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In 1944 M.G. Krein proposed a condition throwing light on the moment problem for absolutely

continuous probability distributions. This condition, implying non-uniqueness, is expressed in terms of

a normalized logarithmic integral of the density and has different forms in the Hamburger moment

problem (for distributions on the whole real line) and in the Stieltjes moment problem (for

distributions on the positive real line). Other forms of the Krein condition, together with new

conditions (smoothing and growth condition on the density) suggested by G.D. Lin and based on a

work by H. Dym and H.P. McKean, led to a unique solution to the moment problem. We present new

results, give new proofs of previously known results and discuss related topics.
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1. Introduction

Suppose F is a distribution function (d.f.) on the real line such that the kth-order moments

á(k) � � x k dF(x), k � 1, 2, . . . , are all ®nite. Thus F generates in a unique way the moment

sequence fá(k), k � 1, 2, . . .g. We are interested in the inverse question: When does the

moment sequence fá(k)g uniquely determine F? Or, if F and G are d.f.s and�
x k dF � � x k dG for all k � 1, 2, . . . , does this imply that F � G? If the answer is

`yes', we say that the moment problem has a unique solution (F is M-determinate).

Otherwise, this problem has a non-unique solution (F is M-indeterminate), where `M' stands

for `moment'.

In this paper we deal with the moment problem in its probabilistic setting. All conditions

and statements are expressed in terms of random variables (r.v.s) de®ned on an underlying

probability space (Ù, F , P) and their d.f.s and densities. For other aspects of the moment

problem the reader is referred to the classical books by Shohat and Tamarkin (1943) and

Akhiezer (1965), or to more recent books by Krein and Nudelman (1977), Landau (1987)

and Koosis (1988).

One of the main and most frequently used tools in the moment problem is the Carleman

criterion (see, for example Feller 1971; or Lukacs 1970): if F is a d.f. on (ÿ1, 1) with

all moments ®nite, then the condition
P1

k�1(á(2k))ÿ1=2k � 1 implies that F is unique; if

(0, 1) is the support of F, then
P1

k�1(á(k))ÿ1=2k � 1 guarantees the uniqueness of F.
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Let us focus now our attention on absolutely continuous distributions on (ÿ1, 1) or on

(0, 1) and describe the solution to the moment problem in terms of the so-called Krein

condition. This condition involves the `value' of the logarithmic normalized integral

K :� � [(ÿln f (:))=(1� x2)] dx, where f is the density of F, assuming f (x) . 0 for all x.

The integral is taken over the support of F. The argument of f (:) is x if the support is

(ÿ1, 1), see (1) and (2) below; this is the Hamburger moment problem. The density f (:)
has an argument x2 if the support is (0, 1), see (4) and (5) below; this is the Stieltjes

moment problem. In general, there are two possibilities for K: either K is a ®nite number or

K is �1 (see Berg 1995; and Lin 1997). The solution of the moment problem depends

only on whether K � �1 or K ,�1.

The Krein condition appeared a long time ago (see Krein 1944). Curiously, it came when

solving an extrapolation problem proposed by A.N. Kolmogorov. Krein provided a condition

(see (1) below) which is suf®cient for a distribution to be M-indeterminate. Hence the Krein

result is opposite to conclusions based on the Carleman criterion. Note that the Carleman

condition is not necessary for uniqueness, while the Krein condition is not necessary for

non-uniqueness in the moment problem (see Section 11 in Stoyanov 1997).

Note that the Krein condition is intensively discussed by Akhiezer (1965) and brie¯y

mentioned by Prohorov and Rozanov (1969). Chapter 5 in Koosis (1988) is devoted to the

logarithmic normalized integral and the associated moment problems. The relation between

the Carleman condition and the Krein condition is analysed in Dym and McKean (1976).

