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Abstract

In this paper, we further investigate the exponent of convergence of the
zero-sequence of solutions of the differential equation

f (k) + ak−1(z) f (k−1) + · · ·+ a1(z) f ′ + ψ(z) f = 0,

where ψ(z) = ∑
ι
j=1 Qj(z)e

Pj(z)(ι ≥ 3, ι ∈ N+), Pj(z) are polynomials of de-

gree n ≥ 1, Qj(z), aΛ(z)(Λ = 1, 2, · · · , k − 1; j = 1, 2, . . . , ι) are entire func-
tions of order less than n, and k ≥ 2.

1 Introduction and Results

Complex oscillation theory of solutions of linear differential equations in the com-
plex plane C was started by Bank and Laine [1, 2]. After their well-known work,
many important results have been obtained see [3, 12, 13].

We will use the notation σ( f ) to denote the order of growth of a meromorphic
function f (z), λ( f ) to denote the exponent of convergence of the zero-sequence

∗This work was supported by the National Natural Science Foundation of China (11126145 and
61202313) and the Natural Science Foundation of Jiang-Xi Province in China (No. 2010GQS0119
and No. 20122BAB201016).

†Corresponding author
Received by the editors April 2011.
Communicated by F. Brackx.
2000 Mathematics Subject Classification : 34A20, 30D35.
Key words and phrases : Linear differential equation; entire function; the exponent of conver-

gence of zeros.

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 717–732



718 H.-Y. Xu – J. Tu

of f (z)(see [9, 13]). Throughout our paper, we are always interested in non-trivial
solutions f only, that is, f 6≡ 0.

In 1987, Bank and Langley investigated the oscillation of solutions of certain
linear differential equations and obtained

Theorem A (see [4]) Suppose that k ≥ 2 and that A(z) = Π(z)eP(z) 6≡ 0 where
the entire function Π(z) and the polynomial P(z) = anzn + · · ·+ a0 satisfy:

(i) σ(Π) < n;
(ii) there exists θ0 ∈ R with δ(P, θ0) = Re(aneinθ0) = 0 and a positive ε such that

Π(z) has only finitely many zeros in | arg z − θ0| < ε.
Then if n ≥ 2 and Q is a polynomial whose degree dQ satisfies dQ + k < kn, all

non-trivial solutions f of

y(k) + (A(z) + Q(z))y = 0

satisfy λ( f ) = ∞. The same conclusion holds if n = 1 and Q is identically zero.
In 1997, Ishizaki and Tohge [10, 11] have studied the exponent of convergence

of the zero-sequence of solutions of the equation

(1) f ′′ + (eP1(z) + eP2(z) + Q0(z)) f = 0,

where P1(z), P2(z) are non-constant polynomials

P1(z) = ζ1zn + · · · , P2(z) = ζ2zm + · · · , ζ1ζ2 6= 0 (n, m ∈ N).

and Q0(z) is an entire function of order less than max{n, m}, and eP1(z) and eP2(z)

are linearly independent. They have obtained the following results:

Theorem B (see [11]). Suppose that n = m, and that ζ1 6= ζ2 in (1). If ζ1
ζ2

is

non-real, then for any non-trivial solution f of (1), we have λ( f ) = ∞.

Theorem C (see [10]). Suppose that n = m, and that ζ1
ζ2

= ρ > 0 in (1). If

0 < ρ <
1
2 or Q0(z) ≡ 0, 3

4 < ρ < 1, then for any non-trivial solution f of (1), we have
λ( f ) ≥ n.

In 2007, Tu and Chen [15] studied the exponent of convergence of the zero-
sequence of solutions of

(2) f ′′ +
(

Q1(z)e
P1(z) + Q2(z)e

P2(z) + Q3(z)e
P3(z)

)

f = 0,

and obtain the following results.
Theorem D (see [15]). Let Q1(z), Q2(z), Q3(z) be entire functions of order less

than n, and P1(z), P2(z), P3(z) be polynomials of degree n ≥ 1,

P1(z) = ζ1zn + · · · , P2(z) = ζ2zn + · · · , P3(z) = ζ3zn + · · · ,

where ζ1, ζ2, ζ3 are complex numbers.

(i) If ζ1
ζ2

is non-real, 0 < λ = ζ3
ζ2

<
1
2 , then for any non-trivial solution f of (2), we

have λ( f ) = ∞.

(ii) If 0 <
ζ2
ζ1

<
1
4 , 0 < λ = ζ3

ζ2
< 1, then for any non-trivial solution f of (2), we

have λ( f ) ≥ n.
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Recently, Tu and Yang [16] investigated the exponent of convergence of the
zero-sequence of solutions of the differential equation

(2′) f ′′ +
(

Q1(z)e
P1(z) + Q2(z)e

P2(z) + · · ·+ Qι(z)e
Pι(z)

)

f = 0,

and obtained the following result which extended Theorem D:
Theorem E (see [16]). Let Q1(z)( 6≡ 0), Q2(z), · · · , Ql(z)(l ≥ 3) be entire func-

tions of order less than n, and P1(z), P2(z), · · · , Pl(z)(l ≥ 3) be polynomials of degree
n ≥ 1,

P1(z) = ζ1zn + · · · , P2(z) = ζ2zn + · · · , · · · , Pl(z) = ζlz
n + · · · ,

where ζ1, ζ2, · · · , ζl are complex numbers.

