (6:16)

With the help of Lemma 5 in Roos (2003a), a similar asymptotic relation to that in (6.16)

may be derived from (6.7). Details are omitted.
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