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A new method of construction of Markov chains with a given stationary distribution is proposed. The

method is based on constructing an auxiliary chain with some other stationary distribution and picking

elements of this auxiliary chain a suitable number of times. The proposed method is easy to

implement and analyse; it may be more efficient than other related Markov chain Monte Carlo

techniques. The main attractive feature of the associated Markov chain is that it regenerates whenever

it accepts a new proposed point. This makes the algorithm easy to adapt and tune for practical

problems. A theoretical study and numerical comparisons with some other available Markov chain

Monte Carlo techniques are presented.

Keywords: adaptive method; Bayesian inference; independence sampler; Metropolis–Hastings

algorithm; regeneration

1. Introduction

Markov chain Monte Carlo (MCMC) is a key technique for calculating analytically

intractable integrals in high dimensions. The propagation and advancement of model-based

Bayesian statistical inference and prediction have enjoyed a symbiotic relationship with the

development, analysis and discovery of new computing algorithms. The spectacular success

of the current methodologies is mostly due to their easy programmability and universal

applicability.

The techniques of constructing a Markov chain with a given stationary distribution, �
(sometimes called the target distribution), are based on the general methodology commonly

known as the Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). At

each iteration of the algorithm, a candidate is generated from a proposal distribution and is

accepted with a probability which depends on both the current and the candidate point. This

ensures that � is the equilibrium distribution of the Markov chain so constructed. There is a

huge literature in this area; see, for example, Gelfand and Smith (1990), Gilks et al. (1996),

Robert and Casella (1999), Smith and Roberts (1993), Tierney (1994), Chib and Greenberg

(1995) and references therein.

In this paper we propose and study a new MCMC algorithm which we call self-

regenerative (SR). This algorithm belongs to the general family of MCMC algorithms

proposed by Hastings (1970). In the algorithm, given a draw from a proposal density, we
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compute how many times we want to keep the proposed point in the sample. The latter is a

draw from the geometric distribution with an appropriate success probability. Having done

this, we go on to simulate another independent candidate point from the proposal

distribution and iterate.

A regeneration point of a Markov chain is a time at which its future becomes independent

of the past; see, for example, Ripley (1987), Mykland et al. (1995), Robert (1995) and Gilks

et al. (1998). We show that the times at which the SR algorithm accepts new candidate points

are its regeneration times. Thus, the regeneration times of the SR algorithm are identified

without any extra work, such as Markov chain splitting (Nummelin 1984), unlike for the

MCMC algorithms based on the regular Metropolis–Hastings version. This regenerative

property gives the name to the algorithm and permits a simple analysis of it.

The regenerative property provides a framework for Markov chain adaptation. Gilks et al.

(1998) propose adaptations at regeneration points of the Markov chain. They obtain

theoretical results that such adaptation does not disturb the stationary distribution of the

Markov chain and maintains consistency of the sample path averages. Their set-up can be

used for adapting the SR algorithm. Although there is huge flexibility in devising adaptive

methods, a simple (to implement) adaptation scheme is proposed in this paper. The proposal

distribution is adapted every time the SR algorithm comes across a trouble point in the

target space where the target and the current proposal distributions have large disparities

between them. Theoretical results proved in Section 4.2 show that this adaptation scheme

never makes the algorithm infinitely worse. Moreover, substantial improvements are seen in

the examples we have looked at.

The SR algorithm and its adaptive version are compared with other MCMC schemes,

including the Gibbs sampler and the slice sampler. The slice sampler has been shown to be

uniformly better than the Metropolis–Hastings independence sampler by Mira and Tierney

(2002). The present paper shows that the SR algorithm can be more efficient than the slice

sampler. The proposed methods are also shown to be better than the Gibbs sampler as

implemented in Winbugs, a general-purpose program for making Bayesian inference

(Spiegelhalter et al. 1996).

This paper is organized as follows. In Section 2 the SR algorithm is introduced. Section

3 contains the main theoretical results. In Section 4 an adaptive methodology for the SR

algorithm is proposed and some theoretical results are proved. Section 5 illustrates our

methods with four examples. A few summary remarks are made in Section 6. Proofs of the

main results are given in the Appendix.

2. The SR algorithm

2.1. Description

Let (E, E) be a measurable space and �(dx) and ł(dx) be probability measures on it. Let �
and ł have densities, with respect to a � -finite measure �, given by

�(dx) ¼ �(x)�(dx), ł(dx) ¼ ł(x)�(dx),
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respectively. We assume that �(x) is the target density and ł(x) is the proposal density. To

avoid trivialities we assume throughout this paper that

ł(x) ¼ 0 for some x implies that �(x) ¼ 0: (1)

Condition (1) on the support of the distributions is typical in MCMC simulation.

In typical problems where MCMC is used, the normalizing constant of the target

distribution �(x) is not known. We also assume that the normalizing constant of ł(x) is

unknown. Let ~��(x) and ~łł(x) denote non-normalized versions of the densities. Let

w(x) ¼ �(x)=ł(x) and ~ww(x) ¼ ~��(x)= ~łł(x). If the normalizing constant of ł(x) is known,

then we simply set ~łł(x) ¼ ł(x).

Let c . 0 be a constant such that c ~ww(x) ¼ w(x) and k be an arbitrary positive constant.

Define the function

Æ(x) ¼ 1

1þ kw(x)
¼ 1

1þ kc ~ww(x)
, (2)

which we shall call the rejection function.

Let N be the total number of samples to be drawn from the proposal distribution ł(x).

The main algorithm is as follows. Assume that n ¼ 1 and m ¼ 0.

Algorithm 1 Self-regenerative MCMC.

(i) Generate Zn � ł.

(ii) Generate U � Uniform(0, 1).

(iii) If U < 1� Æ(Zn), set X mþ1 ¼ Zn and return to step (ii) with m ¼ mþ 1.

(iv) If n ¼ N then stop, else set n ¼ nþ 1 and return to step (i).

In Section 3 we analyse this algorithm theoretically; we show, in particular, that the

associated Markov chain has �(x) as its stationary density.

Observe that for fixed n and Zn, steps (ii) and (iii) of Algorithm 1 simulate Bernoulli

trials with success probability Æ(Zn) until the first success. Hence the two steps can be

coalesced. Let � � G( p) denote a geometric random variable with success probability p and

probability mass function Pr(� ¼ i) ¼ (1� p)i p for i ¼ 0, 1, . . . : Now Algorithm 1 can be

expressed in the following simpler but probabilistically equivalent form. Let n ¼ 1 and

m ¼ 0.

Algorithm 2.

(i) Generate Zn � ł.

(ii) Generate �n � G(Æ(Zn)). If �n . 0, set X mþ j ¼ Zn for j ¼ 1, . . . , �n and

m ¼ mþ �n.