(i) If ζ1
ζ2

is non-real, 0 < λj =
ζ j

ζ2
<

1
2 (j = 3, · · · , l), then any non-trivial solution

f of (2′) satisfies λ( f ) = ∞.

(ii) If 0 < ρ = ζ2
ζ1

<
1
4 , λj =

ζ j

ζ2
> 0 and ∑

l
j=3 λj < 1, then any non-trivial

solution f of (2′) satisfies λ( f ) ≥ n.

It is natural to ask: what results can we get when we investigate the expo-
nent of convergence of the zero-sequence of solutions of the higher order linear
differential equation

(3) f (k) + ak−1(z) f (k−1) + · · ·+ a1(z) f ′ + ψ(z) f = 0,

where ψ(z) = ∑
ι
j=1 Qj(z)e

Pj(z)(ι ≥ 3, ι ∈ N+), Pj(z) are polynomials of degree

n ≥ 1, Qj(z), aΛ(z)(Λ = 1, 2, · · · , k − 1; j = 1, 2, . . . , ι) are entire functions of
order less than n, and k ≥ 2.

In the present paper we shall investigate the above problem and obtain the
following result which improve all the previous theorems mentioned earlier.

Theorem 1.1. Let Pj(z), Qj(z)(j = 1, 2, . . . , ι(≥ 3)) be defined in Theorem D and
aΛ(z) (Λ = 1, 2, · · · , k − 1) be entire functions of order less than n,k ≥ 2.

(i) If ζ1
ζ2

is non-real, 0 < λj =
ζ j

ζ2
<

1
k (j = 3, 4, . . . , ι), then for any non-trivial

solution f of (3), we have λ( f ) = ∞.

(ii) If 0 <
ζ1
ζ2

<
1
2k , 0 < λj =

ζ j

ζ2
and ∑

ι
j=3 λj < 1, then for any non-trivial solution

f of (3), we have λ( f ) ≥ n.

2 Notation and Some Lemmas

To prove the theorem, we need some notations and a series of lemmas. Let
Pj(z)(j = 1, 2, . . . , ι) be polynomials of degree n ≥ 1, Pj(z) = (αj + iβ j)z

n +
· · · , αj, β j ∈ R. Define

δ(Pj, θ) = δj(θ) = αj cos nθ − β j sin nθ, θ ∈ [0, 2π)(j = 1, 2, . . . , ι),

S+
j = {θ|δj(θ) > 0}, S−

j = {θ|δj(θ) < 0} (j = 1, 2, . . . , ι).
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Let f (z), a(z) be meromorphic functions in the complex plane C and satisfy

T(r, a) = o{T(r, f )},

except possibly for a set of r having finite linear measure, we say that a(z) is a
small function with respect to f (z).

Lemma 2.1. (see [8]). Let f (z) be a transcendental meromorphic function with σ( f ) =
σ < ∞, k, j be two integers which satisfy k > j ≥ 0. And let ε > 0 be a given
constant, then there exists a set E ⊂ [0, 2π) which has linear measure zero, such that
if ϕ ∈ [0, 2π)\E, there is a constant R1 = R1(ϕ) > 1, such that for all z satisfying
arg z = ϕ and |z| = r > R1, we have

∣

∣

∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣

∣

∣

≤ |z|(k−j)(σ−1+ε).

Lemma 2.2. (see [5, 14]). Suppose that P(z) = (α+ βi)zn + · · · (α, β are real numbers,
|α|+ |β| 6= 0) is a polynomial with degree n ≥ 1, that A(z)( 6≡ 0) is an entire function

with σ(A) < n. Set g(z) = A(z)eP(z) , z = reiθ , δ(P, θ) = α cos nθ − β sin nθ. Then
for any given ε > 0, there exists a set H1 ⊂ [0, 2π) that has the linear measure zero, such
that for any θ ∈ [0, 2π)\(H1 ∪ H2), there is R > 0 such that for |z| = r > R, we have:

(i) If δ(P, θ) > 0, then

exp{(1 − ε)δ(P, θ)rn} < |g(reiθ)| < exp{(1 + ε)δ(P, θ)rn};

(ii) If δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} < |g(reiθ)| < exp{(1 − ε)δ(P, θ)rn},

where H2 = {θ ∈ [0, 2π); δ(P, θ) = 0} is a finite set.

Lemma 2.3. (see [5]). Supposes π(z) is the canonical product formed with the zeros
{zn : n = 1, 2, . . . , }(zn 6= 0) of an entire function f (z). Set On = {z : |z − zn| <
|zn|−α}(α(> λ( f )) is a constant). Then for any given ε > 0,

|π(z)| ≥ exp{−|z|λ( f )+ε}

holds for z 6∈
∞
⋃

n=1
On.

Lemma 2.4. (see [7]). Let f (z) be an entire function of order σ( f ) = α < +∞. Then
for any given ε > 0, there is a set E ⊂ [1, ∞) that has finite linear measure and finite
logarithmic measure such that for all z satisfying |z| 6∈ [0, 1] ∪ E, we have

exp{−rα+ε} ≤ | f (z)| ≤ exp{rα+ε}.

