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Abstract

In this article we construct three explicit natural subgroups of the Brauer-
Picard group of the category of representations of a finite-dimensional Hopf
algebra. In examples the Brauer Picard group decomposes into an ordered
product of these subgroups, somewhat similar to a Bruhat decomposition.

Our construction returns for any Hopf algebra three types of braided
autoequivalences and correspondingly three families of invertible bimod-
ule categories. This gives examples of so-called (2-)Morita equivalences and
defects in topological field theories. We have a closer look at the case of quan-
tum groups and Nichols algebras and give interesting applications. Finally,
we briefly discuss the three families of group-theoretic extensions.

1 Introduction

For a finite tensor category C the Brauer-Picard group BrPic(C) is defined as the
group of equivalence classes of invertible exact C-C-bimodule categories. This
group is an important invariant of the tensor category C and appears at essen-
tial places such as group-theoretic extension of C and as defects in mathemati-
cal physics, see applications below. By a result in [ENOM09][DN12] the group
is isomorphic to braided autoequivalences of the Drinfeld center BrPic(C) ∼=
Autbr(Z(C)); this will be crucial in what follows.

Computing the Brauer-Picard group, even for C = Rep(G) or equivalently
C = VectG for a finite group G, is already an interesting and non-trivial task, see
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[ENOM09] [NR14] [FPSV14] [LP15b] [MN16]. The group multiplication is partic-
ularly hard to pin down. For C = H-mod with H an arbitrary Hopf algebra, not
much is known besides few examples, see [FMM14] [Mom12] [BN14] [ZZ13].

In [LP15b] we have proposed an approach to calculate BrPic(C) for
C = H-mod by defining certain natural subgroups1 BV , EV with intersection
V and a set of elements R, such that the Brauer Picard group may decompose as
a Bruhat-alike decomposition

BrPic(C) =
⋃

r∈R

BV EV r

In cit. loc. we have proven such a decomposition for the case H = C[G] for
elements fulfilling an additional restriction (laziness). Moreover we checked the
decomposition in all available examples by hand. It is unclear at this point if it is
true in general.
The intuition arises from

Example (Sec. 4.1.5). Let G ∼= Zn
p with p a prime number. Our decomposition reduces

to the Bruhat decomposition of BrPic(VectG), which is the Lie group O2n(Fp) over the
finite field Fp. In this case BV , EV are lower and upper triangular matrices, intersecting
in the subgroup V = GLn(Fp). The partial dualizations are Weyl group elements. More
precisely, our result reduces to the Bruhat decomposition of the Lie groups Dn relative to
the parabolic subsystem An−1, so reflections are actually equivalence classes correspond-
ing to n + 1 cosets of the parabolic Weyl group.

The present article is devoted to start the discussion of the more general case
C = H-mod. We shall not try to prove a decomposition theorem, but focus our
attention on establishing and discussing the expected natural subgroups V ,BV ,
EV , 〈R〉 of the Brauer Picard group. We will also briefly discuss several interest-
ing applications of our results, in particular when H is the Borel part of a quantum
group resp. a Nichols algebra.

In Section 2 we briefly recall the induction functor and the ENOM-functor
[ENOM09]

Autmon(C) → BrPic(C) BrPic(C)
∼
→ Autbr(Z(C))

In view of interesting examples and the applications to defects in mathematical
physics and Nichols algebras we state the obvious generalization of these con-

cepts to the groupoid setting, so that arbitrary monoidal equivalences C
∼
→ D give

rise to invertible C-D-bimodule categories, and these are in bijection to braided

equivalences Z(C)
∼
→ Z(D).

In Section 3 we define and derive for each subgroup V ,BV , EV and the subset
R explicit expressions for the braided autoequivalence as well as the invertible
bimodule categories.

1We choose these names EV ,BV for compatibilities with previous conventions. Be advised
that V does not necessarily have complement subgroups B, E in BV , EV in the most general cases.
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On one hand BV resp. EV are obtained using induction functors from H-mod
resp. H∗-mod. So the bimodule categories in BrPic(H-mod) resp. BrPic(H∗-mod)
are given by definition. We then calculate explicitly the images under the ENOM
functor using Bigalois objects and finally we describe again the preimage of EV
now in BrPic(H-mod). As linear categories, the bimodule categories in BV are
all equal to C, while the bimodule categories in EV are representation categories
of Bigalois objects, as in [FMM14].

On the other hand the set of elements R is defined as partial dualizations on
the Autbr-side of the functor as obtained by the first author in [BLS15]. There are
two types of partial dualization, for every way to decompose H = K ⋊ A into
a (semidirect) Radford-biproduct. As linear categories, the bimodule categories
in R are representations of semidirect factors of H (so they may be significantly
“smaller”, down to Vect) but with a largely nontrivial bimodule category struc-

ture (V.M).W
∼

−→ V.(M.W).

In Section 4 we discuss examples: Mostly we work out the result for C = VectG,
which has been discussed extensively. In particular we discuss how our bimod-
ule categories look in the explicit description of [ENOM09][Dav10]. Then we
thoroughly discuss the case where H is the Taft algebra and compare our results
with [FMM14].

In Section 5 we discuss applications:

a) First we discuss interesting types of bimodule categories that arise from our
constructions for a Nichols algebra H = B(M) ⋊ C[G]. This includes for

example the quantum group Borel parts U≥
q (g) resp. u≥

q (g).

First, due to the Bigalois objects there are interesting elements in BV , EV
related to different liftings of quantum groups, most of which have non-equiva-
lent representation categories C,D, . . . but are connected by invertible bimo-
dule categories.

Even more interesting are the partial dualizations: We may either dualize on
the Cartan part C[G], then we obtain invertible bimodule categories between

different forms of u≥
q (g) e.g. between the adjoint and the simply-connected

form.

Alternatively we we may dualize on parabolic sub-Nichols algebras, then
partial dualization reduces to the usual Weyl group reflection of the quantum
group. In this way we get invertible bimodule categories connecting different
choices of positive roots, and as linear categories these are representations of
coideal subalgebras.

At last, we remark that the Autbr-side of all these elements, which we have
worked out explicitly in the previous sections, give rise to braided autoequiv-
alences of the representation category of the full quantum group.

b) An interesting application to mathematical physics are defects: (Bi-)module
categories appear as boundary conditions and defects in 3d-TQFT, in
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particular the Brauer-Picard group is the symmetry group of such theories,
see [FSV13],[FPSV14].

Our results give three systematic, generic families of examples for such
defects. More importantly, they give many examples of invertible bimodule
categories between different categories. In a general TQFT the defects sepa-
rate different regions of space, which can be labeled by different categories.
Particularly interesting in this matter are again the concrete examples arising
from quantum groups.

c) Finally, a leading motivation for the consideration of the Brauer Picard group
is, that group-theoretic extensions of categories are parametrized by group
homomorphisms into the Brauer Picard group [ENOM09]. We close this
article by briefly discussing, which types of categories arise for our three sub-
groups.

This includes representations of the folded Nichols algebras over nonabelian
groups constructed by the first author in [Len12].

2 Categorical Setup

Let C,D, . . . be finite tensor categories with base field k = C.

Definition 2.1. The Brauer Picard Groupoid BrPic has as objects tensor categories
C,D, . . . and as morphisms equivalence classes of exact invertible bimodule categories

CMD and as composition the relative Deligne tensor product (CMD)⊠D (DNE ).
The automorphism group of an object C is the Brauer Picard group BrPic(C).
Categories C,D for which there exists an isomorphism CMD are called (2-) Morita
equivalent

Definition 2.2. The monoidal equivalence groupoid Eqmon has as objects finite
tensor categories C,D . . . and as morphism monoidal category equivalences F : C → D
and as composition concatenation.
The braided equivalence groupoid Eqbr has as objects braided tensor categories
Z ,W . . . and as morphism braided category equivalences F : Z → W . We denote
by Eq0

br the full subgroupoid consisting of objects that are Drinfeld centers (i.e. Witt
class 0).
The automorphism group of an object C is the group of monoidal autoequivalences
Eqmon(C) = Autmon(C) resp. braided autoequivalences Eqbr(Z) = Autbr(Z).

In fact we are actually dealing with a bicategory with 1-morphisms invertible
bimodule categories and with 2-morphisms bimodule category equivalences, re-
spectively with 1-morphism category equivalences and with 2-morphisms natu-
ral transformations.

Lemma 2.3 (Induction Functor). There is an evident groupoid homomorphism Ind :
Eqmon → BrPic given on objects by the identity and on morphisms CFD by F 7→ FD
where D is the trivial right D-module category and the trivial left D-module category
precomposed with the monoidal functor F.
This yields in particular an evident group homomorphism Autmon(C) → BrPic(C).
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The following theorem is due to [ENOM09]; see [DN12] for the non-semisimple
case:

Theorem 2.4 (ENOM functor). There is an equivalence of groupoids Φ : BrPic ∼= Eq0
br.