(iii) If n ¼ N then stop, else set n ¼ nþ 1 and return to step (i).
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Let M denote the final value of m, that is,

M ¼
XN
n¼1

�n: (3)

Thus, M is the total number of MCMC samples drawn from the target distribution after

simulating N samples from the proposal distribution. Clearly, M is a random variable. The

stopping criteria in Algorithms 1 and 2 can be modified if it is desired to keep M fixed. In

this case N becomes a random variable. We shall investigate the asymptotic relationship

between M and N in Section 3.3.

2.2. Choice of kk

To implement the SR algorithm we need to specify the product of the positive constants k
and c in (2). There are accurate methods available to estimate c; see, for example, Chib

(1995), Chib and Jeliazkov (2001) and the references therein. We, however, do not need to

know the constant c exactly since the implementation of the SR algorithm requires only the

product kc, and Xm is shown to be a Markov chain with � as its unique stationary

distribution for any k . 0. A rough estimate of c can be obtained by using the following

guidelines.

We have

Eł
~��(Z)

~łł(Z)
¼ 1

c
:

With B draws from ł, a Monte Carlo estimate ĉc of c is given by

1

ĉc
¼ 1

B

XB
i¼1

~��(Zi)

~łł(Zi)
: (4)

Hence we can set c�1 to be this estimate. This can be automated, that is, done before running

the algorithm. Although the ĉc defined in (4) only provides a rough estimate of c, it suffices to

run the algorithm with this estimate since the algorithm is shown to work for any positive

value of k. An inaccurate estimate of c will only imply a different value of k in (2).

In Section 3.5 we shall see that the efficiency of the SR algorithm is an increasing

function of k. If k is chosen to be very large, then the rejection probability Æ(x) in equation

(2) will be very small. As a result, the accepted proposals will be repeated many times; see

step (iii) of Algorithm 1. This will increase the autocorrelation of the SR chain. If k is

chosen to be very small, then Æ(x) will be large and many proposed moves will be rejected.

In practice we set a value of k which does not lead to either too many rejections or too

many repetitions of the same candidate point. This is the only tuning needed to implement

the algorithm, although we remark that k can be adapted during the course of simulation

(see Section 4).
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3. Analysis

3.1. Basic properties

The sequence Xm in Algorithm 1 forms a Markov chain by definition. To discuss the

convergence properties of Xm we introduce some notation. Let w� ¼ supx w(x) and �x(y)

denote the point mass at x. We also define the density

�(y) ¼ f1� Æ(y)gł(y)Ð
f1� Æ(z)gł(z)�(dz)

: (5)

Finally, recall the definition of the total variation norm of a bounded sign measure º on

(E, E):

kºk ¼ sup
A2E

º(A)� inf
A2E

º(A):

Theorem 1. Assume that the support condition (1) holds.

(i) The sequence X 1, X2, . . . forms a Markov chain with the transition kernel

K(x, dy) ¼ [Æ(x)�(y)þ f1� Æ(x)g�x(y)]�(dy), (6)

with � being an invariant distribution of K; that is,ð
�(dx)K(x, dy) ¼ �(dy): (7)

(ii) The transition kernel K(x, dy) is reversible, �-irreducible and aperiodic. It is also

ergodic, that is, for every x 2 E,

kKm(x, �)� �(�)k ! 0 as m!1: (8)

Corollary 1. Under the conditions of Theorem 1, the pair fÆ(x), �(dy)g provides a

Nummelin splitting of the transition kernel K(x, dy).

Using Corollary 1, we see that every time a new candidate y is accepted is a regeneration

time. See, for example, Nummelin (1984) and Gilks et al. (1998) for more on splitting and

regeneration.

With a further assumption on � and ł the SR algorithm achieves a geometric rate of

convergence for (8).

Theorem 2. If w� ¼ supx w(x) ,1, then Theorem 1 holds and K(x, dy) is uniformly

ergodic.

Hence the SR algorithm can be used in MCMC simulation. Moreover, we have the following

result.
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Corollary 2. Under the conditions of Theorem 2, 	 ¼ 1=(1þ kw�) is an upper bound on the

rate of convergence of the SR algorithm.

3.2. SR and the Metropolis–Hastings algorithm

The Hastings (1970) algorithm generates a candidate point y from the proposal distribution

q(yjx) (where x is the current point) and accepts it with probability

ÆH(x, y) ¼ s(x, y)

1þ tH(x, y)
,

where s(x, y) is a symmetric function of x and y such that 0 < ÆH(x, y) < 1 and

tH(x, y) ¼ �(x)q(yjx)

�(y)q(xjy)
: (9)

The algorithm is also valid without the symmetry requirement on s(x, y) if the resulting

transtion kernel satisfies an appropriate invariant condition such as (7). When the proposal

distribution is taken to be independent of the past we assume q(yjx) ¼ q(y) and tH(x, y) in

(9) simplifies to

t(x, y) ¼ �(x)q(y)

�(y)q(x)
: (10)

The support condition (1) guarantees that �(y) is a proper probability distribution. We

now choose the proposal distribution q(y) of the Hastings algorithm to be �(y) and

s(x, y) � sSR(x, y) ¼ Æ(x)f1þ t(x, y)g, (11)

where Æ(x) is given in equation (2). Note that in this case s(x, y) is not symmetric. We thus

have

ÆH(x, y) ¼ Æ(x):

The resulting transition kernel, K(x, dy) given in (6), is now seen to be the transition kernel

of the Hastings-type algorithm which generates independent proposals from �(y) and accepts

with probability Æ(x). Thus we have proved the following result.

Lemma 1. Under the support condition (1), K(x, dy) has the form of the transtion kernel of

the Hastings algorithm with �(y) as the proposal density.

The Metropolis–Hastings sampler with �(y) as the independent proposal distribution

chooses

s(x, y) � sMH(x, y) ¼ 1þminft(x, y), t(y, x)g;
see, for example, Hastings (1970) and Peskun (1973). Clearly, sMH(x, y) 6¼ sSR(x, y) for all x

and y, which proves that SR algorithm is not Metropolis–Hastings corresponding to the

proposal density �(y). Similarly, it is straightforward to show that the SR algorithm is not
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Metropolis–Hastings corresponding to the proposal density ł(y) as well as any other

proposal density. Thus we have established that the SR algorithm is not a special case of the

Metropolis–Hastings algorithm.

3.3. Sample size

If N independent draws from ł are carried out, then we obtain M MCMC samples from �,

where M is a random variable. M is the sum of N independent geometric random

variables, �n, with random success probabilities Æ(Zn), Zn � ł; see equation (3). The

following result is an easy consequence of this hierarchical set-up.

Lemma 2. Let � � G(Æ(Z)) where Z � ł. Then

E(�) ¼ k, var(�) � � 2
� ¼ kþ k2f2E�(w(X ))� 1g: (12)

Note that the �n in (3) are independent and identically distributed (i.i.d.) with the above mean

and variance. Hence we have the following result.

Theorem 3. Assume that � 2
� is finite. Then

1ffiffiffiffiffi
N
p (M � Nk)) N (0, � 2

�) as N !1,

where ‘)’ denotes convergence in distribution and N (a, � 2) denotes the normal distribution

with mean a and variance � 2.

