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Abstract

This paper is devoted to studying the growth of solutions of equations of
type f (z + n) + ∑

n−1
j=0 {Pj(e

z) + Qj(e
−z)} f (z + j) = 0 and f (z + n) +

∑
n−1
j=0 {Pj(e

A(z)) + Qj(e
−A(z))} f (z + j) = 0, where Pj(z) and Qj(z) are poly-

nomials in z and A(z) is a transcendental entire function. We prove three
theorems of such type, which improve some results in [6, 7].

1 Introduction

In this paper, a meromorphic function will mean meromorphic in the whole
complex plane, and we assume that the reader is familiar with the fundamen-
tal results and the standard notations of the Nevanlinna theory of meromor-
phic functions(e.g. see [12, 24]). Let η be a fixed, non-zero complex number,
∆ f (z) = f (z + η)− f (z), and ∆n f (z) = ∆(∆n−1 f (z)). In addition, we use σ( f )
and σ2( f ) to denote the order and the hyper-order of a meromorphic function
f (z) respectively, and we denote by λ( f ) and λ( 1

f ) the exponent of convergence

of zeros and poles of f (z), respectively.

The foundation of the theory of complex difference equations was laid by
Batchelder [2], Nörlund [17], and Whittaker [19] in the early twentieth century.
Later on, Shimomura [18] and Yanagihara [21, 22, 23] studied nonlinear complex
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difference equations from the viewpoint of Nevanlinna theory. Meromorphic so-
lutions of complex difference equations have become a subject of some interest
recently, due to the fact that the existence of finite order solutions is a good de-
tector of integrability of difference equations. In such considerations, Nevanlinna
theory appears to be a powerful tool.

Difference counterparts of Nevanlinna theory have been established very re-
cently. The key result is the difference analogue of the lemma on the logarithmic
derivative obtained by Halburd-Korhonen [10] and Chiang-Feng [7], indepen-
dently. Halburd and Korhonen [11] also established a version of Nevanlinna the-
ory for difference operators. Bergweiler and Langley [3] considered the value
distribution of difference operators of slowly growing meromorphic functions.
Some new results can be seen in [5, 13, 14, 20].

In 2008, Chiang and Feng [7] obtained the following results concerning the
growth of solutions of linear difference equations.

Theorem A. Let P0(z), . . . , Pn(z) be polynomials in z such that there exists an
integer l(0 ≤ l ≤ n) that satisfies

deg(Pl) > max {deg(Pj)}, 0 ≤ l ≤ n and j 6= l.

Suppose that f (z) is a meromorphic solution of the difference equation

Pn(z)y(z + n) + · · ·+ P1(z)y(z + 1) + P0(z)y(z) = 0.

Then we have σ( f ) ≥ 1.

Theorem B. Let A0(z), . . . , An(z) be entire functions such that there exists an in-
teger l(0 ≤ l ≤ n) that satisfies

σ(Al) > max{σ(Aj)}, 0 ≤ l ≤ n and j 6= l. (1.1)

If f (z) is a meromorphic solution of the difference equation

An(z)y(z + n) + · · ·+ A1(z)y(z + 1) + A0(z)y(z) = 0,

then σ( f ) ≥ σ(Al) + 1.

Example. f (z) = ez2
solves the difference equation

f (z + 2) + (ez + e−3z) f (z + 1)− (e4z+4 + e3z+1 + e−z+1) f (z) = 0. (1.2)

Denote P0(ζ) = −e4ζ4 − eζ3 − eζ−1 and P1(ζ) = ζ + ζ−3. It is obvious that the
coefficients P1(e

z) = ez + e−3z and P0(e
z) = −(e4z+4 + e3z+1 + e−z+1) of (1.2) are

transcendental entire functions which do not satisfy (1.1). By the further compu-
tation, we have σ(P1(e

z)) = σ(P0ez) = 1, degP0 > degP1, and σ( f ) = λ( f − a) =
2 for every non-zero value a ∈ C.