Lemma 2.5. (see [16]). Let Pj(z)(j = 1, · · · , ι) be polynomials of degree n ≥ 1,

P1(z) = ζzn + B1(z), P2(z) = ρ2ζzn + B2(z), · · · , Pι(z) = ριζzn + Bι(z),

where ζ = α+ βi, α, β ∈ R, |α|+ |β| 6= 0, 0 < ρj < 1, j = 2, · · · , ι, B1(z), · · · , Bι(z)
are polynomials of degree at most n − 1. Let Q1(z) 6≡ 0, Q2(z), · · · , Qι(z) be entire
functions of order less than n, then for any given ε > 0, there exist a set E with finite
linear measure and a constant ξ(n − 1 < ξ < n) such that

m(r, Q1eP1 + Q2eP2 + · · ·+ Qιe
Pι) ≥ (1 − ε)m(r, eP1) + O(rξ), r → ∞, (r 6∈ E).
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Lemma 2.6. (see [9, 17]). Let f (z) be an entire function and write f (z) = πeh. Then
we have

(i)

f (k)

f
= (h′)k + k

π′

π
(h′)k−1 +

k(k − 1)

2
(h′)k−2h′′ + Hk−2(h

′), (k ≥ 2),

where Hk−2(h
′) is a differential polynomial of degree no more than k − 2 in h′, its coeffi-

cients are terms of the type c(π′

π )s1(π′′

π )s2 · · · (π(k)

π )sk , where c is a constant, s1, s2, · · · , sk

are non-negative integers.
(ii)

f (k+1)

f
−

f (k)

f

f ′

f
= k(h′)k−1h′′ + Hk−1(h

′) (k ≥ 1),

where Hk−1(h
′) is a differential polynomial of degree no more than k − 1 in h′, its coef-

ficients are terms of the type c(π′

π )s1(π′′

π )s2 · · · (π(k)

π )sk(π(k+1)

π )sk+1 , where c is a constant,
s1, s2, · · · , sk+1 are non-negative integers.

Lemma 2.7. (see [17]). Let U1(z), h(z), Q1(z), P1(z) be entire functions and satisfy
U1 = Q1h′′ − 1

k (Q
′
1 + Q1P′

1)h
′. Then

Qn−1
1 h(n) = A1,n−2(U1, Q1) + Bn−1(Q1)h

′, (n ≥ 2),

where A1,n−2(U1, Q1) is an algebraic expression in the terms U
(j)
1 , Q

(j)
1 , P

(j)
1

(j = 0, 1, . . . , l), such as addition,subtraction and multiplication, where the degree of

U
(j)
1 is no more than 1 and the degree of Q

(j)
1 is no more than l; Bd(Q1) is a differential

polynomial of degree no more than d in Q1, its coefficients are algebraic expressions in

terms P
(i)
1 (i = 1, 2, . . . , d) and 1

k , such as addition,subtraction and multiplication.

Lemma 2.8. Let h(z), cj(z)(j = 0, 1, . . . , k − 1) be meromorphic functions and satisfy

ck−1(z)(h
′)k−1 + ck−2(z)(h

′)k−2 + · · ·+ c1(z)h
′ + c0(z) = 0.

Then we have

m(r, h′) ≤
k−1

∑
j=0

T(r, cj(z)) + O(1).

Lemma 2.9. Let h is a meromorphic function of finite order, Ek−1(h
′) is a differen-

tial polynomial of degree no more than k − 1, its coefficients are meromorphic functions
aj(z)(j = 0, 1, . . . , k − 1) satisfying σ(aj) < n. Then for sufficiently large r,

m(r, (h′)k + Ek−1(h
′)) ≤ km(r, h′) + O(rξ),

where 0 < max{σ(aj)|j = 0, 1, . . . , k − 1} < ξ < n.

Remark 2.1. Lemma 2.8 and 2.9 are immediate consequences of the Valiron-Mohon’ko
theorem (see [11]) and/or Clunie technique.
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3 Proof of Theorem 1.1(i)

Since ζ j = λjζ2, λj > 0(j = 3, 4, . . . , ι), we have S+
2 = S+

3 = · · · = S+
ι , S−

2 = S−
3 =

· · · = S−
ι . We see that S+

j and S−
j have n components S+

jℓ and S−
jℓ respectively

(j = 1, 2, . . . , ι; ℓ = 1, 2, . . . , n). Hence we write

S+
j =

n
⋃

ℓ=1

S+
jℓ , S−

j =
n
⋃

ℓ=1

S−
jℓ (j = 1, 2, . . . , ι).

(i) Let f 6≡ 0 be a solution of (3). Suppose that λ( f ) < ∞. Write f = πeh,
where π is the canonical product from the zeros of f , and h is an entire function.
From our hypothesis, we have σ(π) = λ(π) < ∞. From (3), we get

(4)
f (k)

f
+ ak−1

f (k−1)

f
+ · · ·+ a1

f ′

f
+ ψ(z) = 0,

By Lemma 2.6(i), we get

(5) (h′)k = Ek−1(h
′)− Q1(z)e

P1(z) − Q2(z)e
P2(z) − · · · − Qι(z)e

Pι(z),

where Ek−1(h
′) is a differential polynomial of degree no more than k − 1 in h′,

its coefficients are terms of type ca
p
j (z)(

π′

π )s1(π′′

π )s2 · · · (π(k)

π )sk(j = 1, 2, . . . , k − 1),

where c is a constant, s1, s2, · · · , sk are non-negative integers and p is 0 or 1.
Eliminating eP1 from (4), we have

Q1

(

f (k+1)

f
−

f (k)

f

f ′

f

)

+ ak−1Q1

(

f (k)

f
−

f (k−1)

f

f ′

f

)

+ · · ·+ a1Q1

(

f ′′

f
−

f ′

f

f ′

f

)

−(Q′
1 + Q1P′

1)

(

f (k)

f
+ ak−1

f (k−1)

f
+ · · ·+ a1

f ′

f
+

ι

∑
j=2

Qje
Pj

)

+Q1

[

a′k−1

f (k−1)

f
+ · · ·+ a′1

f ′

f

]

+ Q1

ι

∑
j=2

(

Q′
j + QjP

′
j

)

ePj = 0.