In order to study the M-step transitions KM (x, dy) and compare the rate of convergence

in (8) with other MCMC techniques, we modify the stopping criterion of Algorithms 1 and

2 so that M is fixed. Then N becomes a random regeneration moment where

N ¼ inf n :
Xn
i¼1

�i > M

( )
: (13)

We thus have an analogue of Theorem 3.

Theorem 4. Assume that � 2
� is finite and let the random variable N be as defined in (13).

Then

1ffiffiffiffiffi
M
p (M � Nk)) N 0,

� 2
�

k

 !
as M !1:

Theorems 3 and 4 provide qualitative descriptions of the asymptotic relation M ’ Nk which

we use later on in this paper.
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3.4. Rate of convergence

The rate of convergence of a Markov chain, together with the starting value, determines the

number of iterations needed for convergence to the stationarity. Let Q(x, dy) denote the

transition kernel with unique equilibrium distribution �(x) and T be a given integer. The

rate of convergence, denoted by r, of such an algorithm is the minimum number 
 2 [0, 1]

such that

kQt(x, �)� �(�)k < V (x)
 t

for a suitable function V and for all t . T . The requirement that k � kT , E for some small E
dictates that the algorithm should be run a suitable multiple of (log r)�1 number of iterations

in order to achieve the given accuracy E, where the multiplier depends on E and the function

V (x), which in turn depends on the starting point x.

Let us look at the M-step transition kernel KM of the SR. Assume that w(x) is bounded,

that is, w(x) < w� ,1 for all x. Then Theorem 2 holds and we have

kKM (x, �)� �(�)k < V (x)[1� 	]M ,

where 1� 	 ¼ kw�=(1þ kw�). Since to perform M iterations of K we need N evaluations

of �, it is natural to express the rate of convergence as a function of N rather than M . Using

the asymptotic relation M ’ Nk, we have

kKM (x, �)� �(�)k < V (x)[1� 	]M ’ V (x)[1� 	]Nk ¼ V (x)[(1� 	)k]N :

Hence,

rSR < (1� 	)k ¼ kw�
1þ kw�

� �k

< 1� 1

w� þ
1þ k

2k
1

(w�)2
, (14)

where rSR denotes the rate of convergence of the SR algorithm.

Note that the right-hand side of (14) is a decreasing function of k. However, (14) also

suggests that it is more important to control w� in the SR algorithm for faster convergence.

Section 4 proposes an adaptive version of the SR algorithm to address this issue.

Lastly, the SR being a reversible Markov chain defines a positive definite operator on

L2(�), the space of square-integrable functions with respect to �(x), as do the slice sampler

and other Metropolis–Hastings schemes. Thus, for all these algorithms the characteristics

related to the speed of convergence to stationarity and to efficiency are equivalent. Next we

discuss results concerning the efficiency in estimating the integrals.

3.5. Estimation of integrals and efficiency

One of the primary tasks of MCMC simulation is to estimate arbitrary (but finite) integrals

with respect to the density � by forming ergodic averages. Let f be a real-valued function,

and let

If ¼
ð
f (x)�(x)�(dx), � 2

f ¼
ð
f (x)2�(x)�(dx)� I2

f :
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To estimate If we form the sample average

f N ¼
1

M

XM
j¼1

f (X j) ¼
1

M

XN
i¼1

�i f (Zi) ¼
PN

i¼1�i f (Zi)PN
i¼1�i

: (15)

After N steps of Algorithm 2, � is evaluated N times and the estimator f N is based on

N i.i.d. draws from the proposal distribution ł. Hence we discuss the limiting behaviour of

f N as N !1.

Let Lp(�) be the set of real-valued functions f such that
Ð
j f (x)j p�(x)�(dx) ,1 and

~ff (x) ¼ f (x)� If .

Theorem 5. If (1) holds, f 2 L1(�) and N !1, then

(i) f N � If �!
P

0, where ‘�!P ’ denotes convergence in probability.

(ii) Suppose also that f 2 L2(�) and

� 2 ¼ � 2(k, �, ł, f ) ¼
� 2

f

k
þ 2

ð
~ff (x)2w(x)�(x)�(dx) (16)

is finite; then ffiffiffiffiffi
N
p

( f N � If )) N (0, � 2):

If w� ,1, then � 2, the asymptotic variance of
ffiffiffiffiffi
N
p

f N , is finite. Moreover, � 2 can be

finite even when w� ¼ 1. Two simple examples are: w 2 L1(�) and f is bounded;

w 2 L2(�) and f 2 L4(�).

The expression for � 2 in (16) is the sum of two positive components. The first

component, � 2
f =k, is N times the variance of the standard Monte Carlo estimator of If

based on M(� Nk) i.i.d. samples from �(x). Therefore, the second component in (16) can

be thought of as a penalty for not being able to obtain i.i.d. samples from �(x).

Another way to understand the meaning of the second component in (16) is to consider

the importance sampling estimator of If ,

f̂f N ¼
1

N

XN
i¼1

f (Zi)
�(Zi)

ł(Zi)
, Zi � ł(z) i:i:d:

It is straightforward that

Nvar( f̂f N ) ¼
ð
~ff (x)2w(x)�(x)�(dx),

which is precisely the second term in (16) without the factor 2. Of course, it is more efficient

to use importance sampling alone but there is no Markov chain associated with this scheme.

However, being in the MCMC framework, we have serious advantages over importance

sampling, such as regeneration and adaptation. Moreover, the SR algorithm can be used to

update components in Gibbs sampling which is often used to simulate from high-dimensional

distributions where importance sampling fails.

Observe that the asymptotic variance � 2 is a decreasing function of k. Hence the SR
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algorithm will be more efficient for larger values of k. See Section 2.2 for more insights

into tuning k.

We remark that although we have the closed-form expression (16) for the asymptotic

variance of the estimator f N , such simple expressions are generally not available for

MCMC samplers. The variance of the estimator is usually written as a suitable multiple of

the integrated autocorrelation time of the process f f (Xm)g; see, for example, Geyer (1992)

and Green and Han (1992). The integrated autocorrelation time is defined to be

� ¼ 1þ 2
X1
k¼1

rk , (17)

where rk is the lag-k autocorrelation of f f (Xm)g.
In order to compare the SR with other MCMC algorithms we recall the definition of

asymptotic efficiency:

Efficiency( f ) ¼ � 2
f = lim

N!1
Nvar( f N ), (18)

for any given function f (x) 2 L2(�); see for example, Tierney (1994). When the state space

is discrete with d elements, say, then the asymptotic efficiency can be expressed as (see e.g.,

Peskun, 1973)

Efficiency( f ) ¼ � 2
f =fT(2BR� B� BA)f , (19)

where the vector fT ¼ ( f 1, . . . , f d) is evaluated at the states; A ¼ 1�T, where � is the vector

of probability mass points and 1 is the unit vector; B is the diagonal matrix with diagonal

elements �; and R ¼ fI � (P� A)g�1 if this inverse exists, P being the Markov transition

matrix.

