Further results on the exponent of convergence of zeros of solutions of certain higher order linear differential equations *

Hong-Yan Xu ${ }^{+} \quad \mathrm{Jin} \mathrm{Tu}$

Abstract

In this paper, we further investigate the exponent of convergence of the zero-sequence of solutions of the differential equation $$
f^{(k)}+a_{k-1}(z) f^{(k-1)}+\cdots+a_{1}(z) f^{\prime}+\psi(z) f=0
$$ where $\psi(z)=\sum_{j=1}^{\iota} Q_{j}(z) e^{P_{j}(z)}\left(\iota \geq 3, \iota \in N_{+}\right), P_{j}(z)$ are polynomials of degree $n \geq 1, Q_{j}(z), a_{\Lambda}(z)(\Lambda=1,2, \cdots, k-1 ; j=1,2, \ldots, l)$ are entire functions of order less than n, and $k \geq 2$.

1 Introduction and Results

Complex oscillation theory of solutions of linear differential equations in the complex plane \mathbb{C} was started by Bank and Laine [1, 2]. After their well-known work, many important results have been obtained see [3, 12, 13].

We will use the notation $\sigma(f)$ to denote the order of growth of a meromorphic function $f(z), \lambda(f)$ to denote the exponent of convergence of the zero-sequence

[^0]of $f(z)$ (see $[9,13])$. Throughout our paper, we are always interested in non-trivial solutions f only, that is, $f \not \equiv 0$.

In 1987, Bank and Langley investigated the oscillation of solutions of certain linear differential equations and obtained

Theorem A (see [4]) Suppose that $k \geq 2$ and that $A(z)=\Pi(z) e^{P(z)} \not \equiv 0$ where the entire function $\Pi(z)$ and the polynomial $P(z)=a_{n} z^{n}+\cdots+a_{0}$ satisfy:
(i) $\sigma(\Pi)<n$;
(ii) there exists $\theta_{0} \in \mathbb{R}$ with $\delta\left(P, \theta_{0}\right)=\operatorname{Re}\left(a_{n} e^{i n \theta_{0}}\right)=0$ and a positive ε such that $\Pi(z)$ has only finitely many zeros in $\left|\arg z-\theta_{0}\right|<\varepsilon$.

Then if $n \geq 2$ and Q is a polynomial whose degree d_{Q} satisfies $d_{Q}+k<k n$, all non-trivial solutions f of

$$
y^{(k)}+(A(z)+Q(z)) y=0
$$

satisfy $\lambda(f)=\infty$. The same conclusion holds if $n=1$ and Q is identically zero.
In 1997, Ishizaki and Tohge [10, 11] have studied the exponent of convergence of the zero-sequence of solutions of the equation

$$
\begin{equation*}
f^{\prime \prime}+\left(e^{P_{1}(z)}+e^{P_{2}(z)}+Q_{0}(z)\right) f=0 \tag{1}
\end{equation*}
$$

where $P_{1}(z), P_{2}(z)$ are non-constant polynomials

$$
P_{1}(z)=\zeta_{1} z^{n}+\cdots, \quad P_{2}(z)=\zeta_{2} z^{m}+\cdots, \quad \zeta_{1} \zeta_{2} \neq 0 \quad(n, m \in N)
$$

and $Q_{0}(z)$ is an entire function of order less than $\max \{n, m\}$, and $e^{P_{1}(z)}$ and $e^{P_{2}(z)}$ are linearly independent. They have obtained the following results:

Theorem B (see [11]). Suppose that $n=m$, and that $\zeta_{1} \neq \zeta_{2}$ in (1). If $\frac{\zeta_{1}}{\zeta_{2}}$ is non-real, then for any non-trivial solution f of (1), we have $\lambda(f)=\infty$.

Theorem C (see [10]). Suppose that $n=m$, and that $\frac{\zeta_{1}}{\zeta_{2}}=\rho>0$ in (1). If $0<\rho<\frac{1}{2}$ or $Q_{0}(z) \equiv 0, \frac{3}{4}<\rho<1$, then for any non-trivial solution f of (1), we have $\lambda(f) \geq n$.