It is given on objects by sending C 7→ Z(C), on morphisms CMD 7→ FM it fulfills the
following defining property:

Z(C) acts on CMD as bimodule category automorphism, where the compatibility
constraint (c.m).d → c.(m.d) is given by the bimodule category structure and the com-
patibility constraint c′.(c.m) → c.(c′.m) is given by the half-braiding τc,c′ of the element
(c, τ) ∈ Z(C). Similarly Z(D) acts on CMD as bimodule category automorphism. The
defining property for Φ(M) : Z(C) → Z(D) is that the module category homomor-
phisms c. and .Φ(M)(c) are equivalent, i.e. there is a natural transformations between
these two functors that satisfy certain coherence properties with the two module category
and the bimodule category structure.

3 Subgroups of BrPic

3.1 Motivation

Why should we hope for a Bruhat-like decomposition of BrPic(H-mod)?

The main motivation for our initial work [LP15b] was the case H = C[G] for
G abelian, as treated in the second authors joint paper [FPSV14]. In particular let
G ∼= Zn

p with p a prime number. Then it is known that BrPic(Rep(G)) = O2n(Fp)
and the choice of generators in cit. loc. are upper triangular matrices containing
the group of group automorphisms Aut(G) = GLn(Fp), and additional genera-
tors are the so-called EM-dualities.

As it turned out in our study, these generators are not arbitrary, but rather
naturally defined subgroups, in much more general context, that can be written
down without prior knowledge of the full Brauer Picard group and come from
different sources:

Two sets of generators can be obtained via different induction functors from
various categories C ′ with Z(C ′) ∼= Z(C), leading in the example for C = VectG

to upper-triangular matrices BV = Aut(G) ⋉ H2(G, C×), as in [NR14], and for
C = Rep(G) to lower-triangular matrices EV intersecting precisely in V = Aut(G).

A third set of generators, the so-called EM-dualities R, turned out to be rather
general braided autoequivalences called partial dualizations in the first authors
work [BLS15]. These can be defined whenever a Hopf algebra decomposes into
a semidirect product, and a special case are simple reflections of quantum groups.

In [LP15b] we have proved that every element fulfilling an additional
condition (laziness) decomposes accordingly into an ordered product in these
subgroups, also we have checked the Brauer-Picard group in known cases by
hand. The Brauer-Picard group decomposition retains roughly the properties that
a Lie group over a ring admits (not an honest Bruhat decomposition), which is
what we get e.g. for G = Zn

k for k not prime.
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A maybe more convincing reason for our approach arose during the work
on [LP15b]: Every braided autoequivalence of DH-mod is described through its
action on objects plus a monoidal structure i.e. an element in H2(DH∗, C×).
While the action on objects seems easily accessible (one can look at invertible
objects, stabilizer etc.), there is in general very many possibilities. In the lazy
case this action if given by precomposing a Hopf algebra automorphism, and the
automorphism group reminds on a matrix group, but for more general cases we
don’t have this luxury.

On the other hand H2(DH∗, C×) is rather technical, but it should not sur-
prise us that is is connected to the groups H2(H, C×), H2(H∗, C×) and some
interaction between H, H∗. So we propose to shift classification effort to the
monoidal structure of the functor, rather that its action on objects. In fact for
abelian groups (and much more general situations) we have by Schauenburg
[Schau02] a Künneth-type formula, and this decomposition does precisely explain
the initially observed decomposition.

Another interesting question is, if one can characterize elements inside one
Bruhat-cell: Indeed for H = C[G] the “big cell” BVEV has the property that (in
the language of [NR14]) it sends the Langrangian subcategory L1,1 to some LN,µ

with µ nondegenerate. Smaller Bruhat-cells BVEVr can be characterized by the
degree of degeneracy of µ, down to µ = 1 which is a pure reflection. A similar
picture seems to emerge in this article for the bimodule categories, where the big
cell consists of R-mod for some algebra of same dimension as H, while smaller
cells are representations of considerable smaller algebras down to Vect for the
longest element in R.

However, these are merely speculative observations. As stated in the intro-
duction, the present paper does not concern itself with the decomposition, but
focuses solely on the definition and description of these generic subgroups in the
general case:

3.2 V induced from Hopf automorphisms

This obvious subgroup reappears as the intersection of the two upcoming sub-
groups.

Lemma 3.1. Let v ∈ IsoHopf(H, L) be a Hopf algebra isomorphism, then we have in
particular a monoidal equivalence v : L-mod → H-mod by precomposition. Induction
(Lm. 2.3) provides an invertible bimodule category M := v(H-mod).
We claim that this element in BrPic(L-mod, H-mod) gives under the ENOM functor
rise to the functor in Eqbr(DL-mod, DH-mod) given on objects by Φ(Ind(v)) : Z 7→
v−1

v Z and with trivial monoidal structure. Similarly induction of v−1 : L∗-mod →
H∗-mod provides a module category v−1(H∗-mod) giving rise to the same element.
In particular this defines a subgroup V ⊂ BrPic(H-mod) with V ∼= OutHopf(H).

Proof. To apply the defining property of the ENOM functor it suffices to construct
a natural isomorphism between the functors Z. and .Φ(Ind(v))Z for M ∈ L-mod.
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The half-braiding given by the coaction on Z gives a natural isomorphism of
H-modules:

vZ ⊗ M → M ⊗ .v
−1

v Z

z ⊗ m 7→ v−1(z(−1)).m ⊗ z(0)

We moreover have to check compatibility with the module category constraints,
namely for all W ∈ L-mod the following equality, which requires the coaction

choice v−1
Z:

vZ ⊗ (vW ⊗ M) → vW ⊗ (vZ ⊗ M) → vW ⊗ (M ⊗ v−1

v Z)
=
→ (vW ⊗ M)⊗ v−1

v Z

vZ ⊗ (vW ⊗ M) → (vW ⊗ M)⊗ v−1

v Z

z ⊗ w ⊗ m 7→ v−1(z(−1)).(w ⊗ m)⊗ z(0) =

v(v−1(z(−2))).w ⊗ v−1(z(−1)).m ⊗ z(0)

vZ ⊗ (vW ⊗ M) → (vW ⊗ M)⊗ v−1

v Z

z ⊗ w ⊗ m 7→ v−1(z(−1)).(w ⊗ m)⊗ z(0) =

v(v−1(z(−2))).w ⊗ v−1(z(−1)).m ⊗ z(0)

as well as the following equality of morphisms for all W ∈ H-mod:

vZ ⊗ (M ⊗ W)
=
→ (vZ ⊗ M)⊗ W → (M ⊗ v−1

v Z)⊗ W → (M ⊗ W)⊗ v−1

v Z

z ⊗ m ⊗ w 7→ z ⊗ m ⊗ w 7→ v−1(z(−1)).m ⊗ z(0) ⊗ w 7→

v−1(z(−2)).m ⊗ v−1(z(−1)).w ⊗ z(0)

vZ ⊗ (M ⊗ vW) → (M ⊗ vW)⊗ v−1

v Z

z⊗m⊗w 7→ v−1(z(−1)).(m⊗w)⊗ z(0) = v−1(z(−2)).m⊗ v−1(z(−1)).w⊗ z(0)

We also discuss the connection to a different embedding2:

Remark 3.2. The authors of [COZ97] define for a Hopf algebra H the Quantum Brauer
group BQ(k, H), an analogue of the Brauer group. It consist of H-Azumaya H-Yetter-
Drinfel’d algebras modulo H-Morita equivalence. In [OZ98] they give a map
π : Aut(H) → BQ(k, H) and determine the kernel. An elements in A ∈ BQ(k, H)
gives rise to a DH-mod-module category A-mod, i.e. an element in the Picard group.
By [DN12] in turn the Picard group maps to the Brauer-Picard group and hence to the
group of braided autoequivalences - to be precise Thm. 4.3 states that the image of the
Picard group consists precisely of those braided autoequivalences which are trivializable
on H-mod ⊂ DH-mod. This is by construction exactly our subgroup BV in the next
section.

We shall briefly sketch, how one can explicitly see the surjection of the subgroup
Aut(H) to our subgroup V ⊂ BV through all these identifications: We first convince
ourselves how the identity v = id ∈ Aut(H) maps to the identity: The associated
Azumaya algebra Av−1 is simply EndH where H is an H-Yetter-Drinfeld module with

2Thanks to the referee for asking this question
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adjoint H-action and diagonal H-coaction. The module category M := Av−1-mod has
(as always) the single simple object H with the above Yetter-Drinfeld structure. Now the
implicit construction in [DN12] Sec. 2.9 assigns to M the unique equivalence class of
autoequivalences ∂M ∈ Autbr(DH-mod), such that α− ◦ ∂M = α+ are equal as mod-
ule category morphisms, where α±(X) means the module category morphisms given on
objects by tensoring by X ∈ DH-mod and with module category morphism structure
given by the braiding resp. the inverse braiding. Equal here means up to natural equiva-
lence and indeed the double-braiding X ⊗ M → M ⊗ X → X ⊗ M turns out to be such
a natural isomorphism between X⊗ and itself that switches α+, α−. This shows how the
Hopf-automorphism id indeed implies the braided autoequivalence ∂ = id as expected.