By Lemma 2.6(ii), we can write this as

(6) kU1(h
′)k−1 = F1

k−1(h
′) +

ι

∑
j=2

[

Qj(Q
′
1 + Q1P′

1)− Q1(Q
′
j + QjP

′
j )
]

ePj ,

where

(7) U1 = Q1h′′ −
1

k
(Q′

1 + Q1P′
1)h

′,

and F1
k−1(h

′) is a differential polynomial of degree no more than k − 1 in h′, its

coefficients are terms of the type c(aj(z))
p(a′j(z))

q(Q1)
l(Q′

1)
t(P′

1)
u(π′

π )s1(π′′

π )s2 · · ·
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(π(k)

π )sk , where c is a constant, s1, s2, · · · , sk are non-negative integers and each of

p, q, l, t, u is 0 or 1. Similarly, eliminating eP2 from (4), we obtain

kU2(h
′)k−1 = F2

k−1(h
′) +

ι

∑
j=1,j 6=2

[

Qj(Q
′
2 + Q2P′

2)− Q2(Q
′
j + QjP

′
j )
]

ePj ,(8)

where

(9) U2 = Q2h′′ −
1

k
(Q′

2 + Q2P′
2)h

′,

and F2
k−1(h

′) is a differential polynomial of degree no more than k − 1 in h′, its

coefficients are terms of the type c(aj(z))
p(a′j(z))

q(Q2)
l(Q′

2)
t(P′

2)
u(π′

π )s1(π′′

π )s2 · · ·

(π(k)

π )sk , where c is a constant, s1, s2, · · · , sk are non-negative integers and each of
p, q, l, t, u is 0 or 1.

From the assumptions of Theorem 1.1, there exists three positive real numbers
ξ1, ξ2, ξ3 such that max{σ(Qj), σ(aΛ), j = 1, 2, . . . , ι; Λ = 1, 2, . . . , k − 1} < ξ1 <

ξ2 < ξ3 < n, from Lemma 2.4 we get

|Qj(reiθ)| ≤ exp(rξ1), (j = 1, 2, . . . , ι); |aΛ(reiθ)| ≤ exp(rξ1), (Λ = 1, 2, . . . , k− 1),

for sufficiently large r and for any θ ∈ [0, 2π). Applying the Clunie Lemma [9,
Lemma 3.3] to (5), for any given ε > 0,

T(r, h′) = m(r, h′) ≤ m(r, Q1eP1 + Q2eP2 + · · ·+ Qιe
Pι)

+O

(

k

∑
j=1

m(r,
π(j)

π
) +

k−1

∑
Λ=1

m(r, aΛ)

)

+ S(r, h′)

≤ O(rn+ε) + S(r, h′),

which implies σ(h′) ≤ n. It follows from (7) and (9) that σ(U1) ≤ n and σ(U2) ≤
n respectively.

In the following, we will show that there exists a set E0 ⊂ [0, 2π), m(E0) = 0
such that if θ ∈ S−

2 \E0, then

(10) |U1(reiθ)| ≤ O(exp{rξ2}), r → ∞.

If |h′(reiθ)| ≤ 1, from Lemmas 2.1,2.2 and 2.4 and (7), we have

|U1(reiθ)| ≤
|h′′(reiθ)|

|h′(reiθ)|
|Q1(reiθ)|+

1

k
|P′

1(reiθ)||Q1(reiθ)|+
1

k

|Q′
1(reiθ)|

|Q1(reiθ)|
|Q1(reiθ)|

(11)

≤ O(exp{rξ2}), r → ∞.

If |h′(reiθ)| ≥ 1. Since F1
k−1(h

′) is the sum of a finite number of terms of the
type

H(z) = c(aj(z))
p(a′j(z))

q(Q1)
l(Q′

1)
t(P′

1)
u(

π′

π
)s1(

π′′

π
)s2 · · · (

π(k)

π
)sk

×(h′)l0(h′′)l1 · · · (h(v))lv−1 ,
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where l0, l1, · · · , lv−1 are non-negative integers and l0 + l1 + · · · + lv−1 ≤ k − 1,
from Lemma 2.1 we can get

|H(reiθ)|

|h′(reiθ)|k−1
≤ |c||aj(reiθ)|p|a′j(reiθ)|q|Q1(reiθ)|l |Q′

1(reiθ)|t|P′
1(reiθ)|u(12)

× |
π′(reiθ)

π(reiθ)
|s1 · · · |

π(k)(reiθ)

π(reiθ)
|sk

|h′′(reiθ)|l1

|h′(reiθ)|
· · ·

|h(v)(reiθ)|lv−1

|h′(reiθ)|

≤ O(exp{rξ2}).

Thus

(13)
|F1

k−1(reiθ)|

|h′(reiθ)|k−1
≤ O(exp{rξ2}).