The above example suggests us to consider the following difference equation
with periodic and transcendental coefficients that do not satisfy the assumption
(1.1) of Theorem B

f (z + n) +
n−1

∑
j=0

{Pj(e
z) + Qj(e

−z)} f (z + j) = 0, (1.3)
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where Pj(z) and Qj(z) (j = 0, 1, . . . , n − 1) are polynomials in z. We obtain the
following results.

Theorem 1. Let Pj(z) and Qj(z) (j = 0, 1, . . . , n − 1) be polynomials that satisfy

deg(P0) > deg(Pj) or deg(Q0) > deg(Qj), j = 1, . . . , n − 1.

Then, each non-trivial meromorphic solution f (z) of finite order of the difference equation
(1.3) satisfies σ( f ) = λ( f − a) ≥ 2, and so f assumes every non-zero complex value
a ∈ C infinitely often.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. If f (z) is a
non-trivial entire solution of finite order of the equation (1.3) that satisfies λ( f ) < 1,
then σ( f ) = 2.

Remark 1.1. The example mentioned below Theorem B shows that Theorem
1 is sharp. It is also shown that the conclusion both in Theorem 1 and Theorem 2
may occur.

The coefficients of (1.3) are periodic, if the periodic function ez and e−z are

replaced by eA(z) and e−A(z), where A(z) is a transcendental entire function (eA(z)

is certainly not periodic in general), then we have the following result.

Theorem 3. Let Pj(z), Qj(z) (j = 0, 1, . . . , n − 1) be polynomials in z and A(z) be
a transcendental entire function. If

deg(P0) > deg(Pj) or deg(Q0) > deg(Qj), j = 1, . . . , n − 1,

then every solution of the difference equation

f (z + n) +
n−1

∑
j=0

{Pj(e
A(z)) + Qj(e

−A(z))} f (z + j) = 0 (1.4)

is of infinite order and σ2( f ) ≥ σ(A).

Corollary 1. Let Pj(z), Qj(z)(j = 0, 1, . . . , n − 1) be polynomials in z. If

deg(P0) > deg(Pj) or deg(Q0) > deg(Qj), j = 1, . . . , n − 1,

then every finite order solution of the n-th difference equation

∆n f +
n−1

∑
j=1

{Pj(e
z) + Qj(e

−z)}∆j f (z) + {P0(e
z) + Q0(e

−z)} f (z) = 0 (1.5)

satisfies σ( f ) = λ( f − a) ≥ 2, and so f (z) assumes every non-zero value a ∈ C

infinitely often.

Corollary 2. Let Pj(z), Qj(z)(j = 0, 1, . . . , n − 1) be polynomials in z and A(z) be
a transcendental entire function. If

deg(P0) > deg(Pj) or deg(Q0) > deg(Qj), j = 1, . . . , n − 1,

then every solution f (z) of the n-th difference equation

∆n f +
n−1

∑
j=1

{Pj(e
A(z)) + Qj(e

−A(z))}∆j f (z) + {P0(e
A(z)) + Q0(e

−A(z))} f (z) = 0

(1.6)
is of infinite order and σ2( f ) ≥ σ(A).
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2 Some Lemmas

Lemma 2.1[7]. Let f (z) be a meromorphic function, η be a non-zero complex number,
and let τ > 1, and ε > 0 be given real constants, then there exits a subset E ⊂ (1, ∞) of
finite logarithmic measure,

(1) and a constant A depending only on τ and η, such that for all |z| /∈ [0, 1] ∪ E,
we have

∣

∣

∣

∣

log

∣

∣

∣

∣

f (z + η)

f (z)

∣

∣

∣

∣

∣

∣

∣

∣

≤ A

(

T(τr, f )

r
+

n(τr)

r
logτ r log n(τr)

)

,

where n(t) = n(t, f ) + n(t, 1
f );

(2) and if in addition that f (z) is of finite order σ, and such that for all |z| = r /∈
[0, 1] ∪ E, we have

exp(−rσ−1+ε) ≤

∣

∣

∣

∣

f (z + η)

f (z)

∣

∣

∣

∣

≤ exp(rσ−1+ε).