If the proposal distribution ł(x) is the same as the target distribution �(x), then the

Metropolis–Hastings independence sampler (MHIS) is uniformly better than the SR. In this

case MHIS generates independent samples from �(x) with efficiency 1; the efficiency of the

SR calculated using (16) and (18) is 1=(2þ k�1).

On the other hand, the SR algorithm with k > 1 can outperform many Metropolis–

Hastings schemes when there is large disagreement between the proposal and the target

distributions – precisely those situations where MCMC is needed. We give several examples

here and in Section 5 to illustrate this.

Let �(x) / xa�1(1� x)b�1 for 0 , x , 1, a . 0 and b . 0. Let ł(x) ¼ 1, 0 , x , 1.

Assume that a ¼ b ¼ 3=4, f (x) ¼ x and k ¼ 1. Here it is easy to see that w� ¼ 1. The

asymptotic variance of the estimator
ffiffiffiffiffi
N
p

f N for the SR has, however, a finite value (equal

to 0.5635). On the other hand, the asymptotic variance of the estimator
ffiffiffiffiffi
N
p

f N for the

MHIS is infinite. (This follows from the fact that a lower bound on the variance of the

MHIS is a suitable multiple of w�; see, for example, Liu 1996.) Hence, in this example the

asymptotic efficiency of the MHIS is zero, while for the SR it is finite.

For complex target distributions it is often hard to use (18) to calculate the efficiency. In

such situations it is suggested (see, for example, Kass et al. 1998), that we use the effective

sample size (ESS) to compare the algorithms. The ESS is defined to be the number of

MCMC samples drawn divided by the integrated autocorrelation time, �. The estimation of
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ESS using the batch-means method is discussed, for example, by Roberts (1996). We use

the ESS to compare the SR with other algorithms in Section 5.

4. Regeneration and adaptation

4.1. The adaptive SR algorithm

The performance of the SR algorithm depends on the quantity w� ¼ supx w(x). The SR will

exhibit slow mixing when w� is very high or, equivalently, Æ� ¼ inf x Æ(x) is too small. For

very small values of Æ(x) the SR will persist in accepting the same proposal x in step (iii)

of Algorithm 1 for a long time. The adaptations are aimed at addressing these problems.

We propose adaptations for when Æ(x) is less than a threshold value, Æ say, to be specified

by the user. As noted by one of the referees, it can also be worthwhile to adapt the SR

algorithm when supx Æ(x) is too close to 1 (a natural course of action in this case is to

increase k). The adaptations make the chain non-Markovian, as a result of which the

ergodic theorems are no longer guaranteed to hold. In our regenerative set-up, however, the

ergodic averages do converge appropriately; see Section 4.2, where we address these issues

using theoretical results from Gilks et al. (1998).

We introduce the following notation to describe the adaptations. Let ł0 be the initial

proposal density and łk be the current proposal density after k � 1 adaptations. Let

wk(x) ¼ �(x)

łk(x)
, Æk(x) ¼ 1

1þ kk ck ~wwk(x)
,

where kk . 0 and ck is such that ck ~wwk(x) ¼ wk(x). Let Ek 2 (0, 1), k > 1, be a sequence of

numbers such that E ¼
P

kEk ,1. Furthermore, let �k(xjy), k > 1, be a density centred

around the point y.

Our adaptation scheme is as follows. After the first k � 1 adaptations, we iterate with the

current proposal density łk�1 until we come across a candidate point z, labelled x(k), such

that

Æk�1(z) < Æ:

Then we update the proposal density łk�1 as follows:

łk(x) ¼ (1� Ek)łk�1(x)þ Ek�k(xjx(k)): (20)

We call this the adaptive self-regenerative (ASR) algorithm. Let n ¼ 1, m ¼ 0 and k ¼ 1.

Algorithm 3 ASR algorithm

(i) Generate Zn � łk�1.

(ii) Calculate Æk�1(Zn). If Æk�1(Zn) , Æ, then do step (iii), else go to step (iv).

(iii) Set x(k) ¼ Zn. Construct �k(xjx(k)). Obtain łk(x) using equation (20). Set

k ¼ k þ 1 and go to step (v).
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(iv) Generate �n � G(Æk�1(Zn)). If �n . 0 set X mþ j ¼ Zn, for j ¼ 1, . . . , �n and

m ¼ mþ �n.

(v) If n ¼ N then stop, else set n ¼ nþ 1 and return to step (i).

There is much flexibility in choosing �k and, as usual, the best choice is problem-

dependent. One heuristic is to choose �k such that it matches the target density in a

neighbourhood of x(k), for example by letting �(xjx(k)) be a normal density with mean x(k)

and covariance matrix �k , where �k is the estimated covariance matrix from the samples

obtained so far.

There are many possible alternatives for the sequence fEkg. For example, a particular

choice can be

Ek ¼ a
1

k2
with a ¼ 6

�2
, (21)

so that
P1

k¼1Ek ¼ 1. In Section 5 we adopt these particular values and take Æ ¼ 0:01 always.

However, these can be varied in different implementations if desired.

If the densities � and ł are non-normalized, then the ratio of the normalizing constants

ck may be adapted as well. However, in the practical examples in Section 5 we take kk ¼ k
and ck ¼ ĉc for all k, primarily because these worked reasonably well.

Implementation of the ASR algorithm is straightforward. The following further details

can be used in the computation. For any k > 1, we have

łk(x) ¼
Yk
j¼1

(1� E j)

" #
ł0(x)þ

Yk
j¼2

(1� E j)

" #
E1�1(xjx(1)) þ . . . þ Ek�k(xjx(k)):

Observe that the coefficients in the right-hand side of this expression sum to 1. For the Ek
given in (21) the coefficients can be obtained using

Yk
j¼mþ1

1� a2

j2

� �
¼ ˆ(k þ 1� a)ˆ(k þ 1þ a)ˆ2(mþ 1)

ˆ(mþ 1� a)ˆ(mþ 1þ a)ˆ2(k þ 1)
, m ¼ 0, 1, . . . , k � 1,

where ˆ(�) is the standard gamma function. Hence, in order to sample from łk we can draw

a candidate point from the mixture density.