In 2007, Tu and Chen [15] studied the exponent of convergence of the zerosequence of solutions of

$$
\begin{equation*}
f^{\prime \prime}+\left(Q_{1}(z) e^{P_{1}(z)}+Q_{2}(z) e^{P_{2}(z)}+Q_{3}(z) e^{P_{3}(z)}\right) f=0 \tag{2}
\end{equation*}
$$

and obtain the following results.
Theorem D (see [15]). Let $Q_{1}(z), Q_{2}(z), Q_{3}(z)$ be entire functions of order less than n, and $P_{1}(z), P_{2}(z), P_{3}(z)$ be polynomials of degree $n \geq 1$,

$$
P_{1}(z)=\zeta_{1} z^{n}+\cdots, \quad P_{2}(z)=\zeta_{2} z^{n}+\cdots, \quad P_{3}(z)=\zeta_{3} z^{n}+\cdots,
$$

where $\zeta_{1}, \zeta_{2}, \zeta_{3}$ are complex numbers.
(i) If $\frac{\zeta_{1}}{\zeta_{2}}$ is non-real, $0<\lambda=\frac{\zeta_{3}}{\zeta_{2}}<\frac{1}{2}$, then for any non-trivial solution f of (2), we have $\lambda(f)=\infty$.
(ii) If $0<\frac{\zeta_{2}}{\zeta_{1}}<\frac{1}{4}, 0<\lambda=\frac{\zeta_{3}}{\zeta_{2}}<1$, then for any non-trivial solution f of (2), we have $\lambda(f) \geq n$.

Recently, Tu and Yang [16] investigated the exponent of convergence of the zero-sequence of solutions of the differential equation

$$
f^{\prime \prime}+\left(Q_{1}(z) e^{P_{1}(z)}+Q_{2}(z) e^{P_{2}(z)}+\cdots+Q_{l}(z) e^{P_{l}(z)}\right) f=0
$$

and obtained the following result which extended Theorem D :
Theorem E (see [16]). Let $Q_{1}(z)(\not \equiv 0), Q_{2}(z), \cdots, Q_{l}(z)(l \geq 3)$ be entire functions of order less than n, and $P_{1}(z), P_{2}(z), \cdots, P_{l}(z)(l \geq 3)$ be polynomials of degree $n \geq 1$,

$$
P_{1}(z)=\zeta_{1} z^{n}+\cdots, \quad P_{2}(z)=\zeta_{2} z^{n}+\cdots, \cdots, P_{l}(z)=\zeta_{l} z^{n}+\cdots,
$$

where $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{l}$ are complex numbers.
(i) If $\frac{\zeta_{1}}{\zeta_{2}}$ is non-real, $0<\lambda_{j}=\frac{\zeta_{j}}{\zeta_{2}}<\frac{1}{2}(j=3, \cdots, l)$, then any non-trivial solution f of $\left(2^{\prime}\right)$ satisfies $\lambda(f)=\infty$.
(ii) If $0<\rho=\frac{\zeta_{2}}{\zeta_{1}}<\frac{1}{4}, \lambda_{j}=\frac{\zeta_{j}}{\zeta_{2}}>0$ and $\sum_{j=3}^{l} \lambda_{j}<1$, then any non-trivial solution f of $\left(2^{\prime}\right)$ satisfies $\lambda(f) \geq n$.

It is natural to ask: what results can we get when we investigate the exponent of convergence of the zero-sequence of solutions of the higher order linear differential equation

$$
\begin{equation*}
f^{(k)}+a_{k-1}(z) f^{(k-1)}+\cdots+a_{1}(z) f^{\prime}+\psi(z) f=0 \tag{3}
\end{equation*}
$$

where $\psi(z)=\sum_{j=1}^{\iota} Q_{j}(z) e^{P_{j}(z)}\left(\iota \geq 3, \iota \in N_{+}\right), P_{j}(z)$ are polynomials of degree $n \geq 1, Q_{j}(z), a_{\Lambda}(z)(\Lambda=1,2, \cdots, k-1 ; j=1,2, \ldots, \iota)$ are entire functions of order less than n, and $k \geq 2$.

In the present paper we shall investigate the above problem and obtain the following result which improve all the previous theorems mentioned earlier.

Theorem 1.1. Let $P_{j}(z), Q_{j}(z)(j=1,2, \ldots, \iota(\geq 3))$ be defined in Theorem D and $a_{\Lambda}(z)(\Lambda=1,2, \cdots, k-1)$ be entire functions of order less than $n, k \geq 2$.
(i) If $\frac{\zeta_{1}}{\zeta_{2}}$ is non-real, $0<\lambda_{j}=\frac{\widetilde{\zeta}_{j}}{\zeta_{2}}<\frac{1}{k}(j=3,4, \ldots, \iota)$, then for any non-trivial solution f of (3), we have $\lambda(f)=\infty$.
(ii) If $0<\frac{\zeta_{1}}{\zeta_{2}}<\frac{1}{2 k}, 0<\lambda_{j}=\frac{\zeta_{j}}{\zeta_{2}}$ and $\sum_{j=3}^{\iota} \lambda_{j}<1$, then for any non-trivial solution f of (3), we have $\lambda(f) \geq n$.