Lemma 2.2[1]. Let f (z) be a holomorphic function in |z| ≤ R. We use M(r, f )
and D(r, f ) to denote the the maximum modulus of f (z) and maximum value of Re f (z)
on |z| = r, respectively. Then

M(r, f ) ≤
2r

R − r
D(R, f ) +

R + r

R − r
| f (0)|,

where 0 < r < R . In particular, when R = 2r , we have

D(R, f ) ≥
M(r, f )

2
−

3

2
| f (0)|.

Lemma 2.3[15]. Let w(z) be a non-constant finite order meromorphic solution of
P(z, w) = 0, where P(z, w) is a difference polynomial in w(z). If P(z, a) 6≡ 0 for a
meromorphic function a(z) satisfying T(r, a) = S(r, w), then

m(r,
1

w − a
) = S(r, w).

Lemma 2.4[8]. Let f (z) be a meromorphic function with finite order σ( f ), η ∈ C.
Then for any given ε > 0, there exists a set E ⊂ (1, ∞) of |z| = r of finite logarithmic
measure, so that

f (z + η)

f (z)
= exp{η

f ′(z)

f (z)
+ O(rβ+ε)},

holds for r /∈ [0, 1] ∪ E. If λ < 1, β = max{σ − 2, 2λ − 2}; and if λ ≥ 1,
β = max{σ − 2, λ − 1}, where λ = max{λ( f ), λ( 1

f )}.

Remark 2.1. The term O(rβ+ε) in Lemma 2.5 can be replaced by o(rσ−1−ε)
provided that λ < 1 and σ > λ + 1 for 0 < ε < 1

2 . In fact, if σ > λ + 1 and λ < 1,
then σ − 2 > λ + 1 − 2 = λ − 1 > 2λ − 2. It follows that β = σ − 2. Thus

O(rβ+ε) = o(rσ−1−ε).
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Lemma 2.5 [9]. Let f (z) be a meromorphic function with σ( f ), then for any given
ε > 0, there exists a set E ⊂ (1, ∞) of finite linear measure, such that for all |z| = r /∈
[0, 1] ∪ E, and r sufficiently large,

exp{−rσ+ε} ≤ | f (z)| ≤ exp{rσ+ε}.

Lemma 2.6 [4]. Suppose that f (z) is a transcendental entire function with fi-
nite order σ( f ), and a set E ⊂ (1, ∞) has a finite logarithmic measure and G =
{ϕ1, . . . , ϕn} ⊂ [0, 2π). Then there exists a positive number A ∈ [ 1

2 , 1], a sequence of

points: zk = rkeiθk with | f (zk)| ≥ AM(rk , f ), θk ∈ [0, 2π), lim
k→∞

θk = θ0 ∈ [0, 2π)/G,

and a sequence of points rk /∈ E, rk → ∞ such that for any given ε > 0, as rk sufficiently
large, we have

rσ−ε
k < v(rk, f ) < rσ+ε

k .

Lemma 2.7 [16]. Let

Q(z) = anzn + an−1zn−1 + · · ·+ a0,

where n is a positive integer and an = αneiθn , αn > 0, θn ∈ [0, 2π). For any given
0 < ε < π

4n , consider 2n open angles:

Sj : −
θn

n
+ (2j − 1)

π

2n
+ ε < θ < −

θn

n
+ (2j + 1)

π

2n
− ε, j = 0, . . . , 2n − 1.

Then there exists a positive number R = R(ε) such that for |z| = r > R, when z ∈ Sj

and j is even,
Re{Q(z)} > αn(1 − ε) sin(nε)rn ,

when z ∈ Sj and j is odd,

Re{Q(z)} < −αn(1 − ε) sin(nε)rn .

3 Proof of Theorems

Throughout this section, we assume that

Pj(z) = ajmj
zmj + ajmj−1

zmj−1 + · · ·+ aj1 z + aj0 ,

Qj(z) = bjnj
znj + bjnj−1

znj−1 + · · ·+ bj1z + bj0 ,

where ajl, bjk(j = 0, 1, . . . , n− 1; l = 0, 1, . . . , mj; k = 0, 1, . . . , nj) are the constants
and ajmj

bjnj
6= 0.