For arbitrary v ∈ Aut(H) the situation is more involved, but fairly similar: The
Azumaya algebra is defined as Av−1 := EndHv−1 where Hv−1 has again the diagonal

coaction but a altered adjoint action h.x = v−1(h(2))xS−1(h(1)). This is not a Yetter-
Drinfel’d module but fulfills the altered relation

(h.a)(0) ⊗ (h.a)(1) = h(2).a(0) ⊗ v−1(h(3))a(1)S−1(h(1))

Now if ∂(X) := v−1

vX is the Yetter-Drinfel’d module with modified action and coaction
as in the theorem above, then one can roughly see that the double braiding maps

v−1

vX ⊗ M −→ M ⊗ vX −→ M ⊗ X

so the double braiding in this sense gives an isomorphism α−(∂(X)) → α+(X) on
objects, and as for identity the double braiding intertwines the braiding and negative
braiding.

3.3 BV induced from H-mod

Another rather obvious source of elements in BrPic is the induction functor from
arbitrary monoidal equivalences; this of course contains the previous subgroup.
While the bimodule category is given by definition, the image of the ENOM-
functor requires some preparation:

Let F : L-mod → H-mod be a monoidal equivalence and let us consider the in-
verse F−1 : H-mod → L-mod: We are assuming finite dimension, so F−1 is given
by R�H∗ with R = f H∗

σ an L∗-H∗-Bigalois object [Sch91], where σ ∈ Z2(H∗, C) is
a Hopf 2-cocycle and f : σ(H∗)σ−1 → L∗ is a Hopf algebra isomorphism from the
Doi twist of H∗ to L∗. On objects F−1 is just composing the coaction with f . E.g.,
for H = CG a dual groupring (but not always for a nonabelian groupring), due to
the cocommutativity of H∗ = C[G] any Doi twist is equal to H∗ and f is a choice
of a group isomorphism H∗ → L∗.

Theorem 3.3 ([MO98] Thm 2.7). Given a 2-cocycle σ ∈ Z2(H∗, C), then we have the
following category equivalence Z(mod(H∗)) → Z(mod(σ(H∗)σ−1)): Send V to σV
with the same H∗-coaction and modified H∗-action

f .σv = σ( f (1), v(−1))σ−1(( f (2) .v(0))(−1), f (3)) · ( f (2).v(0))(0)

and monoidal structure of the functor given by σ.
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We can now state:

Lemma 3.4. Let F ∈ Eqmon(L-mod, H-mod) and σ, f as above. The induction image
of F is by definition the bimodule category M := F(H-mod).

We claim that this element in BrPic(L-mod, H-mod) gives under the ENOM func-
tor rise to the functor in Eqbr(DL-mod, DH-mod) given on objects by Φ(Ind(v)) :

Z 7→ σ−1◦ f
f−1 Z and with the monoidal structure of F.

Here σ−1◦ f
f−1 Z means the L-module has been converted by F to a H-module F(Z) which

means precompose the action by f−1. On the other hand the L∗-action is pulled back to
an σ(H∗)σ−1-action by f and further to a H∗-action by σ−1 with the previous Lemma.

In particular this defines a subgroup BV ⊂ BrPic(H-mod) which is the homomor-
phic image of the group Autmon(H-mod).

It is easy to see that the case σ = 1 reduces to the elements (and the proof) in
V .

Proof. We denote the modified coaction by lower indices z 7→ z(−1) ⊗ z(0). The

relevant property of its definition is that Z 7→ σ−1◦ f
f−1Z is a braided category

equivalence which coincides with F on the level of modules. More formally

z(−1).F w = z(−1).w. Using this property the proof works automatically as in
the previous section:

The half-braiding (with modified coaction and action, but unmodified action
on M!)

FZ ⊗ M → M ⊗ σ−1◦ f
f−1Z

z ⊗ m 7→ z(−1).m ⊗ z(0)

gives clearly a natural isomorphism of H-modules, since we can write it as a

braiding of σ−1◦ f
f−1Z ⊗ FM′ with M′ = F−1 M.

Then we check the coherence conditions using the relevant property:

FZ ⊗ (FW ⊗ M) → FW ⊗ (FZ ⊗ M) → FW ⊗ (M ⊗ σ−1◦ f
f−1Z)

z ⊗ w ⊗ m 7→ z(−1).w ⊗ z(0) ⊗ m 7→ z(−1).w ⊗ (z(0))(−1).m ⊗ (z(0))(0)

FZ ⊗ (FW ⊗ M) → (FW ⊗ M)⊗ σ−1◦ f
f−1 Z

z ⊗ w ⊗ m 7→ z(−1).(Fw ⊗ m) ⊗ z(0) = (z(−1))
(1).F w ⊗ (z(−1))

(2).m ⊗ z(0)

as well as the more trivial relation

FZ ⊗ (M ⊗W)
=
→ (FZ ⊗ M)⊗W → (M ⊗ σ−1◦ f

f−1Z)⊗W → (M ⊗W)⊗ σ−1◦ f
f−1 Z

z ⊗ m ⊗ w 7→ z ⊗ m ⊗ w 7→ z(−1).m ⊗ z(0) ⊗ w 7→ z(−2).m ⊗ z(−1).w ⊗ z(0)

FZ ⊗ (M ⊗ FW) → (M ⊗ FW)⊗ v−1

v Z

z ⊗ m ⊗ w 7→ z(−1).(m ⊗ w) ⊗ z(0) = (z(−1))
(1).m ⊗ (z(−1))

(2).w ⊗ z(0)
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3.4 EV induced from H∗-mod

Since Z(H-mod) ∼= Z(H∗-mod) we may as well induce up from
Autmon(H∗-mod), which is in general not related to Autmon(H-mod) - except the
common subgroup AutHopf(H) ∼= AutHopf(H∗). Here by definition
F ∈ Autmon(H∗-mod) induces the H∗-mod-bimodule category F(H∗-mod) and
the image of F under the ENOM functor in Z(H-mod) ∼= Z(H∗-mod) is dual
to the last section. However, it is not clear what the H-mod-bimodule category
associated to F is; this is clarified by:

Lemma 3.5. Let F ∈ Eqmon(L∗-mod, H∗-mod) and consider again F−1, which we
write as cotensoring with a L-H-Bigalois object R = f Hσ with σ ∈ Z2(H, C) and
f : σHσ−1 → L. We already know that (dually) the induction image of F is by definition
the L∗-H∗-bimodule category F(L∗-mod) and this gives under the ENOM functor rise
to the functor in Eqbr(DL-mod, DH-mod) given on objects by Φ(Ind(F)) : Z 7→

σ−1◦ f
f−1

Z and with the monoidal structure of F.

We claim that this braided equivalence coincides with the image of the ENOM functor
of the following invertible exact L-H-bimodule category: Let M = R-mod as C-linear
category. The left and right coaction

R −→ L ⊗ R R −→ R ⊗ H

give by pull-back module category actions of L-mod and H-mod on R-mod.
In particular this defines a subgroup EV ⊂ BrPic(H-mod) which is the homomor-

phic image of the group Autmon(H-mod).3

Proof. Let M be an R-module. To prove our formula for Φ(M) we need to guess
a natural transformation:

Z ⊗ M → M ⊗ σ−1◦ f
f−1

Z

z ⊗ m 7→ ι(z(−1)).m ⊗ z(0)

where we denote the F-modified coaction by lower indices z(−1) ⊗ z(0) ∈ H ⊗ FZ
and the right-H-colinear cleaving identification map ι : H ∼= Hσ. To prove that
this is indeed a natural transformation we need to check that it is an R-module
map (it is clearly natural and bijective), so we act with some ι(H) ∈ R and wish
to prove:

ι((ι(h)(−1) .z)(−1)).ι(h)
(0) .m ⊗ (ι(h)(−1) .z)(0)

?
= ι(h)(0) .ι(z(−1)).m ⊗ ι(h)(1) .σ−1◦ f z(0)

On the right hand side we use the right H-colinearity of ι, on the left hand side the

left L-coaction on R via f . Then we use that by definition ι(a)ι(b) = σ(a(1), b(1))

ι(a(2)b(2)):

σ(( f (h(1)).z)(−2), h(2)) ι(( f (h(1)).z)(−1) · h(3)).m ⊗ ( f (h(1)).z)(0)
?
= σ(h(1), z(−2)) ι(h(2) · z(−1)).m ⊗ h(3).σ−1◦ f z(0)

3This subgroup of BrPic has been considered first in a different approach of [FMM14]; here we
describe it as induction functor and give its image under the ENOM functor.
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To prove this relation is true the main issue is to simplify the expression

( f (h(1)).z)(−1) using the Yetter-Drinfeld-condition relation action and coaction,
but since we have lower-index (i.e. F-modified coaction) we need to also use
the modified action, which we obtain by adding and subtracting an appropriate
cocycle. The overall calculation is:

σ(( f (h(1)).z)(−2), h(2)) ι(( f (h(1)).z)(−1) · h(3)).m ⊗ ( f (h(1)).z)(0)

= σ(h(1), z(−2))σ
−1(h(2), z(−1)) σ(( f (h(1)).z)(−2) , h(2)) ι(( f (h(1)).z)(−1) · h(3)).

m ⊗ ( f (h(1)).z)(0)

= σ(h(1), z(−1)) ι((h(2) .σ−1◦ f z(0))(−1) · h(3)).m ⊗ (h(2).σ−1◦ f z(0))(0)

= σ(h(1), z(−2)) ι(h(2)z(−1)S(h
(4)) · h(5)).m ⊗ h(3).σ−1◦ f z(0)