2 Notation and Some Lemmas

To prove the theorem, we need some notations and a series of lemmas. Let $P_{j}(z)(j=1,2, \ldots, \iota)$ be polynomials of degree $n \geq 1, P_{j}(z)=\left(\alpha_{j}+i \beta_{j}\right) z^{n}+$ $\cdots, \alpha_{j}, \beta_{j} \in \mathbb{R}$. Define

$$
\begin{gathered}
\delta\left(P_{j}, \theta\right)=\delta_{j}(\theta)=\alpha_{j} \cos n \theta-\beta_{j} \sin n \theta, \quad \theta \in[0,2 \pi)(j=1,2, \ldots, \iota), \\
S_{j}^{+}=\left\{\theta \mid \delta_{j}(\theta)>0\right\}, \quad S_{j}^{-}=\left\{\theta \mid \delta_{j}(\theta)<0\right\} \quad(j=1,2, \ldots, \iota)
\end{gathered}
$$

Let $f(z), a(z)$ be meromorphic functions in the complex plane \mathbb{C} and satisfy

$$
T(r, a)=o\{T(r, f)\}
$$

except possibly for a set of r having finite linear measure, we say that $a(z)$ is a small function with respect to $f(z)$.
Lemma 2.1. (see [8]). Let $f(z)$ be a transcendental meromorphic function with $\sigma(f)=$ $\sigma<\infty, k$, j be two integers which satisfy $k>j \geq 0$. And let $\varepsilon>0$ be a given constant, then there exists a set $E \subset[0,2 \pi)$ which has linear measure zero, such that if $\varphi \in[0,2 \pi) \backslash E$, there is a constant $R_{1}=R_{1}(\varphi)>1$, such that for all z satisfying $\arg z=\varphi$ and $|z|=r>R_{1}$, we have

$$
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(k-j)(\sigma-1+\varepsilon)}
$$

Lemma 2.2. (see $[5,14])$. Suppose that $P(z)=(\alpha+\beta i) z^{n}+\cdots(\alpha, \beta$ are real numbers, $|\alpha|+|\beta| \neq 0)$ is a polynomial with degree $n \geq 1$, that $A(z)(\not \equiv 0)$ is an entire function with $\sigma(A)<n$. Set $g(z)=A(z) e^{P(z)}, z=r e^{i \theta}, \delta(P, \theta)=\alpha \cos n \theta-\beta \sin n \theta$. Then for any given $\varepsilon>0$, there exists a set $H_{1} \subset[0,2 \pi)$ that has the linear measure zero, such that for any $\theta \in[0,2 \pi) \backslash\left(H_{1} \cup H_{2}\right)$, there is $R>0$ such that for $|z|=r>R$, we have:
(i) If $\delta(P, \theta)>0$, then

$$
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\}<\left|g\left(r e^{i \theta}\right)\right|<\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\}
$$

(ii) If $\delta(P, \theta)<0$, then

$$
\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\}<\left|g\left(r e^{i \theta}\right)\right|<\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\}
$$

where $H_{2}=\{\theta \in[0,2 \pi) ; \delta(P, \theta)=0\}$ is a finite set.
Lemma 2.3. (see [5]). Supposes $\pi(z)$ is the canonical product formed with the zeros $\left\{z_{n}: n=1,2, \ldots,\right\}\left(z_{n} \neq 0\right)$ of an entire function $f(z)$. Set $O_{n}=\left\{z:\left|z-z_{n}\right|<\right.$ $\left.\left|z_{n}\right|^{-\alpha}\right\}(\alpha(>\lambda(f))$ is a constant). Then for any given $\varepsilon>0$,

$$
|\pi(z)| \geq \exp \left\{-|z|^{\lambda(f)+\varepsilon}\right\}
$$

holds for $z \notin \bigcup_{n=1}^{\infty} O_{n}$.
Lemma 2.4. (see [7]). Let $f(z)$ be an entire function of order $\sigma(f)=\alpha<+\infty$. Then for any given $\varepsilon>0$, there is a set $E \subset[1, \infty)$ that has finite linear measure and finite logarithmic measure such that for all z satisfying $|z| \notin[0,1] \cup E$, we have

$$
\exp \left\{-r^{\alpha+\varepsilon}\right\} \leq|f(z)| \leq \exp \left\{r^{\alpha+\varepsilon}\right\}
$$