This analysis culminated later in the discovery of conditions under which a distribution is M-

determinate (see Lin 1997). It is regrettable that for some time the Krein condition (2) was

misinterpreted. This began when Leipnik (1981) stated that (2) is a necessary and suf®cient

condition for uniqueness. This error was later repeated in other works such as Devroye

(1986), Crow and Shimizu (1988). Slud (1993) made essential progress in the ®eld, providing

precise conditions for uniqueness and for non-uniquness in both the Hamburger and the

Stieltjes moment problems. The next contributions come from works by Berg (1995; 1998a;

1998b), Lin (1997), Simon (1998) and Pedersen (1998). Illustrations and applications of the

Krein condition can also be found in Stoyanov (1997; 1999) and Lin and Huang (1997).

1.1. Hamburger moment problem

Suppose the support of F is (ÿ1, 1), the density f (x) . 0 for all x 2 (ÿ1, 1) and that all

moments á(k) � �1ÿ1 x k f (x) dx, k � 1, 2, . . . , are ®nite.

Theorem 1. Suppose the following Krein condition is satis®ed:�1
ÿ1

ÿln f (x)

1� x2
dx ,1: (1)

Then the d.f. F is M-indeterminate, i.e. the moment problem has a non-unique solution.

This statement can be derived from more general results of Krein (1944). The proof and

several comments are available in Akhiezer (1965). It is remarkable to see different proofs
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in Slud (1993), Berg (1995) and Lin (1997) based on different ideas. Theorem 2 below is

given in a form close to that in Lin (1997).

Theorem 2. Suppose the following Krein condition is satis®ed:�1
ÿ1

ÿln f (x)

1� x2
dx � 1: (2)

Additionally, let the following Lin condition be satis®ed: f is symmetric, differentiable and,

for some x0 . 0 and x > x0, we have

ÿxf 9(x)

f (x)
%1 as x!1: (3)

Then the d.f. F is M-determinate, i.e. the moment problem has a unique solution.

1.2. Stieltjes moment problem

Now the support of the d.f. F is the real half-line (0, 1). Suppose that f (x) . 0, for all

x 2 (0, 1), and that all moments á(k) � �1
0

x k f (x) dx, k � 1, 2, . . . are ®nite. Let us

formulate two crucial results. Theorem 3 is due to Slud (1993) and its proof is based on an

appropriate symmetrization procedure. Theorem 4 is given almost as in Lin (1997).

Theorem 3. Suppose the following Krein condition is satis®ed:�1
0

ÿln f (x2)

1� x2
dx ,1: (4)

Then the d.f. F is M-indeterminate, i.e. the moment problem has a non-unique solution.

Theorem 4. Suppose the following Krein condition is satis®ed:�1
0

ÿln f (x2)

1� x2
dx � 1: (5)

Additionally, let the Lin condition be satis®ed: f is differentiable and, for some x0 . 0 and

x > x0, we have

ÿxf 9(x)

f (x)
%1 as x!1: (6)

Then the d.f. F is M-determinate, i.e. the moment problem has a unique solution.

Remark 1. As noted by Lin (1997), the conditions in Theorems 2 and 4, together with

arguments from Dym and McKean (1976), imply that the Carleman condition is satis®ed,

thus concluding the uniqueness of a distribution. In general, in order to check the Carleman

condition we need to know all moments and show divergence of an in®nite series. In

Theorems 1±4 we operate only with the densities, which in many cases (see, for example, the
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next section) is much easier, with no need to calculate moments. All these conditions ±

Carleman, Krein, Lin, etc. ± appropriately chosen, are powerful tools in the moment problem.

2. New results and new proofs of known results

We now consider some popular probability distributions and treat the moment problem for

them. We will see how easy is to derive new results or to obtain previously known results. If,

however, the result is `old', then its proof based on the Krein condition is new.