Having established a natural transformation we check once again the coher-
ence conditions. We have equalities as follows for all W ∈ L-mod:

Z ⊗ (W ⊗ M) → W ⊗ (Z ⊗ M) → W ⊗ (M ⊗ σ−1◦ f
f−1

Z)
=
→ (W ⊗ M)⊗ σ−1◦ f

f−1
Z

z ⊗ w ⊗ m 7→ z(−1).w ⊗ z(0) ⊗ m 7→ z(−2).w ⊗ ι(z(−1)).m ⊗ z(0)

Z ⊗ (W ⊗ M) → (W ⊗ M)⊗ σ−1◦ f
f−1

Z

z ⊗ w ⊗ m 7→ ι(z(−1)).(w ⊗ m) ⊗ z(0) = f (z(−2)).w ⊗ ι(z(−1)).m ⊗ z(0)

as well as for all W ∈ H-mod:

Z ⊗ (M ⊗ W)
=
→ (Z ⊗ M)⊗ W → (M ⊗ σ−1◦ f

f−1
Z)⊗ W → (M ⊗ W)⊗ σ−1◦ f

f−1
Z

z ⊗ m ⊗ w 7→ z ⊗ m ⊗ w 7→ ι(z(−1)).m ⊗ z(0) ⊗ w 7→ ι(z(−2)).m ⊗ z(−1).w ⊗ z(0)

Z ⊗ (M ⊗ W) → (M ⊗ W)⊗ σ−1◦ f
f−1

Z

z ⊗ m ⊗ w 7→ ι(z(−1)).(m ⊗ w)⊗ z(0) = ι(z(−1))
(0).m ⊗ ι(z(−1))

(1).w ⊗ z(0)

3.5 R the partial dualizations

We now introduce an additional subset of elements in BrPic which are not
induced from monoidal equivalences, but constructed from the braided equiv-
alence side of the ENOM functor. We will make thorough use of the second

category equivalence ΩX : DX-mod
∼
→ DX∗-mod [BLS15] Thm. 3.20 for any

Hopf algebra X inside a braided base category X . The new X∗-action and -coaction
on Ω(M) is as follows:

Ω(M, ρM, δM) =





















M,

eval

X∗ M

M

,

coeval

M

X∗ M





















, Ω2(M, N) =

M N

M N

.
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with nontrivial monoidal structure Ω2 involving the inverse antipode.

Lemma 3.6. The following X-mod-X∗-mod bimodule category fulfills the defining
property of the preimage under the ENOM-functor of Ω; it is not necessarily invert-
ible:
As abelian category M = X with trivial module category structure on either side
(forgetting the X, X∗-module structures) but with nontrivial bimodule category struc-
ture (V ⊗ M)⊗ W −→ V ⊗ (M ⊗ W) given by

(V M) W

V (M W)

where V ∈ X-mod, W ∈ X∗-mod, M ∈ X .

Proof. As natural equivalence Z ⊗ M −→ M ⊗ Ω(Z) we choose the braiding
in the category X , where Z ∈ DX-mod inside X and as objects in X we have
Z = Ω(Z):

Z

M

M

Ω(Z)

We check the coherence conditions that we have equalities of the following
morphisms

Z (W M)

W (M Ω(Z))

=

Z (W M)

W (M Ω(Z))

as well as of the following morphisms involving the modified action on Ω(Z):
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eval

coeval

(Z M) W

(M W) Ω(Z)

=

(Z M) W

(M W) Ω(Z)

Suppose now we have a projection π : H → A which means we can write
H = K ⋊ A where the coinvariants K = Hcoinπ is a Hopf algebra in the braided
category DA-mod. Then we can construct two Hopf algebras:

r′(H) := K∗
⋊ A r(H) := ΩA(K)⋊ A∗

and category equivalences DH-mod → D r(H)-mod and DH-mod → D r′(H)-
mod.

Our previous lemma applied to X = DA-mod gives a Z(H-mod)-Z(r(H)-
mod)-bimodule category M′ = X , which is in general not invertible. But there
is an invertible sub-bimodule category stable under the structure maps, namely
A-mod (M appears only as undercrossing). This shows for the first part:

Corollary 3.7. The element DH-mod → D r′(H)-mod is the image under the ENOM
functor of the module category M = A-mod with module structure given by the ten-
sor product ⊗C in A-mod, forgetting K- resp. K∗-module structure, and a nontrivial
bimodule category structure given by the previous lemma using the pairing between
K, K∗.

Similarly one constructs vice-versa:

Corollary 3.8. The element DH-mod → D r(H)-mod is the image under the ENOM
functor of the module category M = (K-mod)

Ω−1
A

with module structure given by the

tensor product ⊗C in K-mod, for the right side after precomposing with Ω−1
A , forgetting

A- resp. A∗-module structure, and a nontrivial bimodule category structure given by the
previous lemma using the pairing between A, A∗.

Example 3.9. The extremal case is a full dualization r′ with A = 1 or equivalently r with
K = 1. In this case we obtain the (in this case invertible) H-mod-H ∗ -mod-bimodule
category M = Vect from the Lemma with bimodule category structure given by the
pairing of H and H∗.

Very similar formulae construct dually H∗-mod-r(H)∗-mod-bimodule categories.

Of particular interest are cases where r′(H) ∼= H resp. r(H) ∼= H which is
the case for self-dual Yetter-Drinfeld Hopf algebra K resp. self-dual Hopf algebra
A and Ω-self-dual Yetter-Drinfeld module K. For these cases partial dualizations
give rise to elements in BrPic(H-mod).
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Remark 3.10. The bimodule categories should be equivalent to something like
M := (K ⊗ K∗)λ ⋊ A-mod resp. M := K ⋊ (A ⊗ A∗)λ-mod for the Bigalois
object (K ⊗ K∗)λ given by the evaluation pairing K ⊗ K∗ → C - and with trivial
bimodule category structure.

Remark 3.11. Partial dualizations can be used to conjugate different forgetful functors
Z(C) → C and hence many different induction functors from C. Our approach can be
seen as the hope that this exhausts a large amount of different forgetful functors.

Remark 3.12. An important fact is that partial dualizations in our (narrow) definition
depend on the precise Hopf algebra i.e. is not invariant under monoidal representation
category equivalence. This can lead to the effect that H-mod ∼= H′-mod where H has
a semi direct decomposition while H′ has not, but still both centers carry the respective
partial actualization. This can be either avoided by reformulating the above construc-
tion categorically (both categories have a semi direct-product-like decomposition) or by
accepting, that partial dualizations can arise from any monoidally equivalent presenta-
tion. Compare the group example 4.5 below.

4 Examples

4.1 Groups

We discuss all module categories and braided equivalences for the case H = CG

with G a finite group i.e. H-mod = VectG. The module categories can be in this
case be check against the explicit description:

Lemma 4.1 ([Dav10] Cor. 3.6.3 [NR14] Prop. 5.2). Invertible bimodule categories
over VectG are in bijection with pairs (B, η) where U ⊂ G × Gop a subgroup and
η ∈ H2(B, C×) such that

• U(G × 1) = U(1 × Gop) = G × Gop

• U1 = U ∩ (G × 1) and U2 = U ∩ (1 × Gop) are abelian.

• η(h1, h2)η
−1(h2, h1) is a nondegenerate pairing U1 × U2 → C

×

In this case M = Vect(G×Gop)/U is the C-linear category of vector spaces graded by

U-cosets [O03]. The Lemma holds similarly for invertible Vect′G-VectG-bimodule cate-
gories.

The braided equivalences of the center can be described very explicitly using
the following well-known description:

Lemma 4.2. Z(VectG) is semisimple and the simple objects are Oχ
g where [g] ⊂ G is a

conjugacy class and χ an irreducible character of the centralizer Cent(g)
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4.1.1 We discuss the group V

Let v : G′ → G be a group isomorphism. The corresponding invertible VectG′-
VectG-bimodule category is given v(VectG). This corresponds to the choice G ∼=
U ⊂ G′ × Gop the graph of v and U1 = U2 = {1}, η = 1.

The ENOM functor assigns to this the following category equivalence of the
centers:

Oχ
g 7−→ O

χ(v−1(•))
v(g)

4.1.2 We discuss the group BV

Let F : VectG′ → VectG a monoidal equivalence: It is given on objects by a
group isomorphism v : G′ → G and the monoidal structure by a 2-cocycle
µ ∈ H2(G′, C

×), which defines a Bigalois object Cσ[G
′] with left coaction com-

posed with v. Respective, the monoidal equivalence F−1 is given by f = v−1

and the 2-cocycle σ(g, h) = µ−1(v−1(g), v−1(h)). The invertible VectG′-VectG-
bimodule category is again given by definition by M = F(VectG), which corre-
sponds again to the choice G ∼= U ⊂ G′ × Gop the graph of v and U1 = U2 = {1}
but now includes nontrivial η.

The ENOM functor assigns to this the following category equivalence of the
centers

Oχ
g 7−→ O

χ(v−1(•)) µ(v−1(•),g)

µ(g,v−1(•))

v(g)

with nontrivial monoidal structure given by µ on the coaction.

Remark 4.3. It is informative to also look at the bimodule categories from the dual per-
spective of the subgroup EV of Rep(G′)-Rep(G)-bimodule categories, where we obtain
M = v(Cσ[G]-mod).