From (6),(13) and Lemma 2.2, we get

k|U1(reiθ)| ≤
|F1

k−1(reiθ)|

|h′(reiθ)|k−1
+

ι

∑
j=2

|ePj(reiθ)|
∣

∣

∣

(

Q′
1(reiθ) + Q1(reiθ)P′

1(reiθ)
)

(14)

×Qj(reiθ)− Q1(reiθ)((Q′
j(reiθ) + Qj(reiθ)P′

j (reiθ))
∣

∣

∣

≤ O(exp{rξ2}), r → ∞.

From (11) and (14), we obtain (10).
We note that there exist θ̄j(j = 1, 2, . . . , ι) satisfying δj(θ) = 0 on the rays

arg z = θ̄j +
γπ
n , where γ = 0, . . . , 2n − 1, which form 2n sectors of opening

π
n respectively, thus we may assume that θ̄j ∈ [0, π

n ). Since ζ j = λjζ2, λj > 0

(j = 3, 4, . . . , ι), we have θ̄j = θ̄2(j = 3, 4, . . . , ι). Write θ̄jγ = θ̄j +
γπ
n , j =

1, 2, if there are some integers γ1 and γ2 such that θ̄1γ1
= θ̄2γ2

, then θ̄1 − θ̄2 +

(γ1 − γ2)
π
n = 0, we have that tan nθ̄j =

αj

βj
, j = 1, 2. This gives

0 = tan(nθ̄1 − nθ̄2 + (γ1 − γ2)π) =
α1β2 − α2β1

α1α2 + β1β2
.

This contradicts the assumption that ζ1
ζ2

is non-real. Hence we see that each com-

ponent of S+
1 and S+

2 contains a component of S+
1 ∩ S+

2 . The boundaries of the
components of S+

1 ∩ S+
2 are some of the rays arg z = θ̄jγ, we fix a component of

S+
1 ∩ S+

2 , say S∗. We may write

S∗ = {θ ∈ S+
1 ∩ S+

2 : θ∗1 < θ < θ∗2 , δ1(θ
∗
1 ) = δ2(θ

∗
2 ) = 0}

or
S∗ = {θ ∈ S+

1 ∩ S+
2 : θ∗2 < θ < θ∗1 , δ1(θ

∗
1 ) = δ2(θ

∗
2 ) = 0}.

We define

D12 =

{

θ ∈ S+
1 ∩ S+

2 : δ1(θ) >
k(λ + 1)

k − 1
δ2(θ)

}

,
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D21 =

{

θ ∈ S+
1 ∩ S+

2 : δ2(θ) >
λ + 1

λ
δ1(θ)

}

,

where λ = max{λj : j = 3, 4, . . . , ι} <
1
k . Since every component of S+

1 and S+
2

is a sector of opening π
n , the rays arg z = θ∗1 and arg z = θ∗2 are contained in S+

2

and S+
1 respectively. We treat the first case, the proof of the second case can be

obtained similarly. Hence there exist η1 > 0, η2 > 0 such that

{θ : θ∗1 < θ < θ∗1 + η1} ⊂ D21, {θ : θ∗2 − η2 < θ < θ∗2} ⊂ D12.

Hence there exists a θ ∈ (S+
2k ∩ D12)\E0 for any k = 1, 2, . . . , n. Set 0 <

k(λ+1)
k−1 δ2 <

σ2 < σ1 < δ1, 0 < ε1 < 1 − σ1
δ1

, 0 < ε2 <
(k−1)σ2

kδ2
− 1, . . . , 0 < ει <

(k−1)σ2
kλιδ2

− 1. By

Lemma 2.2, we have

|Q1eP1(reiθ) + Q2eP2(reiθ) + · · ·+ Qιe
Pι(reiθ)|(15)

≥
∣

∣

∣
Q1eP1(reiθ)

∣

∣

∣

∣

∣

∣

∣

1 −

∣

∣

∣

∣

Q2

Q1
eP2(reiθ)−P1(reiθ)

∣

∣

∣

∣

− · · · −

∣

∣

∣

∣

Qι

Q1
ePι(reiθ)−P1(reiθ)

∣

∣

∣

∣

∣

∣

∣

∣

≥ exp{(1 − ε1)δ1rn}(1 − o(1))

≥ exp{σ1rn}(1 − o(1)), r → ∞.

We assume that there exists an unbounded sequence {rκ}∞
κ=1 such that 0 <

|h′(rκeiθ)| ≤ 1. From (5) and (15) and Lemma 2.1, we get

exp{σ1rn
κ}(1 − o(1)) ≤ |h′(rκeiθ)|k + |Ek−1(h

′(rκeiθ))|

≤ 1 + ∑ |c||aΛ(rκeiθ)|p|
π′(rκeiθ)

π(rκeiθ)
|s1 · · · |

π(k)(rκeiθ)

π(rκeiθ)
|sk

×|h′(rκeiθ)|l0 · · · |h(v)(rκeiθ)|lv−1

≤ 1 + ∑ |c||aΛ(rκeiθ)|p|
π′(rκeiθ)

π(rκeiθ)
|s1 · · · |

π(k)(rκeiθ)