For our conclusions we need the following integrals (see, for example, Gradshteyn and

Ryzhik 1980): �1
0

xb

1� x2
dx � ð

2 cos(bð=2)
for b 2 (ÿ1, 1),�1

0

ln x

a2 � x2
dx � ð

2a
ln a for a . 0,

�1
0

(ln x)2

1� x2
dx � ð3

8
: (7)

2.1. Lognormal distribution

Let X be a positive r.v. with support (0, 1). We say that X has a (standard) lognormal

distribution with parameters (0, 1) and write X � L(0, 1) or L (X ) � L(0, 1), if its density is

f (x) �
1

x
������
2ð
p exp ÿ 1

2
(ln x)2

� �
, if x . 0,

0, if x < 0:

8><>: (8)

We easily ®nd that á(k) � E[X k] � exp(k2=2), k � 1, 2, . . . , so X has ®nite moments of

all orders. The support of L (X ) is (0, 1) and we are looking for the solution to the

Stieltjes moment problem. The Carleman condition
P1

k�1(á(k))ÿ1=2k � 1 is not satis®ed in

this case. However, even if satis®ed, this condition is only suf®cient without being necessary

for the uniqueness of the moment problem (see Example 11.10 in Stoyanov 1997). Another

possibility is to consider the series
P1

k�0 t kek2=2=k!, which is a `candidate' for the moment

generating function (m.g.f.) of X . However, this series diverges for any t . 0, which means

that X does not have an m.g.f. (despite the existence of all moments!). In general (see

Lukacs 1970), the existence of the m.g.f. implies the uniqueness of the distribution. No

conclusion can be derived based on the non-existence of the m.g.f. Let us illustrate how

easy it is to apply the Krein condition.

Proposition 1. Let X be an r.v. with lognormal distribution L(0, 1). Then, for all real

numbers r, except r � 0, the distribution L (X r) is M-indeterminate, i.e. the moment problem

for X r has a non-unique solution.
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Proof. If r � 0, X 0 � 1 a.s. is a degenerate r.v., its distribution unique. So we turn to r 6� 0.

Let r . 0 and let f r denote the density function of the `new' r.v. X r. The support of f r is

again (0, 1). Clearly, like X , in view of the Lyapunov inequality, X r also has ®nite

moments of all orders for any r . 0. We can ®nd directly the density f r of X r or use the

fact (Pakes and Khattree 1992), that the rth power of X , X r, also has a lognormal

distribution denoted in this case by L(0, r2) and de®ned by the density

f r(x) �
1

xr
������
2ð
p exp ÿ 1

2r2
(ln x)2

� �
, if x . 0,

0, if x < 0:

8><>: (9)

Writing ®rst f r(x
2) for f r(x) given by (9) and using the integrals (7), we easily see that

K r :�
�1

0

ÿln f r(x
2)

1� x2
dx ,1 for all r . 0:

Therefore the Krein condition (4) is satis®ed and Theorem 3 says that the distribution L (X r)

is M-indeterminate for any r . 0. This implies also that L (X ÿr) is M-indeterminate for r . 0

since X � eî for an r.v. î � N (0, 1) and in view of the symmetry of î. Hence the distribution

L (X r) is M-indeterminate for any r 6� 0. h

Remark 2. The case r � 1 is special: X 1 � X is just the lognormally distributed r.v. X whose

density is given by (8). Proposition 1 yields that L(0, 1) � L (X ) is M-indeterminate, i.e. the

moment problem for the standard lognormal distribution has a non-unique solution. In fact,

this result, albeit in another form, was discovered by T. Stieltjes in 1894; details are given in

Berg (1995). The term `lognormal distribution' was introduced later. Since the appearance of

the paper by Heyde (1963) this distribution has been among the most frequently cited as

being not determined uniquely by its moment sequence. Note that Heyde does not use the

Krein condition; he follows a different but effective idea, describing explicitly an in®nite

family of non-lognormal distributions each having the same moments as those of the

lognormal distribution. Details can be seen in the original paper by Heyde (1963), but also in

other sources such as Pakes and Khattree (1992), Berg (1995) or Stoyanov (1997).