4.1.3 We discuss the group EV

The monoidal equivalences Rep(G′) → H-mod are given by Bigalois objects

f RRep(G′) where H is the Doi twist of C[G′] and f ∈ AutHopf(H). By [Dav01]

the Galois objects are given by pairs (S, η) where S is a subgroup of G′ and
η ∈ Z2(S, C×) nondegenerate; then the Galois object is an induced representa-

tion R = f (C
G′

⊗S Cη[S]). The Hopf algebra H, being the Doi twist of C[G′],
is fixed up to isomorphism f by the choice S, η. In particular obtaining again a
group algebra H = C[G] is equivalent to S being normal abelian and the coho-
mology class [η] being conjugation invariant. The isomorphism type of G is a
certain extension Ŝ 7→ G → G′/S determined by η.
In particular it is sufficient (but not necessary) to achieve G′ ∼= G that η is con-
jugation invariant as a 2-cocycle. This additional condition is (see e.g. [LP15b])
equivalent to so-called laziness. In particular the extension G is isomorphic to G′
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by the trivial isomorphism (identity on G′/S and the nondegenerate form defined
by α identifying S ∼= Ŝ) and the additional morphism f is actually a Hopf algebra
isomorphism induced by a group isomorphism v : G → G′. In this case we may
assume v = id without loss of generality and realize v ∈ V as above.

The corresponding invertible Rep(G′)-H-mod-bimodule category induced by
F has been shown to be R-mod. To link this to the description in Lemma 4.1 we
observe that since Cη[S] is by assumption a simple algebra, we have a category

equivalence R-mod ∼= C
G′/S-mod = VectG′/S. In the lazy case it is easy to check

that the following data in the Lemma describes our bimodule category. Identify-
ing G′/S = G/Ŝ, denoting the quotient map by π and identifying Gop ∼= G via
inverse we take

U = {(g′, g) ∈ G′ × G | π(g′) = v(π(g)−1)} (S × Ŝ) → U → G′/S

In particular U1 = U ∩ (G′ × 1) = S and U2 = U ∩ (1 × G) = Ŝ. There is a
diagonal quotient U → S × G′/S, pulling back the 2-cocycle η gives a 2-cocycle
on U which is nondegenerate on S × S, Ŝ × Ŝ and S × Ŝ as necessary.

The ENOM-functor assigns to this the category equivalence of the centers
obtained above. It can be worked out for a given Oχ

g by decomposing the induced
representation according to the modified coaction, and the monoidal structure is
given by that of F, but there is no convenient group-theoretic formula for this. We
work out the following case:

Lemma 4.4. The formula from Section 3.4 reduces for a lazy 4 monoidal equivalence
Rep(G) → Rep(G) given by S, η, v = id as follows on objects OV

1 :
Let the restriction of the irreducible G-representation V to S (abelian, normal) be decom-
posed according to Clifford theory into irreducible representations V =

⊕t
i=1 Ei ⊗ Vi,

where conjugation of G acts transitively on the 1-dimensional S-representations Vi = Cχi

and all the multiplicity spaces E (trivial S-representations) are of same dimension. Use
the nondegeneracy of η to identify Ŝ ∼= S to get a G-conjugacy class [si] by χi(r) =
η(r,si)
η(si,r)

=: 〈r, si〉. Then the centralizer of any si is the corresponding inertia subgroup

Ii ⊂ G fixing χi and hence acting on Ei. Then we claim

OV
1 7−→ OEi⊗Vi

[si]

Proof. Because the lazy case allows without restriction in generality to choose
v = id we have F = id on objects. Thus as representations Φ(Ind(F))OV

1 =
OV

1 = V and as Φ(Ind(F))Oχ
g = σ−1OV

1 . So it remains to determine the σ−1-

twisted coaction, which is the σ−1−twisted CG-action. We need to reformulate
also

4This “lazy” here is much less critical than in [LP15b], where we classify lazy braided autoe-
quivalences of the Drinfeld center. In the present approach it is merely a technical inconvenience
that we have good explicit formulae only for (still non-lazy) induction from a lazy monoidal au-
toequivalence of Rep(G). Does the given group-theoretic formula continue to hold for nonlazy
monoidal equivalences?
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G-action as C
G-coaction via v 7→ ∑g eg ⊗ g.v. We decompose V =

⊕t
i=1 Ei ⊗ Vi as

asserted and check the twisted action of the projector esi
for si defined as asserted

on v ∈ Ej ⊗ Vj:

esi
.σv = ∑

g,h∈G

σ−1(e
(1)
si

, eg) · (h.e
(2)
si

.g.v) · σ(eh, e
(3)
si

)

We now use our formula in [LP15a]:

σ(ea, eb) =
δa,b∈S

|S|2 ∑
t,t′∈S

η(t, t′)〈t, a〉〈t′ , b〉

and the fact that v is in grade 1 ∈ G to evaluate our expression. Then we exploit
the fact that for a nondegenerate pairing on an abelian group holds
1
|S| ∑s′s′′=s〈x, s〉〈s, y〉 = δx,y and hence 1

|S| ∑s′s′′=s〈x, s′〉〈y, s′′〉 = δx,y〈x, s〉 and that

any r ∈ S acts on v by the 1-dimensional character χj(r) = 〈r, sj〉:

= ∑
g,h∈S,s′is

′′
i =si

1

|S|2 ∑
t,t′∈S

η−1(t, t′)〈t, s′i〉〈t
′, g〉 · (hg.v)

·
1

|S|2 ∑
t′′,t′′′∈S

η(t′′ , t′′′)〈t′′ , h〉〈t′′′ , s′′i 〉

=
1

|S|2 ∑
r∈S

∑
t,t′∈S

η−1(t, t′)〈t, si〉〈t
′, r〉 · (r.v) · η(t′, t)

=
1

|S|2 ∑
r∈S

∑
t,t′∈S

〈t′, t〉〈t, si〉〈t
′, r〉χj(r) · v

=
1

|S| ∑
r∈S

〈si, r〉〈r, sj〉 · v = δi,j · v

This shows that Ej ⊗ Vj has now a coaction grade sj as asserted.

Example 4.5. We also wish to give an example of induction for a non-lazy autoequiv-
alence. Consider Sp2n(F2) acting on S := Z2n

2 with invariant symplectic form 〈•, •〉.
There is a unique nondegenerate cohomology class [η] ∈ H2(S, C×) associated to the
symplectic form, which is hence invariant, however no representing 2-cocycle is not
invariant. It is known ([Dav01] Exm. 7.6) that this relates the semidirect product
G′ = S ⋊ Sp2n(F2) and the nontrivial extension G = S.Sp2n(F2) via the (then non-
lazy) Bigalois object associated to S, η.

Of particular interest is the case n = 1 where both groups are isomorphic G ∼=
G′ = S4 but still v interchanges the conjugacy classes [(12)] and [(1234)] (with both 6
elements) and is hence no Hopf algebra isomorphism. The non-lazy monoidal autoequiv-
alence F of S4 interchanges the two 3-dimensional representations χ3, χ3 ⊗ sgnand is
visible as symmetry in the character table. The induction of this F would yield a bimod-
ule category M = R-mod which would be described by a U ⊂ S4 × S4 containing tuples
such as ((12), (1234)).
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4.1.4 We discuss the elements R

We first observe that CG seems to have no interesting semidirect decompositions,
because of contravariance this would imply a left-split sequence of groups. On
the other hand assume G = N ⋊ Q, then H∗ = C[G] = C[N] ⋊ C[Q]. Next we
observe that partial dualization r(C[G]) can never return a group ring (except for
a direct product, for which it coincides with r′), because the coaction of A on K is
trivial, so to be self-dual the action would have to be trivial as well resulting in a
direct product.

So we consider partial dualization r′ on H∗ = C[G] = C[N]⋊C[Q] where N is
an abelian group and a self-dual Q-module. We have already derived in [LP15b]
a formula for the action of r′ as a braided equivalence of Z(VectG) on objects Oχ

1 .
Similar to EV , let the restriction of the irreducible G-representation V to N

(abelian, normal) be decomposed according to Clifford theory into irreducible
representations V =

⊕t
i=1 Ei ⊗ Vi, use the paring to map the 1-dimensional rep-

resentations Vi ∈ N∗ to a a G-conjugacy class [si] ⊂ N. Then the centralizer of
any si is the corresponding inertia subgroup Ii ⊂ G fixing Vi and hence acting on
Ei. Then we claim

OV
1 7−→ OEi

[si]

(the only difference is no Vi appears in the centralizer action)

Also the corresponding module category VectQ is described in striking simi-
larity to EV by the same subgroup

U = {(g′, g) ∈ G × G | π(g′) = π(g)−1} (N × N̂) → U → Q

where π : G → Q = G/N. But compared to EV the 2-cocycle is different: Con-
sider again the diagonal quotient N → U → N × Q and consider the Masumoto
spectral sequence

1 → H1(N × Q, C
×) → H1(U, C

×) → H1(N, C
×) →

→ H2(N × Q, C
×)

pullback
−→ H2(U, C

×)N
f orm
−→ (N × Q)⊗ N →

→ H3(N × Q, C
×) → H3(U, C

×)

where the subindex N means cohomologically trivial if restricted to the kernel
N. For EV we took the pullback of a 2-cocycle on N, now we should take the
preimage of our nondegenerate form on N × N, which becomes trivial in H3 and
is hence in the image.