Lemma 2.5. (see [16]). Let $P_{j}(z)(j=1, \cdots, \iota)$ be polynomials of degree $n \geq 1$,

$$
P_{1}(z)=\zeta z^{n}+B_{1}(z), \quad P_{2}(z)=\rho_{2} \zeta z^{n}+B_{2}(z), \quad \cdots, \quad P_{\iota}(z)=\rho_{\iota} \zeta z^{n}+B_{\iota}(z)
$$

where $\zeta=\alpha+\beta i, \alpha, \beta \in \mathbb{R},|\alpha|+|\beta| \neq 0,0<\rho_{j}<1, j=2, \cdots, \iota, B_{1}(z), \cdots, B_{\iota}(z)$ are polynomials of degree at most $n-1$. Let $Q_{1}(z) \not \equiv 0, Q_{2}(z), \cdots, Q_{l}(z)$ be entire functions of order less than n, then for any given $\varepsilon>0$, there exist a set E with finite linear measure and a constant $\xi(n-1<\xi<n)$ such that

$$
m\left(r, Q_{1} e^{P_{1}}+Q_{2} e^{P_{2}}+\cdots+Q_{\iota} e^{P_{\iota}}\right) \geq(1-\varepsilon) m\left(r, e^{P_{1}}\right)+O\left(r^{\tilde{\xi}}\right), \quad r \rightarrow \infty, \quad(r \notin E) .
$$

Lemma 2.6. (see $[9,17])$. Let $f(z)$ be an entire function and write $f(z)=\pi e^{h}$. Then we have
(i)

$$
\frac{f^{(k)}}{f}=\left(h^{\prime}\right)^{k}+k \frac{\pi^{\prime}}{\pi}\left(h^{\prime}\right)^{k-1}+\frac{k(k-1)}{2}\left(h^{\prime}\right)^{k-2} h^{\prime \prime}+H_{k-2}\left(h^{\prime}\right), \quad(k \geq 2)
$$

where $H_{k-2}\left(h^{\prime}\right)$ is a differential polynomial of degree no more than $k-2$ in h^{\prime}, its coefficients are terms of the type $c\left(\frac{\pi^{\prime}}{\pi}\right)^{s_{1}}\left(\frac{\pi^{\prime \prime}}{\pi}\right)^{s_{2}} \cdots\left(\frac{\pi^{(k)}}{\pi}\right)^{s_{k}}$, where c is a constant, $s_{1}, s_{2}, \cdots, s_{k}$ are non-negative integers.
(ii)

$$
\frac{f^{(k+1)}}{f}-\frac{f^{(k)}}{f} \frac{f^{\prime}}{f}=k\left(h^{\prime}\right)^{k-1} h^{\prime \prime}+H_{k-1}\left(h^{\prime}\right) \quad(k \geq 1)
$$

where $H_{k-1}\left(h^{\prime}\right)$ is a differential polynomial of degree no more than $k-1$ in h^{\prime}, its coefficients are terms of the type $c\left(\frac{\pi^{\prime}}{\pi}\right)^{s_{1}}\left(\frac{\pi^{\prime \prime}}{\pi}\right)^{s_{2}} \cdots\left(\frac{\pi^{(k)}}{\pi}\right)^{s_{k}}\left(\frac{\pi^{(k+1)}}{\pi}\right)^{s_{k+1}}$, where c is a constant, $s_{1}, s_{2}, \cdots, s_{k+1}$ are non-negative integers.

Lemma 2.7. (see [17]). Let $U_{1}(z), h(z), Q_{1}(z), P_{1}(z)$ be entire functions and satisfy $U_{1}=Q_{1} h^{\prime \prime}-\frac{1}{k}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right) h^{\prime}$. Then

$$
Q_{1}^{n-1} h^{(n)}=A_{1, n-2}\left(U_{1}, Q_{1}\right)+B_{n-1}\left(Q_{1}\right) h^{\prime}, \quad(n \geq 2)
$$

where $A_{1, n-2}\left(U_{1}, Q_{1}\right)$ is an algebraic expression in the terms $U_{1}^{(j)}, Q_{1}^{(j)}, P_{1}^{(j)}$ $(j=0,1, \ldots, l)$, such as addition,subtraction and multiplication, where the degree of $U_{1}^{(j)}$ is no more than 1 and the degree of $Q_{1}^{(j)}$ is no more than $l ; B_{d}\left(Q_{1}\right)$ is a differential polynomial of degree no more than d in Q_{1}, its coefficients are algebraic expressions in terms $P_{1}^{(i)}(i=1,2, \ldots, d)$ and $\frac{1}{k}$, such as addition,subtraction and multiplication.

