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Abstract

In the present paper, by using a new defined -|C, α, σ; αn|k summability
method and some classes of pairs of sequences, we generalize a result of Bor
[5] dealing with ϕ − |C, α, σ; β|k summability factors.

1 Introduction

A sequence {λn} is said to be of bounded variation, denote by {λn} ∈ BV, if
∞

∑
n=1

|∆λn| =
∞

∑
n=1

|λn − λn+1| < ∞. If the sequence {λn} is a null sequence of

bounded variation, we denote that {λn} ∈ BV0. A positive sequence {bn} is said
to be almost increasing, if there exists a positive increasing sequence {cn} and
two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). A positive
sequence {Xn} is said to be a quasi-β-power increasing, if there exists a constant
K = K(β, X) ≥ 1 such that KnβXn ≥ mβXm holds for all n ≥ m ≥ 1. It has been
shown that every almost increasing sequence is a quasi-β-power increasing for
any nonnegative β, but the converse is not true (see [11]). Write

f := { fn} =
{

nβ(log n)µ
}

, µ ∈ R, 0 < β < 1. (1.1)
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Recently, Sulaiman [12] further generalized the definition of quasi-β-power in-
creasing sequence by using f defined in (1.1). Namely, a positive sequence {Xn}
is said to be a quasi- f -power increasing, if there exists a constant K = K(X, f ) ≥ 1
such that K fnXn ≥ fmXm holds for all n ≥ m ≥ 1.

Let ∑ an be a given infinite series with partial sums {sn}. Denote by uα,σ
n and

tα,σ
n the nth Cesáro mean of order (α, σ), with α + σ > −1, of the sequence {sn}

and {nan}, respectively, that is (see [7]),

uα,σ
n :=

1

Aα+σ
n

n

∑
v=1

Aα−1
n−vAσ

vsv, (1.2)

tα,σ
n :=

1

Aα+σ
n

n

∑
v=1

Aα−1
n−vAσ

v vav, (1.3)

where

Aσ
v =

(

v + σ
v

)

, Aα+σ
n = O

(

nα+σ
)

, Aα+σ
0 = 1 and Aα+σ

−n = 0 for all n > 0.

(1.4)
Let ϕ := {ϕn} be a sequence of complex numbers. The series ∑ an is said to

be summable ϕ − |C, α, σ|k, k ≥ 1 and α + σ > −1, if (see [4])

∞

∑
n=1

∣

∣ϕn

(

uα,σ
n − uα,σ

n−1

)
∣

∣

k
< ∞. (1.5)

But since tα,σ
n = n

(

uα,σ
n − uα,σ

n−1

)

(see [7]) condition (1.5) can also written as

∞

∑
n=1

n−k |ϕntα,σ
n |k < ∞. (1.6)

In the special case when ϕn = n1− 1
k , ϕ − |C, α, σ|k summability is the same as

|C, α, σ|k summability (see [8]). Also, if we take ϕn = nδ+1− 1
k , ϕ−|C, α, σ|k summa-

bility reduces to |C, α, σ; δ|k summability. If we take σ = 0, then we have ϕ −

|C, α|k summability (see [2]). If we take ϕn = n1− 1
k , σ = 0, then we get |C, α|k

summability (see [10]). Finally, if we take ϕn = nδ+1− 1
k , σ = 0, then we obtain

|C, α; δ|k summability (see [9]).
Recently, Bor [5] has proved the following theorem for ϕ − |C, α, σ|k summa-

bility factors.

Theorem 1. Let {λn} ∈ BV0 and {Xn} be a quasi-β−power increasing sequence for
some β (0 < β < 1). Suppose also that there exists a sequence {δn} satisfies the following
conditions:

|∆λn| ≤ δn, (1.7)

δn → 0 as n → ∞, (1.8)

∞

∑
n=1

n |∆δn| Xn < ∞, (1.9)
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|λn| Xn = O (1) as n → ∞. (1.10)

If there exists an ǫ > 0 such that the sequence
{

nǫ−k |ϕn|
k
}

is non-increasing and if the

sequence
{

θα,σ
n

}

is defined by

θα,σ
n := |tα,σ

n | , α = 1, σ > −1, (1.11)

θα,σ
n := max

1≤v≤n
|tα,σ

v | , 0 < α < 1, σ > −1 (1.12)

satisfies the condition

m

∑
n=1

n−k (|ϕn| θα,σ
n )k = O (Xm) as m → ∞, (1.13)

then the series ∑anλn is summable ϕ − |C, α, σ|k , k ≥ 1, 0 < α ≤ 1, σ > −1 and
(α + σ) k + ǫ > 1.