4.1.5 Example: Elementary abelian groups

For G = Fn
p a finite vector space we know directly

Autbr(DG-mod) = O2n(Fp).

For abelian groups, all 2-cocycles over DG are lazy and the results of [BLS15]
gives a product decomposition of BrPic(Rep(G)). The subgroups in question are
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• V ∼= Out(G) = GLn(Fp).

• BV = Out(G)⋊ (Fn
p ∧ Fn

p) the latter as an additive group.

• EV = Out(G)⋊ (Fn
p ∧ Fn

p) the latter as an additive group.

• The set R consists of n + 1 equivalence classes of partial dualizations for
each possible dimension d of a direct factor Fd

p
∼= C ⊂ G. Especially the

full dualization on C = G conjugates BV and EV . In this case the proposed
decomposition is actually a double coset decomposition, which is a variant
of the Bruhat decomposition of O2n(Fp) of type Dn.
More precisely, our result reduces to the Bruhat decomposition of the Lie
groups Dn relative to the parabolic subsystem An−1. In particular there are
n + 1 double cosets of the parabolic Weyl group Sn, accounting for the n + 1
non-isomorphic partial dualizations on subgroups Zk

p for
k = 0, ..., n.

4.1.6 Examples for nonabelian groups

Let G be a nonabelian simple group, then

• V ∼= Out(G).

• BV = Out(G)⋊ H2(G, C
×) (the latter as an additive group).

• EV = V as there are no nontrivial abelian normal subgroups.

• The set R is empty as there are no nontrivial semidirect factors.

Let G = S3, then BrPic(G) = Z2 (see already [NR14]), more precisely:

• V ∼= Out(G) = 1.

• BV = V ⋊ H2(G, C×) = 1.

• EV = V = 1 since the only nontrivial abelian normal subgroup is cyclic and
has hence no nontrivial cocycles.

• The set R contains a nontrivial reflection r′ on the normal subgroup 〈(123)〉.
As an element in Autbr(DS3-mod) it permutes the objects as follows5:

Otriv
1 , O

sgn
1 , O

re f
1 , O+

(12)
, O−

(12)
, O1

(123), O
ζ
(123)

, Oζ2

(123)

−→ Otriv
1 , O

sgn
1 , O1

(123), O
+
(12)

, O−
(12)

, O
re f
1 , Oζ ′

(123)
, Oζ ′2

(123)

5triv, sgn, re f the irreducible representations of S3 and ± the two 1-dimensional representa-
tions of the centralizer Z2 of (12) and 1, ζ, ζ2 the three 1-dimensional representations of the cen-
tralizer Z3 of (123). Whether ζ, ζ ′ are the same roots of unity depends on the right choice of the
pairing on Z3.
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As an invertible bimodule category M is is the abelian category Z2-mod
with highly nontrivial bimodule category constraint.

We remark already at this point, that the associated group-theoretical
Z2-extension of S3-mod is the fusion category (ŝl2)4-mod which decom-
poses as an abelian category to S3-mod ⊕ S3/Z3-mod with 3 + 2 simple
objects.

More examples are discussed in [BLS15] Sec. 6.

4.2 Taft algebra

As a example which is not of group type, we now discuss the Taft algebra, for
which the description of the Brauer Picard group can be checked against the list of
bimodule categories in [FMM14] (although there is unfortunately no description
of the Brauer Picard group):

Definition 4.6 (Taft algebra). Let q be a primitive ℓ-th root of unity prime) and let Tq

be the Hopf algebra generated by g, x with relations and coproduct as follows:

gℓ = 1 xℓ = 0 xg = qgx

∆(g) = g ⊗ g ∆(x) = g ⊗ x + x ⊗ 1

Tq has dimension ℓ2 and decomposes into a Radford biproduct product Tq = K ⋊

A = C[x] ⋊ C[Zℓ] where the A-action and -coaction on K is given by g.x = qx and
δ(x) = g ⊗ x. It is a self-dual Hopf algebra via the linear forms g∗ : g, x 7→ q, 0 and
x∗ : g, x 7→ 1, 1.

The Taft algebra appears naturally as the Borel part of the small quantum groups
uq−1/2(sl2)

+. The Drinfel’d double DTq is generated by two isomorphic Taft algebras g, x

and g∗, x∗ with relations

x∗g = q−1gx∗ xg∗ = q−1g∗x xx∗ − qx∗x =
g − g∗

q − q−1

It has the full quantum group as quotient by the central element gg∗ − 1.

We recall some well-known properties of this Hopf algebra:

Fact 4.7.
AutHopf(Tq) ∼= C

× OutHopf(H) ∼= C
×/〈q〉

where c ∈ C× acts by g, x 7→ g, cx. This is because the skew-primitive x is deter-
mined uniquely up to scalar and the grouplike g is determined by x; on the other hand
the asserted map is a Hopf algebra automorphism. Conjugation by g gives the inner
automorphism c = q, so OutHopf(H) ∼= C

×/〈q〉

Fact 4.8. All irreducible Tq-modules are of the form Cχ and all indecomposable modules

are of the form Cχ[x]/xd for χ ∈ Ẑp any character of the group ring and 0 < d < ℓ
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Proof. Let V be a finite-dimensional Tq-module. Let v be a g.-Eigenvector to some

Eigenvalue χ(g) defining a character of Zp. The relation gxg−1 = qx shows that

xk.v is a g.-Eigenvector to the Eigenvalue qkχ(g) and then at last xℓ.v = 0. Hence
the only irreducible representations are 1-dimensional Cχ and all indecompos-

ables are Cχ[x]/xd of dimension 0 < d < ℓ. Conversely, each module can be
realized as a quotient of the regular representation.

Fact 4.9. There is a braided subcategory of Z(Tq-mod) = DTq-mod determined by
gg∗ − 1 acting by zero, which is equivalent to the category of uq−1/2(sl2)-mod. We

denote the irreducible highest weight module by V(λ) for weight λ ∈ 1
2N0.

We first discuss the group V ∼= OutHopf(Tq) ∼= C
×/〈q〉. The effect of this

as a monoidal autoequivalence seems negligible because one easily finds a nat-
ural transformation to the trivial autoequivalence by rescaling xkv 7→ ck · xkv.
However, a monoidal natural transformation will return the trivial autoequiva-
lence with a nontrivial monoidal structure. This can be easily seen for the tensor
product of two 2-dimensional indecomposables, which decomposes into 1- and
3-dimensional indecomposables which are rescaled differently; the more general
formula for EV below shows the resulting 2-cocycle systematically for (a, b) =
(cℓ, 0).

The induced bimodule categories are MV
c := c(Tq-mod).

The ENOM functor maps this to the braided equivalence of the Drinfel’d
center induced by x, x∗, g, g−∗ 7→ cx, c−1x∗, g, g∗. Again, this is equivalent to a
functor that is trivial on objects but with nontrivial monoidal structure.

To determine the group EV we need to know the Bigalois objects. This has
been done in [Sch00] and can today be understood in the context of nontrivial
lifting [M01]:

Lemma 4.10. The right Galois objects are as follows for any choice a ∈ C
×, b ∈ C

6:

Ra,b = 〈g̃, x̃〉/(g̃ℓ = a1, x̃ℓ = b1, x̃g̃ = qg̃x̃)

δ(g̃) = g̃ ⊗ g δ(x̃) = 1 ⊗ x + x̃ ⊗ g

These all become Tq-Tq-Bigalois objects Ra,b with the left coaction:

δ(g̃) = g ⊗ g̃ δ(x̃) = 1 ⊗ x̃ + x ⊗ g̃

So EV ∼= Bigal(Tq) ∼= C×
⋉C and the embedding of V ∼= C×/〈q〉 goes via c 7→ (cℓ, 0).

The induced bimodule categories are MEV
a,b := Ra,b-mod. These are the L in

[FMM14]. As a C-linear category this is Tq-mod (for b = 0) as discussed in V

6The right Galois objects are isomorphic for all values b 6= 0, but not as Bigalois objects. There
are differently scaled left coactions, but the latter can be rescaled to 1 by a Bigalois isomorphism
at the cost of a.
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or Vect (b 6= 0), since in the latter case there is a unique simple module M of
dimension ℓ.

The elements R for Tq are particularly interesting and will be generalized
later:

• Since the Taft algebra is self-dual, we have the full dualization
⋆ ∈ Autbr(Z(Tq-mod)) (i.e. r for K = 1 or equivalently r′ for A = 1). It
decomposes into rr′ below.

• For the decomposition Tq = C[x]⋊C[Zℓ] we have K ∼= K∗ as Yetter-Drinfel’d
Hopf algebra, so we have a partial dualization r′ ∈ Autbr(Z(Tq-mod)). It
acts on quantum group modules V(λ) like a reflection.

• For the decomposition Tq = C[x] ⋊ C[Zℓ] we also have A ∼= A∗ and K ∼=
Ω(K), so we also have a partial dualization r ∈ Autbr(Z(Tq-mod)).

5 Applications

5.1 Quantum groups and Nichols algebras

We now discuss some applications of the previously defined general elements if
applied to quantum groups.