π(rκeiθ)
|sk

×|
h′′(rκeiθ)

h′(rκeiθ)
|l1 · · · |

h(v)(rκeiθ)

h′(rκeiθ)
|lv−1

≤ O(exp{r
ξ2
κ }), (κ → ∞),

which is not true. Hence we may assume that |h′(reiθ)| ≥ 1 for all r sufficiently
large. From (5),(15) and Lemma 2.2, we get

exp{σ1rn}(1 − o(1)) ≤ |h′(reiθ)|k + |Ek−1(h
′(reiθ))|

≤ |h′(reiθ)|k[1 +∑ |c||aΛ(reiθ)|p|
π′(reiθ)

π(reiθ)
|s1 · · · |

π(k)(reiθ)

π(reiθ)
|sk

×|
h′′(reiθ)

h′(reiθ)
|l1 · · · |

h(v)(reiθ)

h′(reiθ)
|lv−1]

≤ |h′(reiθ)|k(1 + O(exp{rξ2})), (r → ∞),

i.e.

|h′(reiθ)|k ≥
1 − o(1)

1 + O(exp{rξ2})
exp{σ1rn}, (r → ∞).
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Then we obtain for all r large enough

(16) |h′(reiθ)| ≥ exp

{

1

k
σ2rn

}

.

From Lemma 2.1,(6) and (16), we get

k|U1(reiθ)| ≤
|F1

k−1(reiθ)|

|h′(reiθ)|k−1
+

ι

∑
j=2

|ePj(reiθ)|

|h′(reiθ)|k−1

(17)

×

[

|Qj(reiθ)|

(

|Q′
1(reiθ)|

|Q1(reiθ)|
|Q1(reiθ)|+ |Q1(reiθ)| · |P′

1(reiθ)|

)

+|Q1(reiθ)| ×

(

|Q′
j(reiθ)|

|Qj(reiθ)|
|Qj(reiθ)|+ |Qj(reiθ)||P′

j (reiθ)|

)]

≤ O(exp{rξ2}) + (1 + o(1)) exp

{

(δ2(1 + ε2)−
(k − 1)σ2

k
)rn

}

+ · · ·+ (1 + o(1)) exp

{

(λιδ2(1 + ει)−
(k − 1)σ2

k
)rn

}

, (r → ∞).

Since δ2(1 + ε2)−
(k−1)σ2

k < 0, . . . , λιδ2(1 + ει) −
(k−1)σ2

k < 0, it gives that for all
sufficiently large r,

(18) |U1(reiθ)| ≤ O(exp{rξ2}).

Now we fix a Φ(= Φ2k) ∈ (S+
2k ∩ D12)\E0, k = 1, 2, . . . , n. Then we find Φ1, Φ2 ∈

S−
2 \E0, Φ1 < Φ < Φ2 such that Φ − Φ1 <

π
n , Φ2 − Φ <

π
n . We first prove that for

any θ, Φ1 ≤ θ ≤ Φ, we have

(19) |U1(reiθ)| ≤ O(exp{rξ3}), (r → ∞).

Write Φ − Φ1 = π
n+τ1

, τ1 > 0, since σ(U1) ≤ n, we have that |U1(reiθ)| ≤

ern+τ2 , 0 < τ2 < τ1 for sufficiently large r. Set g(z) = U1(z)/ exp((ze−
Φ+Φ1

2 )ξ3),
then g(z) is regular in the region {z : Φ1 ≤ arg z ≤ Φ}. Since Φ1 ≤ arg z = θ ≤

Φ, Φ − Φ1 <
π
n , we infer that cos(arg((ze−

Φ+Φ1
2 )ξ3) ≥ K for some K > 0. In fact,

−
π

2
< −

πξ3

2n
≤ −ξ3

Φ − Φ1

2
≤ arg

(

(ze−
Φ+Φ1

2 )ξ3

)

≤ ξ3
Φ − Φ1

2
≤

πξ3

2n
<

π

2
.

Hence for Φ1 < θ < Φ,

|g(reiθ)| ≤

∣

∣

∣

∣

U1(reiθ)

exp{Krξ3}

∣

∣

∣

∣

≤ O(exp{rn+τ2}), (r → ∞).

It follows from (10) and (18) that for some M > 0, as r → ∞

|g(reiΦ1)| ≤
O(erξ2 )

exp{Krξ3}
≤ M
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and

|g(reiΦ)| ≤
O(erξ2 )

exp{Krξ3}
≤ M.

By the Phragmen-Lindelöf theorem, we obtain (19). Similarly we see that (19)
holds for Φ < θ < Φ2. Hence we conclude that (19) holds for any θ ∈ [0, 2π).

By a similar proof as before we can prove that for any θ ∈ [0, 2π)

(20) |U2(reiθ)| ≤ O(exp{rξ3}), (r → ∞).

By (7) and (9), we have

(21) Q2U1 − Q1U2 =
1

k
h′[Q1(Q

′
2 + Q2P′

2)− Q2(Q
′
1 + Q1P′

1)].

Since σ(Qj) < ξ2 < ξ3(j = 1, 2, 3), by (5),(10),(20), (21) and Lemma 2.9, we have

m(r, Q1eP1(z) + Q2eP2(z) + · · ·+ Qιe
Pι(z))(22)

≤ km(r, h′) + O(log r) ≤ km(r, Q2U1 − Q1U2) + O(rξ2)

≤ O(rξ3), (r → ∞).