Lemma 2.8. Let $h(z), c_{j}(z)(j=0,1, \ldots, k-1)$ be meromorphic functions and satisfy

$$
c_{k-1}(z)\left(h^{\prime}\right)^{k-1}+c_{k-2}(z)\left(h^{\prime}\right)^{k-2}+\cdots+c_{1}(z) h^{\prime}+c_{0}(z)=0 .
$$

Then we have

$$
m\left(r, h^{\prime}\right) \leq \sum_{j=0}^{k-1} T\left(r, c_{j}(z)\right)+O(1)
$$

Lemma 2.9. Let h is a meromorphic function of finite order, $E_{k-1}\left(h^{\prime}\right)$ is a differential polynomial of degree no more than $k-1$, its coefficients are meromorphic functions $a_{j}(z)(j=0,1, \ldots, k-1)$ satisfying $\sigma\left(a_{j}\right)<n$. Then for sufficiently large r,

$$
m\left(r,\left(h^{\prime}\right)^{k}+E_{k-1}\left(h^{\prime}\right)\right) \leq k m\left(r, h^{\prime}\right)+O\left(r^{\xi}\right)
$$

where $0<\max \left\{\sigma\left(a_{j}\right) \mid j=0,1, \ldots, k-1\right\}<\xi<n$.
Remark 2.1. Lemma 2.8 and 2.9 are immediate consequences of the Valiron-Mohon'ko theorem (see [11]) and/or Clunie technique.

3 Proof of Theorem 1.1(i)

Since $\zeta_{j}=\lambda_{j} \zeta_{2}, \lambda_{j}>0(j=3,4, \ldots, \iota)$, we have $S_{2}^{+}=S_{3}^{+}=\cdots=S_{\iota}^{+}, S_{2}^{-}=S_{3}^{-}=$ $\cdots=S_{\iota}^{-}$. We see that S_{j}^{+}and S_{j}^{-}have n components $S_{j \ell}^{+}$and $S_{j \ell}^{-}$respectively $(j=1,2, \ldots, l ; \ell=1,2, \ldots, n)$. Hence we write

$$
S_{j}^{+}=\bigcup_{\ell=1}^{n} S_{j \ell}^{+} \quad S_{j}^{-}=\bigcup_{\ell=1}^{n} S_{j \ell}^{-} \quad(j=1,2, \ldots, \iota) .
$$

(i) Let $f \not \equiv 0$ be a solution of (3). Suppose that $\lambda(f)<\infty$. Write $f=\pi e^{h}$, where π is the canonical product from the zeros of f, and h is an entire function. From our hypothesis, we have $\sigma(\pi)=\lambda(\pi)<\infty$. From (3), we get

$$
\begin{equation*}
\frac{f^{(k)}}{f}+a_{k-1} \frac{f^{(k-1)}}{f}+\cdots+a_{1} \frac{f^{\prime}}{f}+\psi(z)=0 \tag{4}
\end{equation*}
$$

By Lemma 2.6(i), we get

$$
\begin{equation*}
\left(h^{\prime}\right)^{k}=E_{k-1}\left(h^{\prime}\right)-Q_{1}(z) e^{P_{1}(z)}-Q_{2}(z) e^{P_{2}(z)}-\cdots-Q_{\iota}(z) e^{P_{\iota}(z)}, \tag{5}
\end{equation*}
$$

where $E_{k-1}\left(h^{\prime}\right)$ is a differential polynomial of degree no more than $k-1$ in h^{\prime}, its coefficients are terms of type $c a_{j}^{p}(z)\left(\frac{\pi^{\prime}}{\pi}\right)^{s_{1}}\left(\frac{\pi^{\prime \prime}}{\pi}\right)^{s_{2}} \cdots\left(\frac{\pi^{(k)}}{\pi}\right)^{s_{k}}(j=1,2, \ldots, k-1)$, where c is a constant, $s_{1}, s_{2}, \cdots, s_{k}$ are non-negative integers and p is 0 or 1 .