Proof of Theorem 1. Assume that σ( f ) = σ < ∞. By Lemma 2.1, we know
that, for any given ε > 0, there exits a subset E ⊂ (1, ∞) with finite logarithmic
measure such that for all |z| = r /∈ [0, 1] ∪ E, we have

exp(−rσ−1+ε) ≤

∣

∣

∣

∣

f (z + j)

f (z)

∣

∣

∣

∣

≤ exp(rσ−1+ε), j = 1, 2, . . . , n − 1. (3.1)
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exp(−rσ−1+ε) ≤

∣

∣

∣

∣

f (z + n)

f (z)

∣

∣

∣

∣

≤ exp(rσ−1+ε). (3.2)

From the assumption of Theorem 1, we first assume that

deg(P0) > deg(Pj)(j = 1, 2, . . . , n − 1)

without loss of generality. Let f 6≡ 0 be a solution of the equation (1.3), and let
z = r. Then, we obtain from (1.3), (3.1) and (3.2), for all sufficiently large r and
r /∈ [0, 1] ∪ E, that

|P0(e
z) + Q0(e

−z)| = |a0m0
|em0r(1 + o(1))

≤

∣

∣

∣

∣

f (z + n)

f (z)

∣

∣

∣

∣

+ |Pn−1(e
z) + Qn−1(e

−z)|

∣

∣

∣

∣

f (z + n − 1)

f (z)

∣

∣

∣

∣

+ · · ·

+ |P1(e
z) + Q1(e

−z)|

∣

∣

∣

∣

f (z + 1)

f (z)

∣

∣

∣

∣

≤ exp(rσ−1+ε) + (|an−1mn−1
|+ Mn−1)e

mn−1r exp(rσ−1+ε)(1 + o(1)) + · · ·

+ (|a1m1
|+ M1)e

m1r exp(rσ−1+ε)(1 + o(1))

≤ exp(rσ−1+ε)2nMemax{m1,...,mn−1}r(1 + o(1)),

and M = max{|an−1mn−1
|, . . . , |a1m1

|, Mn−1, . . . , M1}, 1, where Mj are real con-
stants, (j = 1, 2, ..., n − 1). Since m0 > max{m1, . . . , mn−1}, we have

|a0m0
|

2nM
er(1 + o(1)) ≤ erσ−1+ε

. (3.3)

We deduce from (3.3) that σ − 1 + ε ≥ 1 which implies σ( f ) ≥ 2.

If deg Q0 > deg Qj, by taking a suitable z = −r and using the similar argu-
ments mentioned above, we also get σ( f ) ≥ 2.

Now let a ∈ C\{0}, and set

P(z, f ) = f (z + n) +
n−1

∑
j=1

[Pj(e
z) + Qj(e

−z)] f (z + j).

It is obvious that

P(z, a) = a[1 + Pn−1(e
z) + Qn−1(e

−z) + · · ·+ P0(e
z) + Q0(e

−z)] 6≡ 0. (3.4)

By (3.4) and Lemma 2.3, it follows that

m(r,
1

f − a
) = S(r, f ),

thus

N(r,
1

f − a
) = T(r, f ) + S(r, f ),
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and we deduce that λ( f − a) = σ( f ). Theorem 1 is thus proved.

Proof of Theorem 2. Since λ( f ) < 1, we know from Theorem 1 that σ( f ) >

λ( f ) + 1. By Lemma 2.4 and its Remark 2.1, for any given 0 < ε <
1
2 , there

exists a set E1 ∈ (1, ∞) of finite logarithmic measure, such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E1 and r sufficiently large, we have

f (z + j)

f (z)
= exp{j

f ′(z)

f (z)
+ o(rσ−1−ε)}, j = 1, . . . , n. (3.5)

By Wiman-Valiron theory, there exists a set E2 ⊂ (0, ∞) of finite logarithmic
measure, such that

f ′(z)

f (z)
= (1 + o(1))

v(r, f )

z
(3.6)

holds for z that satisfies |z| = r /∈ E2 and

| f (z)| > M(r, f )v(r, f )−
1
4+δ,

where 0 < δ <
1
4 .