5.1.1 Autbr of nonabelian groups and Nichols algebras

We begin with a little demonstration of the effect of our subgroups of
BrPic(Rep(G)) as subgroups Autbr(H) after the ENOM functor. Namely, the
Nichols algebra B(M) associated to some M ∈ DH-mod is a fundamental con-
struction with a universal property. It returns e.g. the Borel part of the quantum
group Uq(g)+ over H = C[Zrank

ℓ
].

Thus it is as a vector space invariant under Autbr(DH-mod). We want to argue
that this completely explains certain coincidences in dimension that appeared
during the classification of finite-dimensional Nichols algebras over nonabelian
groups G. Some of these cases have been known7 and the only purpose of this
section is to collect and unify the argument using our explicit results on BrPic(G)
in the previous section.

Needless to say, this game of changing the realizing group does not reveal
much information about the Nichols algebra.

• The following was the first explained coincidence in terms of Doi twist in
[Ven12]:
Let G = S4 and consider V = O−+

(12)
and V ′ = O−−

(12)
where ±± indicates

the 1-dimensional character of the centralizer 〈(12), (34)〉. Our results show

7SL is indebted to E. Meir for explaining this to him.
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that these two objects are interchanged by the braided autoequivalence in
BV induced from the nontrivial 2-cocycle of S4 (which restricts to a nontriv-
ial class on the centralizer). Both Nichols algebras have dimension 242.
More generally let G = Sn and consider V = O−+

(12)
and V ′ = O−−

(12)
where

the centralizer is Z2 × Sn−2. Then again these two objects are interchanged
by the unique 2-cocycle inducing up to BV . In case n = 5 both Nichols
algebras are of finite dimension 445264.

• Let G = S4 and consider V = O−−
(12)

and V ′ = O−1
(1234)

. We claim that

our results show that these two elements are interchanged by the braided
equivalence in EV induced by the nonlazy monoidal autoequivalence F
of Rep(S4) defined by S the Klein-4-group and its unique nondegenerate
2-cocycle. Namely, as objects in Rep(S4) these are sgn + χ2 + χ3 · sgn
respectively sgn+χ2 +χ3 (where 1+χ2, 1+χ3 are the permutation charac-
ters) and F interchanges [(12)], [(1234)] and χ3, sgn ·χ3. Again these Nichols
algebras have dimension 242.

• On the other hand V = O−+
(12)

and V ′ = O−1
(1234)

are directly related by the

partial dualization on S, which is due to a relation in BrPic.

• Let G = Z5 ⋊Z
×
5 and consider V = O−1

i⋊2 and V = O−1
i⋊3. One can easily see

that these two objects are interchanged by an outer automorphism. The
respective Nichols algebras have dimension 1280. A similar connection
holds between two Nichols algebras over Z7 ⋊ Z

×
7 .

• Over the dihedral group D4 = 〈x, y | x2 = y2 = (xy)4 = 1〉 with 8 element
there are four Nichols algebras of dimension 64, that are all interchanged by
the Brauer Picard group, which is S4 by [NR14].

5.1.2 Braided autoequivalences of quantum groups

Already the well-known fact that BrPic(H-mod) ∼= Autbr(DH-mod) has inter-
esting implications for H = B(M) ⋊ C[G] as we have already seen in the Taft
algebra case:

Quasi-triangular quantum groups uq(g) can be obtained8 as quotients of DH
for suitable Nichols algebras by grouplikes. So the category DH-mod has the cat-
egory uq(g)-mod as subcategory. For a given element in BrPic(B(M)⋊C[G]) we
can ask whether the braided autoequivalence associated by the ENOM functor
fixes this subcategory, so we obtain a braided autoequivalence of uq(g)-mod.

This question seems quite easy to answer (and usually to answer positively)
because it involves only knowledge about the action of the grouplikes C[G] resp.
C[G × G] in the double: More precisely, a sufficient condition is that the braided
autoequivalence preserves the forgetful functor to DG-mod, as is e.g. the case for
the interesting elements in EV we discuss below. More general criteria could be
given.

8In case q has even order, care has to be taken at this point
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5.1.3 Induction images BV , EV

Since the notion of a Nichols algebra is self-dual, it suffices to restrict to study to
EV (compare to the Taft algebra), so we wish to know the Bigalois objects. This
is in general difficult, but there has been significant progress in the context of lift-
ings of Nichols algebras, which we want to briefly comment on:

A long-standing question is to classify algebras L with gr(L) = B(M)⋊ C[G]
and the conjecture stands, that all of these algebras are related by a 2-cocycle Doi
twist i.e. there exists a L-H-Bigalois object and hence there is a monoidal equiva-
lence F : B(M)⋊ C[G]-comod → L-comod, see [M01][AAIMV13]. In the former
paper this has been observed for quantum groups, where the classification of
pointed Hopf algebras produces families with free lifting parameters, which turn
out to however all be related by 2-cocycle deformations. In the latter paper an
impressive program has been presented to systematically determine all different
liftings for a given Nichols algebra.

Thus: For a given Nichols algebra, e.g. u+
q (g), the BrPic-groupoid contains

large (multi-parameter) families of objects L with different liftings, e.g. with de-

formed relations like E
Ni
αi

= µi ∈ C, all of which are connected by elements in EV .
Note that this gives bimodule categories between categories H-mod and L-mod
that are very different as categories.

Remark 5.1. From a physical perspective it very interesting to study such defects
between different phases labeled H-mod and L-mod, in particular where H is the Borel
part of a quantum group and L is a different lifting. Take for example the relation

E
Ni
αi

= µi, which resembles closely what one has in finite W-algebras. All different liftings
of this type come from different subcategories (sectors) of the Kac-Procesi-DeConcini-

Quantum group where E
Ni
αi

is a central element. The subcategories are enumerated by
collections of µi that are in bijection to points of the complex Lie group associated to g. In
this view, all these bimodule categories (defects) between different categories can actually
be collected to bimodule categories between this new large category.

Needless to say, these are not the only objects in BrPic, at least not for general
Nichols algebras, as the reflections R in the next two sections show.

5.1.4 Partial dualization on the Cartan part

We want to now more thoroughly treat partial dualization on the Cartan part of
a quantum Borel part of a quantum group Uq(g) and find relations to the L-dual
of the respective Lie group, at least in the simply-laced case. We assume that the
TFT side of our construction is actually related to T-duality; this could explain
why an L-dual appears, see [DE14]:

Let H = Uq(g)≥ = Uq(g)+ ⋊ C[Λ] where Λ = Zrank is a lattice (resp. a
quotient at roots of unity) sitting between root- and weight-lattice of g i.e. ΛW ⊃
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Λ ⊃ ΛR. The embedding and the scalar product determine the Yetter-Drinfel’d
structure of Uq(g)+ via

Kλ.Eα = q(λ,α)Eα δ(Eα) 7→ Kα ⊗ Eα

The choice of Λ is parametrized by a subgroup of ΛW/ΛR = π1 which
determines the fundamental group of the respective complex Lie group, which
parametrizes different topological coverings. Correspondingly the usual choice
Λ = ΛR is the adjoint form and Λ = ΛW is often called the simply-connected
form.

Lemma 5.2. For g simply laced partial dualization r on the Cartan part C[Λ] inter-
changes Uq(g)+ ⋊ C[Λ] and Uq(g)+ ⋊ C[Λ∨]; e.g. it interchanges adjoint and simply-
connected form. In particular for small quantum groups at an ℓ-th root of unity it inter-
changes uq(g)+ ⋊ C[Λ/ℓΛ∨] and uq(g)+ ⋊ C[Λ∨/ℓΛ]

Proof. In the case of the Taft algebra this has been checked explicitly in our paper

[BLS15]. Take the obvious group pairing Λ × Λ∨ → C× given by λ ⊗ µ 7→ q(λ,µ).
It gives in particular rise to a nondegenerate group pairing:

Λ/ℓΛ∨ × Λ∨/ℓΛ → C
×

We need to convince ourselves that this dualization interchanges action and coac-
tion. But this is clearly true

Kλ.rEα := 〈Kλ, Kα〉Eα = q(λ,α) Eα

Corollary 5.3. Partial dualization as discussed above gives rise to the braided cate-
gory equivalence between the Drinfel’d centers of uq(g)+ ⋊ C[Λ/ℓΛ∨] and uq(g)+ ⋊

C[Λ∨/ℓΛ]. It restricts to a braided category equivalence between the respective quantum
groups uq(g) associated to Λ and Λ∨.

