A criterion for p-henselianity in characteristic p

Zoé Chatzidakis^{*}

Milan Perera

Abstract

Let *p* be a prime. In this paper we give a proof of the following result: A valued field (K, v) of characteristic p > 0 is *p*-henselian if and only if every element of strictly positive valuation is of the form $x^p - x$ for some $x \in K$.

Preliminaries

Throughout this paper, all fields have characteristic p > 0. First we recall some definitions and notations. Let $\mathcal{O}_v := \{x \in K \mid v(x) \ge 0\}$ be the valuation ring associated with v. It is a local ring, and $\mathcal{M}_v := \{x \in K \mid v(x) > 0\}$ is its maximal ideal. Let $\overline{K}_v := \mathcal{O}_v / \mathcal{M}_v = \{\overline{a} = a + \mathcal{M}_v \mid a \in \mathcal{O}_v\}$ be the residue field (or \overline{K} when there is no danger of confusion). We let K(p) denote the *compositum* of all finite Galois extensions of K of degree a power of p.

A valued field (K, v) is *p*-henselian if *v* extends uniquely to K(p). Equivalently (see [1], Thm 4.3.2), if it satisfies a restricted version of Hensel's lemma (which we call *p*-Hensel lemma) : *K* is *p*-henselian if and only if every polynomial $P \in \mathcal{O}_v[X]$ which splits in K(p) and with residual image in $\overline{K}_v[X]$ having a simple root α in \overline{K}_v , has a root *a* in \mathcal{O}_v with $\overline{a} = \alpha$. Furthermore, another result (see [1], Thm 4.2.2) shows that (K, v) is *p*-henselian if and only if *v* extends uniquely to every Galois extension of degree *p*.

The aim of this note is to give a complete proof of the following result:

Theorem. Let (K, v) be a valued field. (K, v) is *p*-henselian *if and only if* $\mathcal{M}_v \subseteq \{x^p - x \mid x \in K\}$.

Received by the editors in September 2015.

Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 123-126

^{*}Partially supported by ANR-13-BS01-0006

Communicated by S. Caenepeel.

²⁰¹⁰ Mathematics Subject Classification : 12J10, 12L12.

Key words and phrases : valued fields, p-Henselian valuation.

This result was announced in [3], Proposition 1.4, however the proof was not complete. The notion of *p*-henselianity is important in the study of fields with definable valuations, and in particular it is important to show that the property of *p*-henselianity is an elementary property of valued fields.

The proof we give is elementary, and uses extensively pseudo-convergent sequences and their properties. Recall that a sequence $\{a_{\rho}\}_{\rho < \kappa} \in K^{\kappa}$ indexed by an ordinal κ is said to be *pseudo-convergent* if for all $\alpha < \beta < \gamma < \kappa$:

$$v(a_{\beta} - a_{\alpha}) < v(a_{\gamma} - a_{\beta}). \tag{1}$$

A pseudo-convergent sequence $\{a_{\rho}\}_{\rho < \kappa}$ is called *algebraic* if there is a polynomial *P* in *K*[*X*] such that $v(P(a_{\alpha})) < v(P(a_{\beta}))$ ultimately for all $\alpha < \beta$, *i.e*:

$$\exists \lambda < \kappa \forall \alpha, \beta < \kappa \quad (\lambda < \alpha < \beta) \Rightarrow v(P(a_{\alpha})) < v(P(a_{\beta})).$$
⁽²⁾

Otherwise, it is called *transcendental*.

We assume familiarity with the properties of pseudo-convergent sequences, see [2] for more details, and in particular Theorem 3, Lemmas 4 and 8.

Proof of the theorem

First, we prove a lemma in order to restrict our study to immediate extensions:

Observation. Let (K, v) be a valued field and (L, w) be a Galois extension of degree a prime ℓ . Then, if (L, w)/(K, v) is residual or ramified, w is the unique extension of v to L.

Proof. The fundamental equality of valuation theory (see [1], Thm 3.3.3) tells us that if *L* is a Galois extension of *K*, then

$$[L:K] = e(L/K)f(L/K)gd$$
(3)

where e(L/K) is the ramification index, f(L/K) the residue index, g the number of extensions of v to L and d, the defect, is a power of p.

Thus, as ℓ is a prime, if e(L/K)f(L/K) > 1, then necessarily g = d = 1, and in particular, v has a unique extension to L.

Now, let us prove the result announced in the preliminaries:

Theorem. Let (K, \mathcal{O}_v) be a valued field of characteristic p. Then, (K, \mathcal{O}_v) is p-henselian if and only if $\mathcal{M}_v \subseteq K^{(p)} := \{x^p - x \mid x \in K\}.$

Proof. The forward direction is an immediate application of the *p*-Hensel Lemma. Conversely, assume that $\mathcal{M}_v \subseteq K^{(p)} := \{x^p - x \mid x \in K\}$. Every Galois extension of *K* of degree *p* is an Artin-Schreier extension, *i.e* is generated over *K* by a root *a* of a polynomial $X^p - X - b = 0$, with $b \in K \setminus K^{(p)}$. The previous observation gives us the result when K(a)/K is not immediate. Let *L* be an immediate Galois extension of degree *p* and \tilde{v} an extension of *v* to *L* (hence with the same value group Γ and residue field $\overline{L} = \overline{K}$ as *K*). We can write L = K(a) where $a^p - a = b \in K \setminus K^{(p)}$. Step 1: (Claim) The set $C = \{v(x^p - x - b) \mid x \in K\} = v(K^{(p)} - b)$ is contained in $\Gamma_{<0}$ and has no last element.