Eliminating $e^{P_{1}}$ from (4), we have

$$
\begin{gathered}
Q_{1}\left(\frac{f^{(k+1)}}{f}-\frac{f^{(k)}}{f} \frac{f^{\prime}}{f}\right)+a_{k-1} Q_{1}\left(\frac{f^{(k)}}{f}-\frac{f^{(k-1)}}{f} \frac{f^{\prime}}{f}\right)+\cdots+a_{1} Q_{1}\left(\frac{f^{\prime \prime}}{f}-\frac{f^{\prime}}{f} \frac{f^{\prime}}{f}\right) \\
-\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)\left(\frac{f^{(k)}}{f}+a_{k-1} \frac{f^{(k-1)}}{f}+\cdots+a_{1} \frac{f^{\prime}}{f}+\sum_{j=2}^{\iota} Q_{j} e^{P_{j}}\right) \\
+Q_{1}\left[a_{k-1}^{\prime} \frac{f^{(k-1)}}{f}+\cdots+a_{1}^{\prime} \frac{f^{\prime}}{f}\right]+Q_{1} \sum_{j=2}^{\iota}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right) e^{P_{j}}=0 .
\end{gathered}
$$

By Lemma 2.6(ii), we can write this as

$$
\begin{equation*}
k U_{1}\left(h^{\prime}\right)^{k-1}=F_{k-1}^{1}\left(h^{\prime}\right)+\sum_{j=2}^{\iota}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right] e^{P_{j}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{1}=Q_{1} h^{\prime \prime}-\frac{1}{k}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right) h^{\prime} \tag{7}
\end{equation*}
$$

and $F_{k-1}^{1}\left(h^{\prime}\right)$ is a differential polynomial of degree no more than $k-1$ in h^{\prime}, its coefficients are terms of the type $c\left(a_{j}(z)\right)^{p}\left(a_{j}^{\prime}(z)\right)^{q}\left(Q_{1}\right)^{l}\left(Q_{1}^{\prime}\right)^{t}\left(P_{1}^{\prime}\right)^{u}\left(\frac{\pi^{\prime}}{\pi}\right)^{s_{1}}\left(\frac{\pi^{\prime \prime}}{\pi}\right)^{s_{2}} \ldots$
$\left(\frac{\pi^{(k)}}{\pi}\right)^{s_{k}}$, where c is a constant, $s_{1}, s_{2}, \cdots, s_{k}$ are non-negative integers and each of p, q, l, t, u is 0 or 1 . Similarly, eliminating $e^{P_{2}}$ from (4), we obtain

$$
\begin{equation*}
k U_{2}\left(h^{\prime}\right)^{k-1}=F_{k-1}^{2}\left(h^{\prime}\right)+\sum_{j=1, j \neq 2}^{\iota}\left[Q_{j}\left(Q_{2}^{\prime}+Q_{2} P_{2}^{\prime}\right)-Q_{2}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right] e^{P_{j}} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{2}=Q_{2} h^{\prime \prime}-\frac{1}{k}\left(Q_{2}^{\prime}+Q_{2} P_{2}^{\prime}\right) h^{\prime} \tag{9}
\end{equation*}
$$

and $F_{k-1}^{2}\left(h^{\prime}\right)$ is a differential polynomial of degree no more than $k-1$ in h^{\prime}, its coefficients are terms of the type $c\left(a_{j}(z)\right)^{p}\left(a_{j}^{\prime}(z)\right)^{q}\left(Q_{2}\right)^{l}\left(Q_{2}^{\prime}\right)^{t}\left(P_{2}^{\prime}\right)^{u}\left(\frac{\pi^{\prime}}{\pi}\right)^{s_{1}}\left(\frac{\pi^{\prime \prime}}{\pi}\right)^{s_{2}} \ldots$ $\left(\frac{\pi^{(k)}}{\pi}\right)^{s_{k}}$, where c is a constant, $s_{1}, s_{2}, \cdots, s_{k}$ are non-negative integers and each of p, q, l, t, u is 0 or 1 .