Suppose that the total number of adaptations is K. In these K adaptations, for notational

convenience, we also include the initial regime where the proposals were generated using

ł0. Let N1, N2, . . . , NK be the number of realizations from the corresponding proposal

densities. Let N ¼
PK

k¼1Nk . Also let f Nk
be the estimator (15) for If in the kth adaptive

regime. Let � 2
k=Nk be the asymptotic variance of f Nk

(following equation (16)) where

� 2
k ¼ � 2(kk , �, łk , f ) ¼

� 2
f

kk

þ 2

ð
~ff (x)2wk(x)�(x)dx: (22)

The final estimator of If from the ASR algorithm is

f N ¼
PK

k¼1Nk f Nk

N
: (23)
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Using the fact that the ASR is adapted at the regeneration points, we obtain that the

asymptotic variance of f N is

var( f N ) ¼ 1

N2

XK
k¼1

Nk�
2
k :

We can decide whether to discard observations (for estimating If ) from the past tours

using the above expression for the variance. We illustrate this when K ¼ 2. (The reader

will immediately see the extension to the general case.) We have f N ¼
(N1 f N1

þ N2 f N2
=(N1 þ N2). The question we ask is whether we shall use f N or f N2

as

our estimator of If . We should use f N instead of f N2
if and only if

var( f N ) , var( f N2
), N1

N 2
� 2

1 þ
N2

N2
� 2

2 ,
� 2

2

N2

, � 2
1 , 2þ N1

N2

� �
� 2

2:

In practice, we can estimate the two variances � 2
k from the output and decide which estimator

to use. Intuitively, if adaptation fails to provide a great improvement over the starting

proposal density then we shall include observations generated using the starting proposal

distribution, otherwise we shall not.

4.2. Theoretical results

It is clear that the stochastic process induced by the ASR algorithm is no longer Markovian.

However, the estimator f N in (23) can still be used to estimate If . This follows from the

central limit theorem for f N proved in Gilks et al. (1998). They show that if adaptations are

performed at the regeneration points, then f N , formed by using the output of the adaptive

process, converges to If under some regularity conditions. The main condition to check for

the theorem in Gilks et al. (1998) to hold is the convergence of � 2
k to a limiting value. This

follows from (20) and the theorem on convergence of supermartingales. Indeed, assume that

Ek , 1
2

and fkkg is a non-decreasing sequence (that is, kkþ1 > kk for all k). Then (20) and

(22) give

E(� 2
kþ1j� 2

0, . . . , � 2
k) ¼

� 2
f

kkþ1

þ 2

ð
~ff (x)2wkþ1(x)�(x)dx <

� 2
f

kk

þ 2

1� Ek

ð
~ff (x)2wk(x)�(x)dx < (1þ 2Ek)� 2

k :

Since
P

kEk ,1, the convergence of f� 2
kg follows. If ck is adapted as well, the additional

requirement for these arguments to hold is to adapt kk so that the ckkk form a non-

decreasing sequence.

Adaptations, however, can make MCMC algorithms converge more slowly than their non-

adaptive versions. The following result guarantees that adaptation does not make the SR

algorithm infinitely worse.
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Proposition 1. If w� ¼ supx w0(x) <1, then

sup
x

wk(x) < ww�, for any k ¼ 1, 2, . . . ,

where w ¼ exp(
P

jE j) and Æ is chosen such that Æ < 1=(1þ kw):

5. Examples

5.1. Witch’s hat example

We consider the simplified rectangular version of the ‘witch’s hat’ distribution (Mira and

Tierney 2002):

�(x) ¼
h, a , jxj , aþ b,

t þ h, jxj < a,

0, otherwise,

8<
:

where a, b, h and t are non-negative parameters satisfying the constraint

2(aþ b)hþ 2at ¼ 1:

Mira and Tierney (2002) show that the uniform slice sampler (SS) is uniformly better than

the MHIS. Further, by considering the partition of the state space E ¼ A [ AC , where

A ¼ fx : jxj , ag, they show that the rate of convergence of the SS Markov chain is given by

ºSS ¼ 1� s

p
,

where s ¼ a=(aþ b) and p ¼ a(hþ t)=fa(hþ t)þ bhg. Here s is the relative base of the

spike and p is its probability content. The parameters s and p satisfy the constraints

0 < s < p < 1.

For the SR algorithm we suppose, for simplicity, that k ¼ 1. We let ł(x) ¼ 1=f2(aþ b)g,
when jxj , aþ b, as in the slice sampler case. The transition matrix of the two-state (recall

the partition of the state space) SR Markov chain is given by

K ¼ 1

p(1� p)þ s(1� s)

pf1� pþ s(1� s)g (1� p)s(1� s)

ps(1� s) (1� p)fpþ s(1� s)g

� �
:

The stationary distribution for this transition matrix is � ¼ ( p, 1� p), as expected. The

eigenvalues of K are º0 ¼ 1 and

ºSR ¼ p(1� p)

p(1� p)þ s(1� s)
:

The SR algorithm performs better, that is, ºSR , ºSS, if the parameters p and s satisfy the

inequality

p2 � ps� s(1� s) . 0:

The above inequality is satisfied by a wide range of values of s and p (see Figure 1).
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For a given s, the SR is better than the SS if

p .
1

2
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4s(1� s)

p� 	
: (24)

Otherwise the SS outperforms the SR. However, such cases are of no interest since in these

cases both algorithms have rate of convergence much smaller than 1 (both algorithms

converge very fast). For example, if p ¼ s then ºSS ¼ 0, but ºSR ¼ 1
2
. Thus the convergence

of the SR algorithm does not run into problems, though the performance of the SR is worse

than that of the SS.

Consider the case when s! 0. Since the right-hand side of (24) approaches 0 when

s! 0, for all values of p > s we have ºSR < ºSS, and thus the performance of the SR

algorithm cannot be worse than the performance of the SS. Further, if p! 1 then ºSR ! 0

while ºSS ! 1. Thus, the SR performs spectacularly better in the situation which is the

most difficult one for the SS. In this limiting case, the total variation distance between the

n-step transition density and the target distribution will stay close to its maximal value of 2

for the SS for arbitrarily large values of n; see Mira and Tierney (2002).

We further discuss the limiting case corresponding to p! 1 when s is kept fixed at some

intermediate value between 0 and 1. If p approaches 1 then ºSR approaches 0. That is, if

the probability content of the spike becomes very large then the SR algorithm draws

independent samples from �(x). Also, the transition probability K21 approaches 1 when

p! 1 for fixed 0 , s , 1. Thus, the SR does not get stuck in the low-probability region.

This is in contrast to the behaviour of the SS, which has the transition matrix

T ¼ sþ ( p� s)=p s(1� p)=p
s 1� s

� �
:

Figure 1. The SR is better than the slice sampler in the shaded region in the Witch’s hat example
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The transition probability T21 depends on the relative base of the spike. As Mira and Tierney

(2002) point out, SS gets stuck when p! 1 and s! 0 if the chain is started outside the

spike. This does not happen for SR since K21 approaches 1 when p! 1, as mentioned

earlier. However, it is possible that p! 1 but s does not approach zero, in which case ºSR

will not approach 1.

5.2. Binomial example

Suppose that the target distribution �(x) is binomial with parameters r and Ł, and

ł(x) ¼ 1=(r þ 1) for all x. Let wi ¼ �i=łi denote the importance weight for the state

i ¼ 1, . . . , d ¼ r þ 1: We compare the performance of the SR, MHIS and SS schemes. We

first obtain their transition matrices.