Since ζ1
ζ2

is non-real, S+
1 ∩ S−

2 contains an interval I = [ϕ1, ϕ2] satisfying

minθ∈I δ1(θ) = χ > 0. By Lemma 2.2, there exists an R(I)(> 0) such that for
any θ ∈ I and r ≥ R(I),

|Q1eP1(reiθ)| ≥ exp((1 − ε)δ1rn), |Q2eP2(reiθ)| ≤ exp((1 − ε)δ2rn), . . . ,

and

|Qιe
Pι(reiθ)| ≤ exp((1 − ε)λιδ2rn).

Hence, we have

m
(

r, Q1eP1(z) +Q2eP2(z) + · · ·+ Qιe
Pι(z)

)

(23)

≥
∫ ϕ2

ϕ1

log+ |Q1eP1(z) + Q2eP2(z) + · · ·+ Qιe
Pι(z)|dθ

≥
∫ ϕ2

ϕ1

(1 − o(1)) log+ |Q1eP1(z)|dθ

≥
∫ ϕ2

ϕ1

(1 − o(1))(1 − ε)srndθ

≥ (1 − o(1))(1 − ε)srn(ϕ2 − ϕ1), (r → ∞).

Combining (22) and (23) and recalling that ξ3 < n, we get a contradiction. Hence,
λ( f ) = ∞.
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4 Proof of Theorem 1.1(ii)

Let f 6≡ 0 be a solution of (3). Write f = πeh, suppose that λ( f ) < n. From our
hypothesis, we have σ(π) = λ(π) < n. Eliminating eP1 from (5), we have

(24) kU(h′)k−1 = Fk−1(h
′) +

ι

∑
j=2

ePj [Qj(Q
′
1 + Q1P′

1)− Q1(Q
′
j + QjP

′
j )],

where

(25) U = Q1h′′ −
1

k
(Q′

1 + Q1P′
1)h

′.

From (24), (25) and Lemma 2.7, we have

ck−1(z)(h
′)k−1 + ck−2(h

′)k−2 + · · ·+ c1(z)h
′(26)

= c0(z) +
ι

∑
j=2

ePj [Qj(Q
′
1 + Q1P′

1)− Q1(Q
′
j + QjP

′
j )],

where cj(z)(j = 0, 1, 2, . . . , k − 1) is an algebraic expression in the terms U(l)

(l = 0, 1, . . . , k − 2), Q
(i)
1 (i = 0, 1 . . . , k − 1), P

(s)
1 (s = 0, 1, . . . , l − 1), 1

k , 1
Q1

, π(t)

π

(t = 1, 2, . . . , k) and aj, a′j(j = 1, 2, . . . , k − 1), such as addition, subtraction and

multiplication.
Now we suppose that at least one of cj(z)(j = 1, 2, . . . , k − 1) is not identically

vanishing and c0(z) + ∑
ι
j=2 ePj [Qj(Q

′
1 + Q1P′

1) − Q1(Q
′
j + QjP

′
j )] 6≡ 0. Without

loss of generality, suppose ck−1(z) 6≡ 0, from (26) and Lemma 2.8, we have

T(r, h′) = m(r, h′) ≤
k−1

∑
i=0

T(r, ci(z)) + m
(

r,
ι

∑
j=2

ePj [Qj(Q
′
1 + Q1P′

1)(27)

−Q1(Q
′
j + QjP

′
j )]
)

+ O(1).

Set max{λ( f ), σ(Qj) : (j = 1, 2, . . . , ι)} < ξ2 < ξ3 < n. From (5), we obtain

(28) T
(

r, Q1eP1(z) + Q2eP2(z) + · · ·+ Qιe
Pι(z)

)

≤ kT(r, h′) + O(log r).

By Lemma 2.5, we have

m
(

r, Q1eP1(z) +Q2eP2(z) + · · ·+ Qιe
Pι(z)

)

(29)

≥ (1 − ε)m(r, eP1) + O(rξ3), (r → ∞, r 6∈ E),

where E has finite linear measure. From (28) and (29), we obtain

(30) T(r, h′) ≥
1 − ε

k
T(r, eP1) + O(rξ3), (r → ∞, r 6∈ E).

Since 0 < ρ = ζ2
ζ1

<
1
2k , ζ j = λjζ2, λj > 0 and 0 < ∑

ι
j=3 λ < 1, we get

δ(P2, θ) = ρδ(P1, θ), and

S+
1m = S+

2m = · · · = S+
ιm, S−

1m = S−
2m = · · · = S−

ιm, (m = 1, . . . , n).
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By the same reasoning as in (11) and (14), we have

(31) |U(reiθ)| ≤ O(exp{rξ2}), (r → ∞)

for any θ ∈ S−
1 \E0, m(E0) = 0. Also by the same reasoning as in (15)-(18), we

have

(32) |U(reiθ)| ≤ O(exp{rξ2}), (r → ∞)

for any θ ∈ S+
1 \E0, m(E0) = 0. Since σ(U) ≤ n, by the Phragmen-Lindelöf

theorem, we have

(33) |U(reiθ)| ≤ O(exp{rξ3}), (r → ∞)

for any θ ∈ [0, 2π).
We will estimate T(r, cj) as follows.