To further generalize Theorem 1, we now introduce the definition of
|C, α, σ, αn|k summability which is a generalization of ϕ − |C, α, σ|k summability.

Definition 1. Let {αn} be a given nonnegative sequence. A series ∑ an is said to be
summable |C, α, σ; αn|k, k ≥ 1, α + σ > −1, if

∞

∑
n=1

αn |t
α,σ
n |k < ∞.

Obviously, ϕ − |C, α, σ|k summability is a special case of |C, α, σ; αn|k summa-

bility when αn =
(

|ϕn|
n

)k
.

The following two classes of pairs of sequences were introduced in [6]:

Definition 2. We say that a pair of sequences λ := {λn} and X := {Xn} belongs to the
class M(θ, k), denote by (λ, X) ∈ M(θ, k), if the following conditions are satisfied:

{λn} ∈ BV, (1.14)

∞

∑
n=1

nθ+1 |∆|∆λn|| Xn < ∞, (1.15)

∞

∑
n=1

∣

∣

∣
∆
(

nθ |λn|
k
)
∣

∣

∣
Xn < ∞, (1.16)

nθ |λn|
kXn < ∞. (1.17)

Also, we say (λ, X) ∈ M∗(θ, k), if only the conditions (1.14), (1.15) and (1.17) are
satisfied.

Definition 3. Let δ := {δn} be a positive sequence. We say that a pair of sequences
λ := {λn} and X := {Xn} belongs to the class N(θ, k, δ), denote by (λ, X) ∈ N(θ, k, δ),
if λ ∈ BV, (1.16),(1.17) and the following conditions are satisfied

|∆λn| ≤ δn → 0, as n → ∞, (1.18)
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∞

∑
n=1

nθ+1 |∆δn| Xn < ∞, (1.19)

Also, we say (λ, X) ∈ N∗(θ, k, δ), if only λ ∈ BV and the conditions (1.17), (1.18),
(1.19) are satisfied.

The following properties of M(θ, k), M∗(θ, k), N(θ, k, δ) and N∗(θ, k, δ) are use-
ful (see Theorem 2 of [6]).

Proposition 1. (a) Let λ, X and δ satisfy all the conditions on Theorem 1 except (1.13),

we have (λ, X) ∈ N(0, k, δ).
(b) Let {Xn} be a quasi- f -power increasing sequence, λ ∈ BV0, θ > β, and δ be a

positive null sequence. Then M (θ, 1) ⊆ M (θ, k) and N(θ, 1, δ) ⊆ N(θ, k, δ) for k ≥ 1.
(c) Let {Xn} be a quasi- f -power increasing sequence and δ be a positive null sequence.

If λ ∈ BV0 and θ > β. Then M∗(θ, k) = M(θ, k) and N(θ, k, δ) = N∗(θ, k, δ).

2 Main Results

In what follows, β always means the number appearing in (1.1).
Now, we can state our main results as follows:

Theorem 2. Let {Xn} be a quasi- f -power increasing sequence and (λ, X) ∈ M(θ, k)
with θ > β − 1 and k ≥ 1. If {αn} satisfies the following conditions

∞

∑
n=v

αnn−(α+σ)k = O
(

αvv−(α+σ)k+1
)

, v = 1, 2, · · · , (2.1)

and
m

∑
n=1

n−θαn |t
α,σ
n |k = O (Xm) as m → ∞, (2.2)

then the series ∑anλn is |C, α, σ, αn|k summable for 0 < α ≤ 1, σ > −1.
Furthermore, if λ ∈ BV0 and θ > β, then the condition (λ, X) ∈ M(θ, k) can be

relaxed to (λ, X) ∈ M∗(θ, k).

Corollary 1. Let {Xn} be a quasi- f -power increasing sequence and (λ, X) ∈ M(θ, k)
with θ > β − 1 and k ≥ 1. Suppose that {αn} is quasi-ǫ-decreasing with ǫ satisfying
(α + σ) k + ǫ > 1 and (2.2) holds. Then, the results of Theorem 2 keep true.