2.2. Powers of the normal distribution

Suppose X is an r.v. with a normal distribution N (ì, ó 2), ì 2 R1, ó 2 . 0. All the moments

of X are ®nite, the m.g.f. E[exp(tX )] � exp(ìt � 1
2
t2ó 2) exists for all real t, so the normal

distribution is M-determinate. The same conclusion can be derived for the distribution

L (X 2), and the next question is about the powers X m for positive integers m > 3, or jX jr
for real r . 0. (If r � 0, the distribution of the degenerate r.v. jX j0 � 1 is unique, which is

not so interesting.)

Proposition 2. Let X be a normally distributed r.v. Then the following statements hold:

(a) The distribution L (X 2n�1) is M-indeterminate for any n � 1, 2, . . . :
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(b) The distribution L (jX jr) is M-determinate for all r 2 (0, 4].

(c) The distribution L (jX jr) is M-indeterminate for all r . 4.

Proof. Claims (a), (b) and (c) are among the main results in Berg (1988). Berg's approach

when proving them is to write explicitly in®nite families of distributions with the same

moments in cases of indeterminacy, or to use the Carleman criterion in the case of

determinacy. The Krein condition is not used. Our approach here is to use the Krein±Lin

technique and offer easier proofs of the same statements.

Clearly claims (a), (b) and (c) do not depend on the speci®c values of the parameters of

the normal distribution. Thus, for simplicity, we assume that X � N (0, 1
2
), so the density f

of X is f (x) � (1=
���
ð
p

) exp(ÿx2), x 2 (ÿ1, 1).

For our next steps we need the explicit expressions for the densities f 2n�1 of X 2n�1 and

g r of jX jr. Standard arguments lead to the following formulae:

f 2n�1(x) � 1

(2n� 1)
���
ð
p jxjÿ2n=(2nÿ1) exp[ÿjxj2=(2n�1)], x 2 (ÿ1, 1), n � 1, 2, . . . ,

(10)

gr(x) �
2

r
���
ð
p x1=rÿ1 exp[ÿx2=r], x . 0, r . 0;

0, x < 0:

8<: (11)

There is an obvious difference: X 2n�1 is distributed on (ÿ1, 1), which is a Hamburger

case, while jX jr is distributed on (0, 1), which is a Stieltjes case. When ®nding the quantity

K2n�1 :�
�1
ÿ1

ÿln f2n�1(x)

1� x2
dx

we use (10) to obtain K2n�1 � C � I1 � I2, where

C � const:, I1 � 2n

2nÿ 1

�1
ÿ1

ÿln jxj
1� x2

dx, I2 �
�1
ÿ1

jxj2=(2n�1)

1� x2
dx:

We have I1 � (4n=(2nÿ 1))
�1

0
[(ln x)=(1� x2)] dx � 0 in view of the second integral in (7).

Since 2=(2n� 1) , 1 for any n � 1, 2, . . . , the ®rst integral in (7) implies that I2 ,1.

Hence K2n�1 ,1, the Krein condition (1) is satis®ed and, according to Theorem 1, the

distribution L (X 2n�1) is M-indeterminate for any n � 1, 2, . . . :
Now we turn to the quantity

K�r :�
�1

0

ÿln gr(x
2)

1� x2
dx:

For gr from (11) we write ®rst g r(x
2) and take ÿln g r(x2), thus obtaining K�r � C2 � J1 �

J2, where

C2 � const:, J1 � ÿ 2

r
ÿ 2

� ��1
0

ln x

1� x2
dx, J2 �

�1
0

x4=r

1� x2
dx:
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Again, the second integral in (7) implies that J1 � 0 for all r . 0. Thus the dominating term

in K�r is J2. Since r . 0, in view of the ®rst integral in (7) we obtain that

J2 ,1, 4=r , 1, r . 4:

Hence K�r ,1 for these values of r, the Krein condition (4) is satis®ed and Theorem 3 tells

us that the distribution L (jX jr) is M-indeterminate for any real r . 4.