This together with (1.3), (3.5) and (3.6), we obtain

n

∑
j=1

Pj(e
z) + Qj(e

−z)

P0(ez) + Q0(e−z)
exp{j

v(r, f )

z
(1 + o(1)) + o(rσ−1−ε)} = −1, (3.7)

where Pn(e
z) + Qn(e

−z) = 1.

Set F(z) =
Pj(e

z)+Qj(e
−z)

P0(ez)+Q0(e−z)
, then we get σ(F) = 1. Applying Lemma 2.5 to F(z),

there exists a set E3 ⊂ (1, ∞) of finite linear measure, such that for all |z| = r /∈
[0, 1] ∪ E3 and r sufficiently large

exp{−2r1+ε} ≤

∣

∣

∣

∣

∣

Pj(e
z) + Qj(e

−z)

P0(ez) + Q0(e−z)

∣

∣

∣

∣

∣

≤ exp{2r1+ε}, j = 1, . . . , n. (3.8)

Set E = E1 ∪ (E2 ∪ E3) and G = {π
2 , 3π

2 }.

For the set E and G, by Lemma 2.6, there exists a positive number A ∈ [ 1
2 , 1], a

sequence of points: {zk = rkeiθk} with | f (zk)| ≥ AM(rk , f ), θk ∈ [0, 2π), lim
k→∞

θk =

θ0 ∈ [0, 2π)/G, and a sequence of points rk /∈ E, rk → ∞, such that for any given
0 < ε < 1

2 , as rk sufficiently large, we have

rσ−ε
k < v(rk, f ) < rσ+ε

k . (3.9)

Since θ0 /∈ G, by Lemma 2.7, for k sufficiently large, we have

Rezk < −βθk
rk or Rezk > βθk

rk,
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where βθk
> 0 is a constant. Note that

Re

{

v(rk, f )

zk

}

= Re

{

v(rk, f )z̄k

r2
k

}

= Re

{

v(rk, f )zk

r2
k

}

. (3.10)

If Rezk < −βθk
rk, from (3.8)–(3.10), we get

∣

∣

∣

∣

∣

Pj(e
zk) + Qj(e

−zk)

P0(ezk) + Q0(e−zk)
exp{j

v(rk , f )

zk
(1 + o(1)) + o(rσ−1−ε

k )}

∣

∣

∣

∣

∣

≤ exp{−jβθk
rσ−1+ε

k (1 + o(1)) + 2r1+ε
k }

≤ exp{−βθk
rσ−1+ε

k (1 + o(1)) + 2r1+ε
k }.

Above equation and (3.7) yield

1 =

∣

∣

∣

∣

∣

n

∑
j=1

Pj(e
zk) + Qj(e

−zk)

P0(ezk) + Q0(e−zk)
exp{j

v(rk , f )

zk
(1 + o(1)) + o(rσ−1−ε

k )}

∣

∣

∣

∣

∣

≤
n

∑
j=1

∣

∣

∣

∣

∣

Pj(e
zk) + Qj(e

−zk)

P0(ezk) + Q0(e−zk)
exp{j

v(rk , f )

zk
(1 + o(1)) + o(rσ−1−ε

k )}

∣

∣

∣

∣

∣

≤ n exp{−βθk
rσ−1+ε

k (1 + o(1)) + 2r1+ε
k }.

Hence, we have σ − 1 + ε ≤ 1 + ε, which implies σ ≤ 2. By Theorem 1, we have
σ( f ) = 2.

If Rezk > βθk
rk, we first assume that σ( f ) = σ > 2 and take 0 < ε <

min{1
2 , σ−2

2 }. From (3.8)–(3.10), for j = 1, . . . , n − 1, by calculating carefully, we
obtain

∣

∣

∣

∣

∣

Pj(e
zk) + Qj(e

−zk)

P0(ezk) + Q0(e−zk)
exp{j

v(rk , f )

zk
(1 + o(1)) + o(rσ−1−ε

k )}

∣

∣

∣

∣

∣

= o

(
∣

∣

∣

∣

Pn(ezk) + Qn(e−zk)

P0(ezk) + Q0(e−zk)
exp{n

v(rk , f )

zk
(1 + o(1)) + o(rσ−1−ε

k )}

∣

∣

∣

∣

)

.