For the SR we have

Æi ¼
1

1þ kwi

, �i ¼
f1� ÆigłiXd

j¼1

f1� Æ jgł j

:

Let ÆT ¼ (Æ1, . . . , Æd); �T ¼ (�1, . . . , �d) and diag(Æ) be the d 3 d diagonal matrix with

diagonal elements Æi. The transition matrix of the SR, following equation (6), is

KSR ¼ I � diag(Æ)þ Æ�T,

where I is the d 3 d identity matrix.

The transition matrix, KMHIS, of the MHIS is obtained by Liu (1996) and Smith and

Tierney (1996). Let the states be ordered (without loss of generality) such that

w1 > w2 > . . . > wd and ºi ¼
P

k.i(łk � �k=wi), 1 < i < d � 1: Now the transition

matrix has elements

KMHIS
ij ¼

ł j, if j , i,

łi þ ºi, if j ¼ i,

� j=wi, if j . i:

8<
:

To obtain the transition matrix of the SS, KSS, we order the states in ascending order of

the weights; that is, assume v0 , v1 < v2 < . . . < vd , where v0 ¼ 0 and vi are the weights

�i=łi (i ¼ 1, . . . , d). Let k be such that vk ¼ min(vi, v j); then

KSS
ij ¼

1

vi

Xk
n¼1

vn � vn�1

r � nþ 2
:

The asymptotic efficiencies for the above algorithms are calculated using (19). If r is

known, the efficiency of the SR scheme is available in analytic form as a function of Ł. The

efficiencies for the other two algorithms are not available in closed form. That is why in the

following discussion we calculate the efficiencies numerically.

Figure 2 plots the efficiencies of the three algorithms for different values of Ł when r is

fixed at 4. The plotted efficiencies correspond to f (x) ¼ x. We plot the efficiency of the SR
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algorithm for k ¼ 1 and k ¼ 2. The SR is seen to be more efficient than the other two

samplers when Ł is either near 0 or 1. We know that for Ł ¼ 1
2

the binomial distribution is

symmetric and for Ł near 0 or 1 it is heavily skewed. Thus the SR performs better than

both the MHIS and SS when the distribution is skewed. With a uniform proposal

distribution, intuitively, it is more difficult to simulate from a skewed distribution than a

symmetric distribution. Hence the SR is more efficient in more difficult cases. The

efficiency is higher for larger values of k, as mentioned in Section 3.5. For k . 1, the SR

performs better than i.i.d. sampling for values of Ł near 0 and 1. The variance formula (16)

explains why this happens. For the extreme values of Ł, the second term in (16)

(corresponding to the importance sampling) is small compared to the first term which has

the divisor k.

A further interesting fact to observe is that the efficiency of the SR algorithm has a

strictly positive lower bound; the lower bound for the MHIS, however, is 0. Finally, the

efficiency curve for either the MHIS or the SS is very complex with a few local maxima

and minima.

The above results agree with those from the witch’s hat example, since any two-point

discrete distribution can essentially be treated as a Bernoulli distribution (r ¼ 1). For large

r, the SR with small values of k ceases to be the most efficient sampler.

The above conclusions are only valid for the uniform proposal distribution described

here, and they may change if some other proposal distribution is used instead. Our choice

of uniform proposal distribution is guided by the desire to compare the convergence

properties of the algorithms where there is large discrepancy between the (uniform)

proposal and (heavily skewed) target distributions.

Figure 2. Efficiency for the binomial example with r ¼ 4
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5.3. Dugongs example

We consider a real data example on age and length measurements on n ¼ 27 dugongs (sea

cows). Carlin and Gelfand (1991, pp. 124–125) provide a Bayesian analysis of the data set

originally found in Ratkowsky (1983). The length yi given the age xi for the ith individual

is assumed to follow a nonlinear growth curve model:

yi � N (Æ� 	ªxi , � 2), 0 , ª , 1; i ¼ 1, . . . , n:

Following the implementation of this problem in Winbugs (Spiegelhalter et al. 1996), we

assume that � ¼ � �2 has a gamma prior with density proportional to �a�1e�a�, a ¼ 10�3.

Flat priors are assumed for the remaining parameters. The joint posterior density of Æ, 	, ª
and � is

�(Æ, 	, ª, �jy1, y2, . . . , yn) / �n=2þa�1 exp �a�� �

2

Xn
i¼1

(yi � Æþ 	ªxi)2

( )
:

We integrate out � to obtain the marginal posterior density of the regression parameters Æ, 	
and ª which is the target distribution for this example. The range of ª is between 0 and 1;

Winbugs uses an adaptive slice sampler for sampling from the full conditional distribution of

ª given the other parameters. We compare this adaptive slice sampler method with the SR

algorithm in this example.

For the SR we consider a normal proposal distribution with mean at the maximum

likelihood estimate (MLE) of Æ, 	, ª and covariance matrix � ¼ � 2 3 I3, where

� 2 ¼ 0:042. The parameter c is set at log ĉc ¼ �13:5, according to the estimate (4). We

implement three versions of SR corresponding to log(kc) ¼ �13:5, �13 and �12:5 to see

the sensitivity.

Table 1 gives the ESS defined in Section 3.5 and the lag-1 autocorrelations for this

example. For each sampler we generate N ¼ 15 000 samples from the proposal distribution

and discard the first 5000 MCMC samples. The number of MCMC samples, M , for the SR

is random, as discussed previously. For the three implementations of the SR with different

Table 1. Effective sample size and lag-1 autocorrelations for the dugongs example

SR

Winbugs log(kc) ¼ �13:5 log(kc) ¼ �13 log(kc) ¼ �12:5

ESS r1 ESS r1 ESS r1 ESS r1

Æ 3465.94 0.94 5175.55 0.88 9641.95 0.93 13999.94 0.95

	 4372.78 0.64 5205.80 0.87 9711.19 0.92 14050.49 0.94

ª 3533.84 0.91 5278.49 0.85 9771.10 0.91 14138.00 0.93

Average 3790.85 0.83 5219.95 0.86 9708.08 0.92 14062.81 0.94
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values log(kc) the values of M were 19 233, 32 543 and 45 502, respectively. Using the

asymptotic relationship M � Nk, the implied values of k are 1.28, 2.17 and 3.03,

respectively.

It is seen that all three versions of the SR are better than the Winbugs implementation.

The lag-1 autocorrelation increases as k increases since the chain accepts a particular

proposal many more times, corresponding to a larger value of k. However, the ESS also

increases as k increases since the efficiency is an increasing function of k, as mentioned in

Section 3.5. Also M , the number of MCMC samples, increases as k increases. We do not

increase k further since the ESS does not improve substantially. Further, the ESS per second

(not shown) goes down since the running times for the three values of k are 1, 2 and 3

seconds, respectively. The running time for the Winbugs is 9 seconds, which is longer than

any of the three SR versions.

This example illustrates that the proposed regenerative schemes can outperform the Gibbs

sampler which implements an adaptive uniform slice sampler to sample from its full

conditional distribution.