Corollary 5.4. Partial dualization as discussed above is the image under the ENOM
functor of the module category Mr := uq(g)

+-mod, which is as C-linear category the
Nichols algebra representation category and has a nontrivial bimodule category structure

defined by q(λ,µ) for λ ∈ Λ and µ ∈ Λ∨

5.1.5 Partial dualization and Weyl reflection

We now turn our attention to reflections of the Nichols algebra in the original
sense: Let M =

⊕

i Mi a decomposition of the object M into simple objects, then
αi is a simple root for the Nichols algebra B(M) in the sense of [AHS10]. For
example for the semisimple complex finite-dimensional Lie algebra g we have
Uq(g)+ = B(M), resp. Uq(g)+ = B(M) for roots of unity, for a choice of a

Z
rank-Yetter-Drinfeld module M =

⊕

i Eαi
C where αi a simple root in the usual

sense.
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Then the reflection of this Nichols algebra is the special case of a partial dual-
ization r with respect to the projection, see [HS13][BLS15]

πi : B(M) → B(Mi) B(M) = B(M)coinπ
⋊B(Mi)

For semisimple Lie algebras there is an algebra isomorphism r(B(M)) ∼= B(M),
namely Lusztig’s reflection automorphism Twi

for the simple reflection wi, but for
general Nichols algebras these two algebras can be non-isomorphic. Nevertheless
our results (in cit. loc.) show in all cases a category equivalence

Z(B(M)-mod) ∼= Z(r(B(M))-mod)

In particular for the Lie algebra case this restricts to a braided equivalence
Twi

: Uq(g)-mod → Uq(g)-mod and more general for every Weyl group element
w ∈ W.

We now discuss the B(M)-mod-r(B(M))-mod-bimodule categories associ-
ated to these partial dualizations. This is interesting already in the Lie algebra
case: Our results in Section 3.5 show that the preimage of there is a bimodule
category

Mwi
:= B(M)coinπ-mod

With left resp. right categorical action by B(M)-mod resp. r(B(M))-mod, for-
getting B(M) resp. B(M∗)-action, and a nontrivial bimodule category constraint
(V ⊗ M)⊗ W ∼= V ⊗ (M ⊗ W) given by the evaluation map B(M)⊗B(M∗) →
C.

Remark 5.5. Iterating this procedure yields for every Weyl group element w ∈ W a
bimodule category

Mw := U+[w]-mod

It is worth mentioning that these are precisely the homogeneous coideal subalgebras of
U+(g); so it would be interesting to consider (and recognize in our ansatz) bimodule
categories for all coideal subalgebras C, which are classified by [HK11] to be character
shifts C = (id ⊗ χ)∆U+[w].

5.2 Defects in 3D topological field theories

An oriented (3, 2, 1)-extended TQFT is a symmetric monoidal weak 2-functor:

Z : Bordor
3,2,1 → 2Vect

where Bordor
3,2,1 is the symmetric monoidal bicategory of oriented 3-cobordisms

and 2Vect the symmetric monoidal bicategory of Kapranov-Voevodsky 2-vector
spaces, thus objects of 2Vect are k-linear, abelian, semisimple categories,
morphisms are k-linear functors and 2-morphisms are natural transformations.
(See [KV94], [Mo11] and the Appendix of [BDSV15] for more details on 2Vect
and other targets).
Oriented (3, 2, 1)-extended TQFTs are classified by anomaly free modular ten-
sor categories (by Thm. 2 in [BDSV15]), where a functor Z corresponds to the
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anomaly free modular tensor category Z(S1), which we also refer to as the cat-
egory of bulk Wilson lines. For general modular tensor categories, such theo-
ries are called Reshetikhin-Turaev type theories. In the case the modular tensor
category is Z(S1) = Z(C), the Drinfeld center of some fusion category C, such
theories are called Turaev-Viro type theories. One can use the Reshetikhin-Turaev
construction [RT91], which is essentially based on surgery on 3-manifolds along
links, to define a Reshetikhin-Turaev type theory explicitly.

A special case are Dijkgraaf-Witten theories with Z(S1) = Z(Vectω
G) where

Vectω
G is the category of G-graded vector spaces for some finite group G and non-

trivial associativity constraints determined by 3-cocycles ω ∈ Z3(G, k×). If ω = 1
the Dijkgraaf-Witten theory is called untwisted. Dijkgraaf-Witten theories can be
realized explicitly by linearizing the category of principal G-bundles on a mani-
folds i.e.

Z(Σ) := Fun(BunG(Σ), Vect) BunG(Σ) ∼= Hom(π1(Σ), G)

and Z(M) by so-called pull-push-construction, that sums over all possible con-
tinuations of bundles on Σ to M, see e.g. [FPSV14].

We now consider additional data on the manifold, namely surface defects: These
are codimension 1 submanifolds. Suppose for example ΣTransm = S1 × [−1, 1] and
a middle circle belonging to a defect d, then the two bounding circles get assigned
some Z(S1 × {−1}) = Z(C) and Z(S1 × {1}) = Z(D) and the defect a bimod-
ule category Z(S1 × {0}) = CMD. On the other hand the TFT assigns to this
situation a (due to the defect possibly nontrivial) morphism Z(C) → Z(D):

This becomes a monoidal functor with the monoidal structure given by
Z(Mpants de f ects) for the following 3-manifold with defect: (the cylinder has been
flattened to a annulus)
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The coherence condition is checked by noticing that the following two mani-
folds are diffeomorphic:

and the following two diffeomorphic manifolds show the functor Z(ΣTransm) is
braided:

For details we refer to [FPSV14]. We repeat their very interesting question
linking this natural functor from the TFT construction to the ENOM functor,
which they solve in the case VectG for G abelian by explicit calculation using the
bundle construction:
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Question 5.6. Does the assignment of the functor Z(ΣTransm) : Z(C) → Z(D) to an
exact invertible bimodule category CMD coincide with ENOM functor?

The results of the present article give many new families of examples for such
situations. The final hope is, that there are three types of defects and every defect
can be written as a product. This would also open the possibility of checking the
previous question explicitly for the given subgroups.

The TFT approach is also a reason for insisting in the formulation of exact
invertible C-D-bimodule categories with C 6= D: As we saw, for quantum groups
many of the interesting examples appear between different categories - an effect
that is present (but rare) for group examples, see Example 4.5. From a physics
perspective, it is very natural to assign different categories to different “phases
regions” i.e. connected regions separated by defects.

5.3 Outlook: Group-theoretic extensions

By [ENOM09] group-theoretic extensions

D =
⊕

t∈Σ

Dt D1 = C

of the category H-mod by VectΣ are associated to homomorphisms ψ : Σ →
BrPic(C) (plus additional coherence data we omit here) with Dt = ψ(t) a C-C-
bimodule category.

We finally sketch briefly what the result is for C = H-mod when ψ lands in
our three subgroups BV , EV , 〈R〉 in BrPic(H-mod). The idea is that there are
essentially three types of generic group-theoretic extensions associated to the
three subgroups:

Let ψ : Σ → BV = Ind(Autmon(H-mod)). This is the trivial case consid-
ered by several authors: All the bimodule categories are Dt = Ft H-mod so D =
VectΣ ⊠ C, while Σ → Autmon(H-mod) gives a categorical action and
accordingly is the tensor product defined.

Example 5.7. Take the case V i.e. let v ∈ AutHopf(H) of order n and let Σ = 〈v〉 and ψ
just the identity. Then the associated category is

D = VectΣ ⊠ H-mod =
n−1
⊕

i=0

H-mod

with a tensor product Xi ⊗Yj = (X ⊗ vi(Y))i+j. Hence D should be the representations
of the cosmash product Hopf algebra Zn ⋉ H, with Zn-coaction on H given by v, which
is as an algebra just Zn ⊗ H.

Let ψ : Σ → EV = Ind(Autmon(H∗-mod)) = Bigal(H). Then D = H̃-mod
where the new Hopf algebra is as an algebra

H̃ =
⊕

t∈Σ

Rt
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with Bigalois objects Rt. This type of extensions has been considered in the first
authors work [Len12], in particular in its application to construct new Nichols
algebras.

Example 5.8. Let Σ∗ → G → Γ a central extension of groups, then associated one has
a 2-cocycle in Z2(Γ, Σ∗) and hence a homomorphism φ : Σ → Z2(Γ, C×). We viewing
the target as the subgroup of BV for H = C[Γ]. Then our construction returns bimodule
categories Dt = Rt-mod for Bigalois objects being twisted group rings Rt = Cφ(t)[Γ]
and overall we get

H̃ = C[G] D = Rep(G) =
⊕

t∈Σ

Cφ(t)[Γ]-mod

For example C[D4] = C[Z2
2] ⊕ Cσ[Z2

2] and D = Rep(D4) is a Z2-extension of
Rep(Z2

2).

Example 5.9 ([Len12]). Let φ : Σ → Z2(Γ, C×) as above and B(M) a Nichols algebra
over Γ, and assume we are given a so-called twisted symmetry action of Σ on B(M).
Then this data gives rise to a homomorphism

Rt : Σ → Bigal(B(M)⋊ C[Γ])

and our construction returns

H̃ = B(M̃)⋊ C[G] D = H̃-mod =
⊕

t∈Σ

Rt-mod

where B(M̃) is a Nichols algebra over the centrally extended group G.

Let Σ = Z2 and ψ(g) = r a partial dualization on a semidirect product decom-
position H = K ⋊ A with K-self-dual. Then again we obtain a group-theoretical
extension

D = D1 ⊕Dr = H-mod × A-mod

Example 5.10 ([ENOM09] Sec. 9.2). Let A = 1, e.g. for H = K = C[G] with
G abelian. Then D is a Tambara-Yamigami category with D1 = C pointed and Dr

consisting of a unique simple object.

Question 5.11. What are the category extension associated to H = Uq(g)+ and the
homomorphism φ : W → BrPic(H) with W the Weyl group generated by all reflections
ri? (or say a cyclic subgroup generated by a single element w)
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