It follows from (3.7)–(3.10), that

1 =

∣

∣

∣

∣

∣

n

∑
j=1

Pj(e
zk) + Qj(e

−zk)

P0(ezk) + Q0(e−zk)
exp{j

v(rk , f )

zk
(1 + o(1)) + o(rσ−1−ε

k )}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

Pn(ezk) + Qn(e−zk)

P0(ezk) + Q0(e−zk)
exp{n

v(rk , f )

zk
(1 + o(1)) + o(rσ−1−ε

k )}

∣

∣

∣

∣

(1 + o(1))

≥ exp{nβθk
rσ−1−ε

k (1 + o(1))− 2r1+ε
k }.

Therefore, σ − 1 − ε ≤ 1 + ε, which implies σ ≤ 2 which contradicts the as-
sumption that σ( f ) > 2. Thus σ( f ) ≤ 2, by Theorem 1 again, we have σ( f ) = 2.
This completes the proof of Theorem 2.
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Proof of Theorem 3. Suppose that deg(P0) > deg(Pj) for j = 1, . . . , n − 1. Then

we get m0 > mj(j 6= 0). Let f 6≡ 0 be a solution of equation (1.4). Since P0(e
A(z))+

Q0(e
−A(z)) 6≡ 0, comparing the degrees of both side of (1.4), we see that f (z)

cannot be a constant. By Lemma 2.1, we see that there exists a subset E ⊂ (1, ∞)
with a finite logarithmic measure and a constant B > 0, such that for all |z| /∈
(0, 1) ∪ E, by calculating carefully, we have

∣

∣

∣

∣

log

∣

∣

∣

∣

f (z + j)

f (z)

∣

∣

∣

∣

∣

∣

∣

∣

≤ B(T(2r, f ))2 , j = 1, 2, . . . , n − 1. (3.11)

It is well known that

max{|eA(z)|, |z| = r} = max{eReA(z), |z| = r} = eD(r,A).

Because A(z) is a transcendental entire function, from Lemma 2.2, we know that

D(r, A) ≥
M( r

2 , A)

2
−

3

2
|A(0)| → ∞,

as r → ∞. We take suitable z = reiθ such that |eA(z)| = eD(r,A), then
∣

∣

∣
e−A(z)

∣

∣

∣
= e−D(r,A) → 0 and

∣

∣

∣
eA(z)

∣

∣

∣
= eD(r,A) → ∞,

as r → ∞. Thus

|Pj(e
A(z)) + Qj(e

−A(z))|

{

= |ajmj
|emjD(r,A)(1 + o(1)), (mj 6= 0, r → ∞)

≤ Mj, (mj = 0, r → ∞),

where Mj(> 0)(j = 1, 2, ..., n − 1) are real constants, and so

|Pj(e
A(z)) + Qj(e

−A(z))| ≤ |ajmj
|emjD(r,A)(1 + o(1)) + Mj(r → ∞). (3.12)

We obtain from (1.4), (3.11) and (3.12) that

|P0(e
A) + Q0(e

−A)| = |a0m0
|em0D(r,A)(1 + o(1))

≤

∣

∣

∣

∣

f (z + n)

f (z)

∣

∣

∣

∣

+ |Pn−1(e
A) + Qn−1(e

−A)|

∣

∣

∣

∣

f (z + n − 1)

f (z)

∣

∣

∣

∣

+ · · ·

+ |P1(e
A) + Q1(e

−A)|

∣

∣

∣

∣

f (z + 1)

f (z)

∣

∣

∣

∣

≤

∣

∣

∣

∣

f (z + n)

f (z)

∣

∣

∣

∣

+ (|an−1mn−1
|emn−1D(r,A) + Mn−1)(1 + o(1))

∣

∣

∣

∣

f (z + n − 1)

f (z)

∣

∣

∣

∣

+ · · ·+ (|a1m1
|em1D(r,A) + M1)(1 + o(1))