From the assumptions of Theorem 1.1, there exists three positive real numbers $\xi_{1}, \xi_{2}, \xi_{3}$ such that $\max \left\{\sigma\left(Q_{j}\right), \sigma\left(a_{\Lambda}\right), j=1,2, \ldots, \iota ; \Lambda=1,2, \ldots, k-1\right\}<\xi_{1}<$ $\xi_{2}<\xi_{3}<n$, from Lemma 2.4 we get

$$
\left|Q_{j}\left(r e^{i \theta}\right)\right| \leq \exp \left(r^{\xi_{1}}\right),(j=1,2, \ldots, \iota) ; \quad\left|a_{\Lambda}\left(r e^{i \theta}\right)\right| \leq \exp \left(r^{\xi_{1}}\right),(\Lambda=1,2, \ldots, k-1)
$$

for sufficiently large r and for any $\theta \in[0,2 \pi)$. Applying the Clunie Lemma [9, Lemma 3.3] to (5), for any given $\varepsilon>0$,

$$
\begin{aligned}
T\left(r, h^{\prime}\right)=m\left(r, h^{\prime}\right) \leq & m\left(r, Q_{1} e^{P_{1}}+Q_{2} e^{P_{2}}+\cdots+Q_{\iota} e^{P_{\iota}}\right) \\
& +O\left(\sum_{j=1}^{k} m\left(r, \frac{\pi^{(j)}}{\pi}\right)+\sum_{\Lambda=1}^{k-1} m\left(r, a_{\Lambda}\right)\right)+S\left(r, h^{\prime}\right) \\
\leq & O\left(r^{n+\varepsilon}\right)+S\left(r, h^{\prime}\right)
\end{aligned}
$$

which implies $\sigma\left(h^{\prime}\right) \leq n$. It follows from (7) and (9) that $\sigma\left(U_{1}\right) \leq n$ and $\sigma\left(U_{2}\right) \leq$ n respectively.

In the following, we will show that there exists a set $E_{0} \subset[0,2 \pi), m\left(E_{0}\right)=0$ such that if $\theta \in S_{2}^{-} \backslash E_{0}$, then

$$
\begin{equation*}
\left|U_{1}\left(r e^{i \theta}\right)\right| \leq O\left(\exp \left\{r^{\xi_{2}^{2}}\right\}\right), \quad r \rightarrow \infty \tag{10}
\end{equation*}
$$

If $\left|h^{\prime}\left(r e^{i \theta}\right)\right| \leq 1$, from Lemmas 2.1,2.2 and 2.4 and (7), we have

$$
\begin{align*}
\left|U_{1}\left(r e^{i \theta}\right)\right| & \leq \frac{\left|h^{\prime \prime}\left(r e^{i \theta}\right)\right|}{\left|h^{\prime}\left(r e^{i \theta}\right)\right|}\left|Q_{1}\left(r e^{i \theta}\right)\right|+\frac{1}{k}\left|P_{1}^{\prime}\left(r e^{i \theta}\right)\right|\left|Q_{1}\left(r e^{i \theta}\right)\right|+\frac{1}{k} \frac{\left|Q_{1}^{\prime}\left(r e^{i \theta}\right)\right|}{\left|Q_{1}\left(r e^{i \theta}\right)\right|}\left|Q_{1}\left(r e^{i \theta}\right)\right| \tag{11}\\
& \leq O\left(\exp \left\{r^{\xi_{2}}\right\}\right), \quad r \rightarrow \infty
\end{align*}
$$

If $\left|h^{\prime}\left(r e^{i \theta}\right)\right| \geq 1$. Since $F_{k-1}^{1}\left(h^{\prime}\right)$ is the sum of a finite number of terms of the type

$$
\begin{aligned}
H(z)= & c\left(a_{j}(z)\right)^{p}\left(a_{j}^{\prime}(z)\right)^{q}\left(Q_{1}\right)^{l}\left(Q_{1}^{\prime}\right)^{t}\left(P_{1}^{\prime}\right)^{u}\left(\frac{\pi^{\prime}}{\pi}\right)^{s_{1}}\left(\frac{\pi^{\prime \prime}}{\pi}\right)^{s_{2}} \cdots\left(\frac{\pi^{(k)}}{\pi}\right)^{s_{k}} \\
& \times\left(h^{\prime}\right)^{l_{0}}\left(h^{\prime \prime}\right)^{l_{1}} \cdots\left(h^{(v)}\right)^{l_{v-1}},
\end{aligned}
$$

where $l_{0}, l_{1}, \cdots, l_{v-1}$ are non-negative integers and $l_{0}+l_{1}+\cdots+l_{v-1} \leq k-1$, from Lemma 2.1 we can get