Similar to Theorem 2 and Corollary 1, we have

Theorem 3. Let {Xn} be a quasi- f -power increasing sequence, δ be a positive sequence,
and (λ, X) ∈ N(θ, k, δ) with θ > β − 1 and k ≥ 1. If {αn} satisfies the conditions (2.1)
and (2.2), then the series ∑anλn is |C, α, σ, αn|k summable for 0 < α ≤ 1.

Furthermore, if λ ∈ BV0 and θ > β, then the condition (λ, X) ∈ N(θ, k, δ) can be
relaxed to (λ, X) ∈ N∗(θ, k, δ).

Corollary 2. Let {Xn} be a quasi- f -power increasing sequence, δ be a positive sequence,
and (λ, X) ∈ N(θ, k, δ) with θ > β − 1 and k ≥ 1. Suppose that {αn} is quasi-ǫ-
decreasing with ǫ satisfying (α + σ) k + ǫ > 1 and (2.2) holds. Then, the results of
Theorem 3 keep true.
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Taking αn =
(

|ϕn|
n

)k
, in view of (a) in Proposition 1, we see that Corollary 2

implies Theorem 1.

3 Proof of Results

3.1 Some Auxiliary Lemmas

Lemma 1. ([3]) If 0 < α ≤ 1, σ > −1 and 1 ≤ v ≤ n, then

∣

∣

∣

∣

∣

v

∑
p=0

Aα−1
n−pAσ

pap

∣

∣

∣

∣

∣

≤ max
1≤m≤v

∣

∣

∣

∣

∣

m

∑
p=0

Aα−1
m−p Aσ

pap

∣

∣

∣

∣

∣

. (3.1)

Lemma 2. ([6])Let {Xn} be a quasi- f -power increasing sequence , {Xn} and {λn}
satisfy the conditions (1.14) and (1.15) with θ > β − 1. Then the following inequalities
hold:

nθ+1 |∆λn| Xn = O (1) as n → ∞, (3.2)

∞

∑
n=1

nθ |∆λn| Xn < ∞. (3.3)

If λ ∈ BV0 and θ > β, then

∞

∑
n=1

nθ−1 |λn| Xn < ∞. (3.4)

Lemma 3. ([6]) Let {Xn} be a quasi- f -power increasing sequence and δ be a positive
null sequence. If λ ∈ BV and the conditions (1.18) and (1.19) are satisfied, then the
following inequalities hold:

nθ+1δnXn = O (1) as n → ∞, (3.5)

∞

∑
n=1

nθδnXn < ∞. (3.6)

If λ ∈ BV0 and θ > β, then

∞

∑
n=1

nθ−1 |λn| Xn < ∞. (3.7)

3.2 Proof of theorem 2.

Let Tα,σ
n be the n−th (C, α, σ) mean of the sequence {nanλn} . Then by means of

(1.3) we have

Tα,σ
n =

1

Aα+σ
n

n

∑
v=1

Aα−1
n−vAσ

vvavλv.
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First applying Abel’s transformation and then using Lemma 1, we have that

Tα,σ
n =

1

Aα+σ
n

n−1

∑
v=1

∆λv

v

∑
u=1

Aα−1
n−uAσ

uuau +
λn

Aα+σ
n

n

∑
u=1

Aα−1
n−uAσ

uuau

|Tα,σ
n | ≤

1

Aα+σ
n

n−1

∑
v=1

|∆λv|

∣

∣

∣

∣

∣

v

∑
u=1

Aα−1
n−uAσ

uuau

∣

∣

∣

∣

∣

+
|λn|

Aα+σ
n

∣

∣

∣

∣

∣

n

∑
u=1

Aα−1
n−uAσ

uuau

∣

∣

∣

∣

∣

≤
1

Aα+σ
n

n−1

∑
v=1

Aα
v Aσ

v θα,σ
v |∆λv|+ |λn| θα,σ

n

=: Tα,σ
n,1 + Tα,σ

n,2 , say.

Since
∣

∣

∣
Tα,σ

n,1 + Tα,σ
n,2

∣

∣

∣

k
≤ 2k

(

∣

∣

∣
Tα,σ

n,1

∣

∣

∣

k
+
∣

∣

∣
Tα,σ

n,2

∣

∣

∣

k
)

,

to complete the proof of the theorem, it is sufficient to show that

∞

∑
n=1

αn

∣

∣Tα,σ
n,r

∣

∣

k
< ∞, r = 1, 2.