∣

∣

∣

∣

f (z + 1)

f (z)

∣

∣

∣

∣

≤ Memax{m1,...,mn−1}D(r,A)(1 + o(1))

[
∣

∣

∣

∣

f (z + n)

f (z)

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

f (z + 1)

f (z)

∣

∣

∣

∣

]

,

where M = max{|an−1mn−1
|, . . . , |a1m1

|, M1, . . . , Mn−1}. Hence

|a0m0
|eD(r,A)(1 + o(1)) ≤ M

[
∣

∣

∣

∣

f (z + n)

f (z)

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

f (z + 1)

f (z)

∣

∣

∣

∣

]

(1 + o(1)). (3.13)
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Suppose that

∣

∣

∣

∣

f (z + l)

f (z)

∣

∣

∣

∣

= max

{
∣

∣

∣

∣

f (z + j)

f (z)

∣

∣

∣

∣

}

, (j = 1, 2, · · · , n),

then from (3.13) and above equation, we get

(log eD(r,A))(1 + o(1)) ≤ log

(
∣

∣

∣

∣

f (z + n)

f (z)

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

f (z + 1)

f (z)

∣

∣

∣

∣

)

(1 + o(1))

≤ log n + log

∣

∣

∣

∣

f (z + l)

f (z)

∣

∣

∣

∣

(1 + o(1)).

From (3.11) and above equation, we can get

D(r, A) ≤ B(T(2r, f ))2 (3.14)

as |z| = r sufficiently large. By Lemma 2.2, we get

M( r
2 , A)

2
−

3

2
A(0) ≤ B(T(2r, f ))2 . (3.15)

Note that A(z) is an entire function, therefore

T(r, A(z)) = m(r, A(z)) ≤ log+ M(r, A). (3.16)

It follows from (3.15) and (3.16) that

T( r
2 , A(z))

log r
≤

log M( r
2 , A)

log r
≤

log T(2r, f )2

log r
,

as r sufficiently large. From A(z) is transcendental, we have σ( f ) = ∞.

Similarly, from (3.14) and Lemma 2.2, we have

log T( r
2 , A(z))

log r
≤

log log M( r
2 , A)

log r
≤

log log D(r, A)

log r
≤

log log B[T(2r, f )]2

log r
,

as r sufficiently large. Therefore, we have σ2( f ) ≥ σ(A).

If deg Q0 > deg Qj, by taking a suitable z satisfying

max{|e−A(z)|, |z| = r} = max{eRe−A(z), |z| = r} = eD(r,−A),

and using the similar arguments mentioned above. Thus we have completed the
proof of Theorem 3.

Proof of Corollary 1 and Corollary 2. For the sake of simplicity, We set Pn(ez) +
Qn(e−z) = 1. Since

∆n f =
n

∑
j=0

(

n

j

)

(−1)n−j f (z + j),
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the expression (1.3) then takes the form

f (z + n) + [Rn−1(e
z) + Sn−1(e

−z)] f (z + n − 1) + · · ·+ [R0(e
z) + S0(e

−z)] f = 0,

where

Rℓ(e
z) =

n

∑
j=ℓ

(

j

ℓ

)

(−1)j−ℓPj(e
z), Sℓ(e

−z) =
n

∑
j=ℓ

(

j

ℓ

)

(−1)j−ℓQj(e
−z),

where ℓ = 1, 2, . . . , n − 1. And

R0(e
z) =

n

∑
j=1

(

j

0

)

(−1)jPj(e
z)+ P0(e

z), S0(e
−z) =

n

∑
j=1

(

j

0

)

(−1)jQj(e
−z)+Q0(e

−z).

By the assumptions

deg(P0) > deg(Pj) or deg(Q0) > deg(Qj), j = 1, 2, . . . , n − 1,

of the Corollary 1, we have

deg(R0) > deg(Rj) or deg(S0) > deg(Sj), j = 1, 2, . . . , n − 1.

From Theorem 1, Corollary 1 follows. By Theorem 3 and the similar arguments
mentioned above, Corollary 2 holds.
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