Moreover, for any r 2 (0, 4], J2 � 1, which is exactly the Krein condition (5). Hence in

this case we have to check if the Lin condition (6) holds. We ®nd

ÿxg9r(x)

g r(x)
� ÿ 2

r
ÿ 2

� �
� 4

r
x4=r %1 as x!1:

Thus condition (6) is satis®ed even for any r . 0, not only for r 2 (0, 4]. Therefore,

according to Theorem 4, the distribution L (jX jr) is M-determinate for any r 2 (0, 4]. h

2.3. Powers of the inverse Gaussian distribution

We say that the r.v. X taking positive values has an inverse Gaussian distribution with

parameters ì. 0, ë. 0, X � IG(ì, ë), if X is absolutely continuous with density

f (x) �
ë

2ðx3

� �1=2

exp ÿ ë

2ì2

(xÿ ì)2

x

" #
, if x . 0,

0, if x < 0:

8>><>>:
First we can check that X has ®nite moments ák � E[X k], for all k � 1, 2, . . . :

Moreover, the m.g.f. M X (t) � E[exp(tX )] is explicitly known (see, for example, Seshadri

1993):

M X (t) � expf(ë=ì)[1ÿ (1ÿ 2ì2 t=ë)1=2]g
Obviously, M X (t) is well de®ned for all t , ë=(2ì2), which means that M X exists in a proper

neighbourhood of t � 0. Then a general theorem in Lukacs (1970) yields that the distribution

L (X ), i.e. the inverse Gaussian distribution, is M-determinate. So for what values of r the

distribution L (X r) of X r is M-indeterminate?

Proposition 3. Let X � IG(ì, ë) and let r be a real number. The following statements hold:

(a) If r ,ÿ2 or r . 2, then the distribution L (X r) is M-indeterminate.

(b) If ÿ2 < r < 2, then the distribution L (X r) is M-determinate.

Sketch of proof. The natural idea is to ®nd the density of X r and check which form of the

Krein condition is satis®ed, reaching our conclusion directly or after testing the Lin condition

(6). Details as well as some related topics are given in Stoyanov (1999). h
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3. Functions preserving or destroying the determinacy

It turns out that for an r.v. X having some of the popular distributions, L (X ) and L (X 2) are

M-determinate while L (X 3) is M-indeterminate and the value r � 3 is the minimal integer

positive power such that the distribution L (X r) or L (jX jr) becomes M-indeterminate. It was

of interest, for a few cases, to raise the curious question of the mysterious role of the number

3 as a power of X when we `lose' the uniqueness in the moment problem.

Let us recall some de®nitions. We say that X has the gamma distribution with

parameters a . 0, b . 0 and write X � ã(a, b) if the density of X is

f (x) � [ba=Ã(a)]xaÿ1 exp[ÿbx], x . 0,

0, x < 0:

(
If X � ã(a, b) and a � 1, then X is exponentially distributed, X � Exp(b). And X has

Laplace distribution (double-exponential) if the density of X is (b=2) exp(ÿbjxj), x 2
(ÿ1, 1). Finally, we say that the r.v. X has a logistic distribution if the density of X is

f (x) � eÿx=(1� eÿx)2, x 2 (ÿ1, 1).

In the following statements, r � 3 is the minimal integer positive value of the power r

when the distribution L (X r) or L (jX jr) becomes M-indeterminate.

(a) If X is normally distributed, then L (X 3) is M-indeterminate.

(b) If X is exponentially distributed, then L (X 3) is M-indeterminate.

(c) If X has the Laplace (double-exponential) distribution, then L (jX j3) is M-

indeterminate.

(d) If X has the gamma distribution, then L (X 3) is M-indeterminate.

(e) If X has the logistic distribution, then L (X 3) is M-indeterminate.

(f ) If X has inverse Gaussian distribution, then L (X 3) is M-indeterminate.

Claim (a), mentioned by Prohorov and Rozanov (1969), is discussed by Berg (1988).

Claims (b), (c) and (d) and their modi®cations are considered in Targhetta (1990), Pakes

and Khattree (1992) and Lin and Huang (1997); see also Example 11.5 in Stoyanov (1997).