Now, when k > 1, applying Hölder’s inequality with indices k and k′, where
1
k +

1
k′ = 1, by noting that λ ∈ BV, we get that

m+1

∑
n=2

αn

∣

∣

∣
Tα,σ

n,1

∣

∣

∣

k
=

m+1

∑
n=2

αn

(

1

Aα+σ
n

)k
(

n−1

∑
v=1

Aα+σ
v |θα,σ

v | |∆λv|

)k

≤
m+1

∑
n=2

αn

(

1

Aα+σ
n

)k
(

n−1

∑
v=1

(

Aα+σ
v

)k
|θα,σ

v |k |∆λv|

)(

n−1

∑
v=1

|∆λv|

)k−1

= O (1)
m+1

∑
n=2

αnn−(α+σ)k

(

n−1

∑
v=1

v(α+σ)k |∆λv| |θ
α,σ
v |k

)

= O (1)
m

∑
v=1

|∆λv| |θ
α,σ
v |k v(α+σ)k

m+1

∑
n=v+1

αnn−(α+σ)k

= O (1)
m

∑
v=1

vθ+1 |∆λv| αv |θ
α,σ
v |k v−θ.

Now, by (2.2), we deduce that

m+1

∑
n=2

αn

∣

∣

∣
Tα,σ

n,1

∣

∣

∣

k
= O (1)

(

m

∑
v=1

∆
(

vθ+1 |∆λv|
) v

∑
r=1

r−θαr |θ
α,σ
v |k + mθ+1 |∆λm|

m

∑
r=1

r−θαr |θ
α,σ
v |k

)

= O (1)

(

m

∑
v=1

∆
(

vθ+1 |∆λv|
)

Xv + mθ+1 |∆λm| Xm

)

= O (1)

(

m

∑
v=1

∣

∣

∣
(v + 1)θ+1

∆ (|∆λv|)− ∆vθ+1 |∆λv|
∣

∣

∣
Xv + mθ+1 |∆λm| Xm

)
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= O (1)

(

m

∑
v=1

vθ+1 |∆ (|∆λv|)| Xv +
m

∑
v=1

vθ |∆λv| Xv + mθ+1 |∆λm| Xm

)

= O (1) as m → ∞,

where in the last inequality, (1.15), (3.2) and (3.3) are used.

By (2.2), (1.16) and (1.17), we have

m

∑
n=1

αn

∣

∣

∣
Tα,σ

n,2

∣

∣

∣

k
= O (1)

m

∑
n=1

|λn|
k αn |θ

α,σ
n |k

= O (1)
m−1

∑
n=1

∆
(

nθ |λn|
k
) n

∑
v=1

v−θαv |θ
α,σ
v |k

+ O (1)mθ |λm|
k

m

∑
v=1

v−θαv |θ
α,σ
v |k

= O (1)

(

m−1

∑
n=1

∆
(

nθ |λn|
k
)

Xn + mθ |λm|
k Xm

)

= O (1) as m → ∞.

Therefore, we get that

m

∑
n=1

αn

∣

∣Tα,σ
n,r

∣

∣

k
= O (1) , as m → ∞ for r = 1, 2.

which implies the first result of Theorem 2.

By (c) of Proposition 1, we have the second result of Theorem 2.

3.3 Proof of Corollary 1.

If {αn} is quasi-ǫ-decreasing with ǫ satisfying (α + σ)k + ǫ > 1, then

∞

∑
n=v

αnn−(α+σ)k =
∞

∑
n=v

αnn−(α+σ)k+ǫn−ǫ

= O (αvvǫ)
∞

∑
n=v

n−(α+σ)k−ǫ

= O
(

αvv−(α+σ)k+1
)

, v = 1, 2, · · · , (3.8)

which implies (2.1), and thus the results of Theorem 2 hold.

3.4 Proof of Theorem 3.

It can be proved exactly in a way similar to that of Theorem 2, by using Lemma 3
instead of Lemma 2, and using δn to replace |∆λn| .
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3.5 Proof of Corollary 2.

Corollary 2 follows from (3.8) and Theorem 3.
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