5.4. A Bates–Watts example

We consider a data set given in Bates and Watts (1988, p. 307). The response yi
(i ¼ 1, . . . , n ¼ 16) is modelled by Newton and Raftery (1994) as

yi ¼ 	1 þ
	2

1þ expf�	4(xi � 	3)g þ Ei,

where Ei is assumed to be i.i.d. normally distributed with mean 0 and variance � 2. The prior

for � and � 2 is taken as p(�, � 2) / � �2.

For this model we first integrate out � 2 analytically. Now the target distribution, �(�jy),

is four-dimensional. We take a four-dimensional normal proposal distribution, ł. We take

the MLE to be the mean. The proposal covariance matrix, � say, is taken as 0.1 times the

diagonal matrix having the variances of the MLEs along its diagonal.

Our objective in this example is to compare the ASR with other tuned MCMC methods.

The following MCMC samplers are implemented. First, we implement a Metropolis–

Hastings sampler with the proposal distribution (as suggested by a referee)

q(�j�) ¼ Eł(�)þ (1� E)�(�j�), (25)

where E . 0 and � is the multivariate normal distribution with mean � and covariance matrix

�. The proposal distribution is a mixture of the MHIS proposal distribution ł and a random

walk proposal distribution �(�j�), where � is the current point of the chain. Thus the

proposal distribution q(�j�) of the Metropolis–Hastings algorithm tries to combine the best

properties of the independence sampler and a random walk Metropolis sampler. We optimize

the value of E by trial and error so that the average ESS under this scheme is the best.

Second, we consider the adaptive scheme proposed by Gilks et al. (1998) as implemented

in Winbugs. This scheme adapts the symmetric (around the current point) normal proposal
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distribution whose standard deviation is tuned over the first 4000 iterations in order to

achieve an acceptance rate between 20% and 40%.

Lastly, to implement the ASR we take log ĉc ¼ 114:5 according to (4). The starting

proposal for the ASR is assumed to be ł, as described above. The densities �k are chosen

to be the densities of the multivariate normal distribution with the current proposal point

x(k) as the mean and the covariance matrix �. Although we have experimented with an

adaptive estimate of the covariance matrix, we report the results with the above fixed

covariance matrix � for the �k .

We generate N ¼ 15 000 samples from the proposal distribution in each case. We discard

the first 5000 iterations and use the remaining samples for making the following

comparisons. In each case we calculate the ESS. We also calculate the average of the ESS

over different parameters. As in the previous example, the running times for all the

implementations are negligible.

The number of MCMC samples, M , for the Metropolis–Hastings and the Winbugs

implementations is 15 000. For the ASR, M is a random variable. For the three values of

log(kc) reported in Table 2, the values of M were 15 821, 25 147 and 36 848, respectively.

Using the approximate result M � Nk, the implied values of k are 1.05, 1.68 and 2.46,

respectively.

Observe that the last two versions of the ASR outperform the Winbugs and Metropolis–

Hastings schemes using the mixture proposal distribution (25). The first version with a

small value of k performs poorly, pointing to the need to tune k. It is possible to increase k
further. However, as mentioned in Section 2.2, larger values of k lead to smaller rejection

probability Æ. As a result the autocorrelation increases and any further gain in efficiency is

not substantial.

Figure 3 plots the time series and the corresponding autocorrelation plots for 	1 for the

three samplers. The top row is for the output from the Metropolis–Hastings algorithm, the

middle one is for the output from Winbugs and the last row is for the ASR sampler with

log(kc) ¼ 114:5. The first two samplers show signs of slow mixing. This is confirmed by

looking at the ACF plots. The ASR is seen to be the best mixing sampler. The plots for the

remaining parameters looked similar and are not reported here.

Table 2. Effective sample size and lag-1 autocorrelations for the Bates and Watts example

ASR

Metropolis–

Hastings Winbugs log(kc) ¼ 114.5 log(kc) ¼ 115 log(kc) ¼ 115.5

ESS r1 ESS r1 ESS r1 ESS r1 ESS r1

	1 4150.90 0.70 3860.55 0.80 2882.23 0.51 6953.56 0.59 11157.05 0.70

	2 4643.01 0.58 4033.42 0.74 2757.77 0.56 6851.10 0.61 11074.89 0.71

	3 5281.82 0.45 3464.67 0.94 2672.36 0.59 6525.77 0.66 10794.10 0.74

	4 5890.32 0.35 5654.00 0.38 2748.22 0.56 6698.30 0.63 10936.29 0.73

Average 4991.51 0.52 4253.16 0.72 2765.15 0.55 6757.18 0.62 10990.58 0.72
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6. Discussion

In this paper we have introduced an MCMC sampler which can be superior to the

Metropolis–Hastings samplers (including the slice sampler) in terms of efficiency and

convergence properties. This sampler is easy to implement and adapt. The examples

reported in the paper show that its convergence characteristics are considerably better than

Figure 3. Time series and ACF plots of 	1 from the three samplers for the Bates and Watts example
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those of the Metropolis–Hastings schemes when there is large disagreement between the

target and the proposal distributions.

The strength of the proposed algorithm lies in the fact that regeneration times are easily

identified and this allows on-line adaptation of the proposal distribution. As we prove in the

paper, the proposed form of adaptation does not alter the ergodic behaviour of the averages

formed along the chain.

Appendix: Proofs of theorems

Proof of Theorem 1(i). Let the pair m and n be as given in Algorithm 1. Let

fU j, j ¼ 0, 1, . . .g be an i.i.d. sequence of Uniform(0, 1) random variables. For any A 2 E,
we have

Pr(X mþ1 2 AjXm ¼ x) ¼ Pr(U0 > Æ(x), x 2 A)þ
X1
j¼1

Pr(U0 , Æ(x), U1 , Æ(Znþ1), . . . ,

U j�1 , Æ(Znþ j�1), U j > Æ(Znþ j), Znþ j 2 A)

¼ f1� Æ(x)g1A(x)þ Æ(x)
X1
j¼1

ð
Æ(z)ł(z)�(dz)

� � j�1

3

ð
A

f1� Æ(z)gł(z)�(dz)

¼ f1� Æ(x)g1A(x)þ Æ(x)

ð
A

f1� Æ(z)gł(z)�(dz)

1�
ð
Æ(z)ł(z)�(dz)

¼ f1� Æ(x)g1A(x)þ Æ(x)

ð
A

�(z)�(dz):

This proves (6). It is straightforward to verify that
Ð
K(x, dy) ¼ 1. Let us define the transition

density

K(x, y) ¼ Æ(x)�(y)þ f1� Æ(x)g�x(y):

Hence K(x, dy) ¼ K(x, y)�(dy): We now prove equation (7):
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ð
�(x)K(x, y)�(dx) ¼

ð
�(x)[Æ(x)�(y)þ f1� Æ(x)g�x(y)]�(dx)

¼ �(y)

ð
�(x)Æ(x)�(dx)þ f1� Æ(y)g�(y)

¼ f1� Æ(y)gł(y)ð
f1� Æ(z)gł(z)�(dz)

ð
�(x)Æ(x)�(dx)þ f1� Æ(y)g�(y)

¼ f1� Æ(y)g ł(y)

ð
k�(z)ł(z)

k�(z)þ ł(z)
�(dz)

� ��1ð �(x)ł(x)

k�(x)þ ł(x)
�(dx)þ �(y)

" #

¼ f1� Æ(y)g ł(y)

k
þ �(y)

� �

¼ k�(y)

k�(y)þ ł(y)

ł(y)þ k�(y)

k

¼ �(y):

h

Lemma A.1. If (1) holds then every bounded harmonic function is a constant under K.