First observe that $C \subseteq \Gamma_{\leq 0}$: if $v(c^p - c - b) > 0$, then the equation $X^p - X + (c^p - c - b)$ has a root in *K*, so that $(a - c) \in K$: contradiction. Let $\gamma \in \Gamma$, $d \in K$ such that $v(d^p - d - b) = \gamma$. As L/K is immediate there is $c \in K$ such that $\tilde{v}(a - (d + c)) > \tilde{v}(a - d)$. If $\tilde{v}(a - d) = 0$ then $\tilde{v}(a - (d + c)) > 0$ and $((d + c)^p - (d + c) - b) = (d + c - a)^p - (d + c - a)$ in \mathcal{M}_v , which as above give a contradiction. Hence $\tilde{v}(a - d) < 0$, and from $d^p - d - b = (d - a)^p - (d - a)$, we deduce that $\gamma = p\tilde{v}(a - d) < 0$, and $v((d + c)^p - (d + c) - b) = p(\tilde{v}(a - (d + c))) > \gamma$. This shows the claim.

Step 2: We extract a strictly well-ordered increasing and cofinal sequence from *C*. If we write $P(X) := X^p - X - b$, we get a sequence $\{a_\rho\}_{\rho < \kappa}$ in *K* such that the sequence $\{v(P(a_\rho))\}_{\rho < \kappa}$ is strictly increasing and cofinal in *C*. Thus, the sequence $\{P(a_\rho)\}_{\rho < \kappa}$ is pseudo-convergent (with 0 one of its limits). As $v(P(a_\alpha)) < 0$, we have $v(a_\beta - a_\alpha) = \frac{1}{p}v(P(a_\alpha)) = \gamma_\alpha$ for $\alpha < \beta < \kappa$. Thus, the sequence $\{a_\rho\}_{\rho < \kappa}$ is also pseudo-convergent. Furthermore, $\{a_\rho\}_{\rho < \kappa}$ has no limit in *K*: if $l \in K$ is a limit of $\{a_\rho\}_{\rho < \kappa}$ then P(l) is a limit of $\{P(a_\rho)\}_{\rho < \kappa}$. As $\{v(P(a_\rho))\}_{\rho < \kappa}$ is cofinal in *C*, v(P(l)) would be a maximal element of *C*: contradiction.

Step 3: (Claim) Let $P_0(X) \in K[X]$, and assume that $v(P_0(a_\alpha))$ is strictly increasing ultimately. Then deg $(P_0(X)) \ge p$.

We take such a P_0 of minimal degree, assume this degree is n < p, and will derive a contradiction. One consequence of Lemma 8 in [2] is that:

$$v(P_0(a_{\rho})) = \delta' + \gamma_{\rho}$$
 ultimately for $\rho < \kappa$ (4)

where δ' is the ultimate valuation of $P'_0(a_\rho)$ and γ_ρ is the valuation of $(a_\sigma - a_\rho)$ for $\rho < \sigma < \kappa$ (which does not depend on σ as $\{a_\rho\}_{\rho < \kappa}$ is pseudo-convergent). We write $P(X) = \sum_{i=0}^{m} h_i(X)P_0(X)^i$ with $\deg(h_i) < n, \forall i \in \{1, ..., m\}$. Then, $\{h_i(a_\rho)\}_{\rho < \kappa}$ is ultimately of constant valuation, and we let λ_i be this valuation. As $\{a_\rho\}_{\rho < \kappa}$ has no limit in K, it is easy to see that n > 1, so that m < p. By Lemma 4 in [2], there is an integer $i_0 \in \{1, ..., m\}$ such that we have ultimately:

$$\forall i \neq i_0 \quad (\lambda_i + i\delta') + i\gamma_\rho > (\lambda_{i_0} + i_0\delta') + i_0\gamma_\rho.$$
(5)

Then, ultimately:

$$p\gamma_{\rho} = v\big(P(a_{\rho})\big) = v\Big(\sum_{i=0}^{m} h_i(a_{\rho})P_0(a_{\rho})^i\Big) = \lambda_{i_0} + i_0(\delta' + \gamma_{\rho}).$$
(6)

Thus, we have ultimately $(p - i_0)\gamma_{\rho} = \lambda_{i_0} + i_0\delta'$. As $p > m \ge i_0$, the left hand side of the equation increases strictly monotonically with ρ . But the right hand side is constant: it has no dependence in ρ ! We have a contradiction, thus n = p.

Step 4: Clearly, $\{a_{\rho}\}_{\rho < \kappa}$ is of algebraic type. By Theorem 3 in [2], if a_{∞} is a root of *P*, we get an immediate extension $(L', v') = (K(a_{\infty}), v')$. Let $a_{\infty} = a$, we have (K(a), v') isomorphic to $(K(a), \tilde{v})$. Thus:

$$\forall Q \in K_p[X] \quad \tilde{v}(Q(a)) = v'(Q(a)) = v(Q(a_\rho)) \text{ ultimately}$$
(7)

This shows the uniqueness of \tilde{v} and concludes the proof of the theorem.

References

- [1] A.J. Engler, A. Prestel, Valued fields. Springer, 2005.
- [2] I. Kaplansky, *Maximal Fields with Valuations*. Duke Math. J. Volume 9, Number 2 (1942), 303 321.
- [3] J. Koenigsmann, *p-Henselian Fields*. Manuscripta Math. 87 (1995), no. 1, 89 99.

Département de Mathématiques et Applications (UMR 8553) ENS 45 rue d'Ulm 75230 Paris cedex 05 FRANCE e-mail: zoe.chatzidakis@ens.fr

IMJ-PRG (UMR 7586), Equipe TGA UPMC - Campus Jussieu 4, place Jussieu Boite Courrier 247 - 75252 Paris Cedex 05 FRANCE E-mail: milan.perera@imj-prg.fr