By our hypothesis f = πeh, λ( f ) < ξ3 < n, from Lemma 2.3 we have N
(

r, 1
π

)

≤

O(rξ3). Thus, from (33), the assumptions of Theorem 1.1, the forms of cj(z) and
the theorem on the logarithmic derivatives, we have

T(r, cj) ≤ O

(

k−1

∑
i=0

T(r, Q
(i)
1 ) +

k−1

∑
Λ=0

m(r, aΛ) +
k−1

∑
Λ=0

m(r, a′Λ) +
k−1

∑
s=0

m(r, P
(s)
1 )(34)

+
k−2

∑
t=1

m

(

r,
U(t)

U

)

+ m(r, U) + N

(

r,
1

π

)

+ O(log r)

)

≤ O(rξ3), r → ∞, j = 0, 1, . . . , k − 1,

and

T(r,
ι

∑
j=2

ePj [Qj(Q
′
1 + Q1P′

1)− Q1(Q
′
j + QjP

′
j )]
)

(35)

≤ O(rξ3) + T(r, eP2) + T(r, eP3) + · · ·+ T(r, ePι)

= (1 +
ι

∑
j=3

λj)T(r, eP2) + O(rξ3)

≤ (1 +
ι

∑
j=3

λj)ρT(r, eP1) + O(rξ3), r → ∞.

From (27),(30),(34) and (35), we get

1 − ε

k
T(r, eP1) + O(rξ3) ≤ T(r, h′)(36)

≤ (1 +
ι

∑
j=3

λj)ρT(r, eP1) + O(rξ3), r → ∞, r 6∈ E.

Thus, (36) implies

(37)

(

1 − ε

k
− (1 +

ι

∑
j=3

λj)ρ − o(1)

)

T(r, eP1) ≤ 0, r → ∞, r 6∈ E.
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From 0 < ρ = ζ2
ζ1

<
1
2k , 0 < ∑

ι
j=3 λj < 1 and (37), we get a contradiction. Hence

ck−1 = · · · = c1 = c0 + ∑
ι
j=2 ePj [Qj(Q

′
1 + Q1P′

1)− Q1(Q
′
j + QjP

′
j )] ≡ 0, that is,

−c0(z) =
ι

∑
j=2

ePj [Qj(Q
′
1 + Q1P′

1)− Q1(Q
′
j + QjP

′
j )].(38)

First, we show that Q2(Q
′
1 + Q1P′

1) − Q1(Q
′
2 + Q2P′

2) 6≡ 0 as follows. If

Q2(Q
′
1 + Q1P′

1) − Q1(Q
′
2 + Q2P′

2) ≡ 0, that is, P′
1 − P′

2 =
Q′

1
Q1

−
Q′

2
Q2

. By solving

this differential equation, we get Q1 = ςQ2eP1−P2, where ς is a non-zero constant.
Thus, we can get σ(Q1) = n which contradicts with σ(Q1) < n. Therefore, we
have Q2(Q

′
1 + Q1P′

1)− Q1(Q
′
2 + Q2P′

2) 6≡ 0. Since σ(Qj) < n(j = 1, 2, . . . , ι) and
Pj(z) are polynomials of degree n, we have σ(Qj(Q

′
1 + Q1P′

1)− Q1(Q
′
j + QjP

′
j )) <

n(j = 2, 3, . . . , ι).

Next, we assume that ∑
ι
j=2 ePj [Qj(Q

′
1 + Q1P′

1) − Q1(Q
′
j + QjP

′
j )] 6≡ 0. If

∑
ι
j=2 ePj [Qj (Q

′
1 + Q1P′

1)− Q1(Q
′
j + QjP

′
j )] ≡ 0, that is,

−eP2 [Q2(Q
′
1 + Q1P′

1)− Q1(Q
′
2 + Q2P′

2)](39)

=
ι

∑
j=3

ePj [Qj(Q
′
1 + Q1P′

1)− Q1(Q
′
j + QjP

′
j )].

If δ(P2, θ) = δ2(θ) > 0, θ ∈ [0, 2π). Since ζ j = λjζ2, 0 < λj, (j = 3, 4, . . . , ι), we
have δ(Pj, θ) = δj(θ) > 0, (j = 3, 4, . . . , ι). Set λ0 = max{λj : j = 3, 4, . . . , ι}, from

(39), Lemma 2.5 and the assumptions of Theorem 1.1, for any ε0(0 < ε0 <
1−λ0
1+λ0

),

we have

exp{(1 − ε0)δ2rn} ≤
∣

∣

∣
eP2 [Q2(Q

′
1 + Q1P′

1)− Q1(Q
′
2 + Q2P′

2)]
∣

∣

∣
(40)

≤

∣

∣

∣

∣

∣

ι

∑
j=3

ePj [Qj(Q
′
1 + Q1P′

1)− Q1(Q
′
j + QjP

′
j )]

∣

∣

∣

∣

∣

≤ (ι − 2) exp{(1 + ε0)λ0δ2rn}.

Since δ2 > 0, λ0 > 0 and 0 < ε0 <
1−λ0
1+λ0

, we can get a contradiction.

If δ(P2, θ) = δ2(θ) < 0, θ ∈ [0, 2π), similar to the above argument, we can also
get a contradiction.

From (38), Q2(Q
′
1 + Q1P′

1) − Q1(Q
′
2 + Q2P′

2) 6≡ 0 and σ(Qj(Q
′
1 + Q1P′

1) −
Q1(Q

′
j + QjP

′
j )) < n(j = 2, 3, . . . , ι), by (34) and Lemma 2.5, we get

(41) (1 − ε)T(r, eP2) + O(rξ) ≤ O(rξ3), r → ∞.

From (41), we have σ(eP2) ≤ max{ξ, ξ3} < n, we get a contradiction. Hence
λ( f ) ≥ n.
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