Proof. Let h be a harmonic function, that is,

h(x) ¼
ð
K(x, dy)h(y) for all x 2 E: (A:1)

Now ð
K(x, dy)h(y) ¼

ð
[Æ(x)�(y)þ f1� Æ(x)g�x(y)]h(y)�(dy)

¼ Æ(x)

ð
�(y)h(y)�(dy)þ f1� Æ(x)gh(x):

Therefore (A.1) is equivalent to:

Æ(x)h(x) ¼ Æ(x)

ð
�(y)h(y)�(dy):

The support condition (1) guarantees that Æ(x) 6¼ 0 for all x 2 E. Hence we have,

h(x) ¼
ð
�(y)h(y)�(dy) ¼ constant:

h
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Proof of Theorem 1(ii). Condition (1) implies that 0 , Æ(x) , 1 for all x 2 E. Hence

irreducibility and aperiodicity follow.

Using Theorem 1 of Tierney (1994), we see that K is positive recurrent and � is the

unique invariant distribution of K. Now K is Harris recurrent by using Lemma A.1 above

and Theorem 2 of Tierney (1994). Hence, by Theorem 1 of Tierney (1994), based on the

results of Nummelin (1984), the proof is complete. h

Proof of Theorem 2. Note that w(x) < w� ,1 for all x implies the support condition (1).

Hence Theorem 1 holds. Now we show that the state space E is small, that is,

K(x, �) > 	�(�) for all x 2 E (A:2)

for a suitable 	 . 0 and a probability measure �(�) on E. Here we have the transition kernel

K(x, dy) ¼ [Æ(x)�(y)þ f1� Æ(x)g�x(y)]�(dy):

The choice of 	 ¼ 1=(1þ kw�) and �(�) ¼ �(�) suffices for the minorization condition (A.2)

to hold. Hence, using Proposition 2 of Tierney (1994), we have the result. h

We shall use the following standard result; see, for example, Rao (1973, p. 122).

Lemma A.2. Let X n, X , Yn be random variables such that X n ) X and Yn�!
P

y. Then

X n þ Yn ) X þ y:

Also

X n

Yn

) X

y
if y 6¼ 0:

Proof of Lemma 2. We have, for the expectation:

E(�) ¼ EłfE(�jZ)g

¼ Eł
1� Æ(Z)

Æ(Z)

� �

¼
ð
kw(z)ł(z)�(dz)

¼ k
ð
�(z)�(dz) ¼ k:
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As to the variance:

var(�) ¼ Ełfvar(�jZ)g þ varłfE(�jZ)g

¼ Eł
1� Æ(Z)

Æ(Z)2

� �
þ varł

1� Æ(Z)

Æ(Z)

� �

¼ Ełfkw(Z)[1þ kw(Z)]g þ varłfkw(Z)g

¼ kþ k2Ełfw(Z)2g þ k2 varłfw(Z)g

¼ kþ k2f2E�(w(X ))� 1g:

h

Proof of Theorem 4. First, it is straightforward that if M !1 then N �!P 1; the proof

follows from Lemma A.2 and the central limit theorem. Let Vi ¼ �i � k and VN ¼
P

Vi=N .

We have:

XN
i¼1

�i < M <
XNþ1

i¼1

�i

,
XN
i¼1

(�i � k) < M � Nk <
XN
i¼1

(�i � k)þ �Nþ1

,
ffiffiffiffiffi
N
p

VN <
M � Nkffiffiffiffiffi

N
p <

ffiffiffiffiffi
N
p

VN þ
�Nþ1ffiffiffiffiffi

N
p :

Note that �Nþ1=
ffiffiffiffiffi
N
p
�!P 0 and the central limit theorem implies that

ffiffiffiffiffi
N
p

VN ) N (0, � 2
�).

Also, we can replace N by M=k using Lemma A.2. Hence the result follows. h

Proof of Theorem 5. To prove (i), we obtain

Ef� f (Z)g ¼ Ełf f (Z)E(�jZ)g ¼ kIf (A:3)

(see the proof of Lemma 2 for more details). Also we have

f N � If ¼
PN

i¼1�i f (Zi)PN
i¼1�i

� If

¼
PN

i¼1�i f (Zi)� If
PN

i¼1�iPN
i¼1�i

¼
PN

i¼1�i
~ff (Zi)PN

i¼1�i
¼ VN

�N

,
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where VN ¼ (1=N )
PN

i¼1Vi, Vi ¼ �i ~ff (Zi) and �N ¼ (1=N )
PN

i¼1�i. Using equation (A.3) and

Lemma 2 we have that E(Vi) ¼ 0. Note that fVig is a sequence of i.i.d. random variables.

Now using Khinchine’s weak law of large numbers (see Rao 1973, p. 112), we have that

VN �!
P

0 and �N �!
P

k, where k . 0. Hence the first part follows.

To prove (ii), we evaluate the variance of Vi:

var(Vi) ¼ Ef�2 ~ff (Z)2g

¼ Ełf ~ff (Z)2E(�2jZ)g

¼ Ełf
1� Æ(Z)

Æ(Z)

2� Æ(Z)

Æ(Z)
~ff (Z)2g

¼ Ełfkw(Z)[1þ 2kw(Z)] ~ff (Z)2g

¼ k
ð
w(z)[1þ 2kw(z)] ~ff (z)2ł(z)�(dz)

¼ kf� 2
f þ 2k

ð
~ff (z)2w(z)�(z)�(dz)g ¼ k2� 2,

where � 2 is given in (16). Hence fVig is a sequence of i.i.d. random variables with

mean zero and finite variance k2� 2. By the central limit theorem we have thatffiffiffiffiffi
N
p

VN ) N (0, k2� 2). Using the first part of this theorem and Lemma A.2, the result

follows. h

Proof of Proposition 1. Let øk(x) ¼ łk(x)=�(x) denote the inverse importance ratio for any

given k. It is straightforward that økþ1(x) > (1� Ekþ1)øk(x). From this recursion relation we

have:

økþi(x)

øk(x)
>
Ykþi
j¼kþ1

(1� E j) >
Y1
j¼1

(1� E j) ¼ exp
X

log(1� E j)

( )

> exp �
X

E j

( )
> expf�log wg ¼ w�1:

This proves that wkþi(x) < wwk(x), i ¼ 1, 2, . . . , which implies the proposition. h
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