Claim (e) is one of the results in Lin and Huang (1997), while claim (f ) follows from

Proposition 3 above; see also Stoyanov (1999). Cases (a)±(d), as presented in the works

cited, do not rely on the Krein±Lin techniques.

The question above was about the role of the power 3. That this is a coincidence follows

from claim (c) of Proposition 2 above, implying that r � 5 (not 3) is the minimal positive

integer value of r when L (jX jr) becomes M-indeterminate.

Pakes and Khattree (1992) and Lin and Huang (1997) contain several related results for

the generalized gamma distributions. The deep analysis in Slud (1993) of the determinacy

of the distribution of polynomials in normal r.v.s motivates us to raise such a question for

polynomials in r.v.s having another distribution, such as exponential or inverse Gaussian.

Look also at the logarithmic function destroying the uniqueness of the normal

distribution. The reader may ®nd it interesting to check whether or not the log-exponential

distribution is M-determinate. However, if we take an r.v. X with beta distribution on (0, 1)

and de®ne the `new' r.v. Y :� ÿln X , with the log-beta distribution, we easily obtain that
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the distribution L (Y ), having (0, 1) as its support, is M-determinate. So, in this case the

logarithmic function preserves the determinacy. Note ®nally that this function destroys the

uniqueness of the Poisson distribution: the log-Poisson distribution is M-indeterminate (see

Example 11.7 in Stoyanov 1997).

Our interest is not con®ned to powers and the logarithmic function. It is interesting to

take an arbitrary functional transformation Y :� h(X ), where X is a given r.v. and h is an

appropriate real-valued function. Assume X and Y have all moments ®nite. Each of the

distributions L (X ) and L (Y ) is either M-determinate or M-indeterminate. Avoiding a few

trivial cases, we want to characterize pairs X , h such that the determinacy property is

preserved, i.e. both L (X ) and L (Y ) are M-determinate or M-indeterminate. Cases when

the determinacy property is changed to that of indeterminacy are also of interest. This topic

is currently under study.

4. Comments on related topics

Comment 1. There are discrete distributions which are M-indeterminate; examples of this

kind can be seen in Section 11 of Stoyanov (1997) and other families were given recently by

Berg (1998a, 1998b). The question is to ®nd an analogue of each of the forms of the Krein

condition for purely discrete distributions and exploit them for the moment problem. Perhaps

the paper by Pedersen (1998), treating the Hamburger moment problem, is the only

contribution in this direction.

Comment 2. Many distributions, including those in Section 2, can be treated in a uni®ed way.

To achieve this we assume that the r.v. X is absolutely continuous with distribution belonging

to the exponential family: the density of X has the form f (x) � Au(x) exp[ÿv(x)], where u

and v are appropriate positive functions (on the support of f ) and A is a normalizing

constant. Assuming X has all moments ®nite, we are interested in the corresponding

Hamburger or Stieltjes moment problem. In this case Theorems 1±4 can be reformulated in

such a way that the Krein and Lin conditions be expressed only in terms of the two functions

u and v. Then as a consequence we can obtain many known results.

Comment 3. The works by Berg and Christensen (1981) and Berg (1998b) show the non-

trivial result that if the d.f. F is M-indeterminate, then there are `many' discrete as well as

`many' absolutely continuous distributions having the same moments of all orders (`many'

means in®nitely many!). Leipnik (1981) found explicitly discrete distributions having all

moments ®nite and the same as those of the (absolutely continuous!) lognormal distribution;

see also the comments by Pakes and Khattree (1992) and Berg (1998b). So, how to ®nd

discrete distributions (M-indeterminate!) having the same moments as those of the cube of

the normal distribution, the cube of the exponential distribution, etc.?

Comment 4. The Krein±Lin techniques can be successfully applied when solving the

identi®ability problem for mixtures of distributions in the spirit of the recent paper by

Sapatinas (1995).
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