$$
\begin{align*}
\frac{\left|H\left(r e^{i \theta}\right)\right|}{\left|h^{\prime}\left(r e^{i \theta}\right)\right|^{k-1} \leq} & |c|\left|a_{j}\left(r e^{i \theta}\right)\right|^{p}\left|a_{j}^{\prime}\left(r e^{i \theta}\right)\right|^{q}\left|Q_{1}\left(r e^{i \theta}\right)\right|^{l}\left|Q_{1}^{\prime}\left(r e^{i \theta}\right)\right|^{t}\left|P_{1}^{\prime}\left(r e^{i \theta}\right)\right|^{u} \tag{12}\\
& \times\left|\frac{\pi^{\prime}\left(r e^{i \theta}\right)}{\pi\left(r e^{i \theta}\right)}\right|^{s_{1}} \cdots\left|\frac{\pi^{(k)}\left(r e^{i \theta}\right)}{\pi\left(r e^{i \theta}\right)}\right|^{s_{k}} \frac{\left|h^{\prime \prime}\left(r e^{i \theta}\right)\right|^{l_{1}}}{\left|h^{\prime}\left(r e^{i \theta}\right)\right|} \cdots \frac{\left|h^{(v)}\left(r e^{i \theta}\right)\right|^{l_{v-1}}}{\left|h^{\prime}\left(r e^{i \theta}\right)\right|} \\
\leq & O\left(\exp \left\{r^{\xi_{2}}\right\}\right) .
\end{align*}
$$

Thus

$$
\begin{equation*}
\frac{\left|F_{k-1}^{1}\left(r e^{i \theta}\right)\right|}{\left|h^{\prime}\left(r e^{i \theta}\right)\right|^{k-1}} \leq O\left(\exp \left\{r^{\xi_{2}}\right\}\right) \tag{13}
\end{equation*}
$$

From (6),(13) and Lemma 2.2, we get

$$
\begin{align*}
k\left|U_{1}\left(r e^{i \theta}\right)\right| \leq & \left.\frac{\left|F_{k-1}^{1}\left(r e^{i \theta}\right)\right|}{\left|h^{\prime}\left(r e^{i \theta}\right)\right|^{k-1}}+\sum_{j=2}^{\iota}\left|e^{P_{j}\left(r e^{i \theta}\right)}\right| \right\rvert\,\left(Q_{1}^{\prime}\left(r e^{i \theta}\right)+Q_{1}\left(r e^{i \theta}\right) P_{1}^{\prime}\left(r e^{i \theta}\right)\right) \tag{14}\\
& \times Q_{j}\left(r e^{i \theta}\right)-Q_{1}\left(r e^{i \theta}\right)\left(\left(Q_{j}^{\prime}\left(r e^{i \theta}\right)+Q_{j}\left(r e^{i \theta}\right) P_{j}^{\prime}\left(r e^{i \theta}\right)\right) \mid\right. \\
\leq & O\left(\exp \left\{r^{\xi 2}\right\}\right), \quad r \rightarrow \infty .
\end{align*}
$$

From (11) and (14), we obtain (10).
We note that there exist $\bar{\theta}_{j}(j=1,2, \ldots, \iota)$ satisfying $\delta_{j}(\theta)=0$ on the rays $\arg z=\bar{\theta}_{j}+\frac{\gamma \pi}{n}$, where $\gamma=0, \ldots, 2 n-1$, which form $2 n$ sectors of opening $\frac{\pi}{n}$ respectively, thus we may assume that $\bar{\theta}_{j} \in\left[0, \frac{\pi}{n}\right)$. Since $\zeta_{j}=\lambda_{j} \zeta_{2}, \lambda_{j}>0$ $(j=3,4, \ldots, l)$, we have $\bar{\theta}_{j}=\bar{\theta}_{2}(j=3,4, \ldots, \iota)$. Write $\bar{\theta}_{j \gamma}=\bar{\theta}_{j}+\frac{\gamma \pi}{n}, j=$ 1,2 , if there are some integers γ_{1} and γ_{2} such that $\bar{\theta}_{1 \gamma_{1}}=\bar{\theta}_{2 \gamma_{2}}$, then $\bar{\theta}_{1}-\bar{\theta}_{2}+$ $\left(\gamma_{1}-\gamma_{2}\right) \frac{\pi}{n}=0$, we have that $\tan n \bar{\theta}_{j}=\frac{\alpha_{j}}{\beta_{j}}, j=1,2$. This gives

$$
0=\tan \left(n \bar{\theta}_{1}-n \bar{\theta}_{2}+\left(\gamma_{1}-\gamma_{2}\right) \pi\right)=\frac{\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}}{\alpha_{1} \alpha_{2}+\beta_{1} \beta_{2}} .
$$

This contradicts the assumption that $\frac{\zeta_{1}}{\zeta_{2}}$ is non-real. Hence we see that each component of S_{1}^{+}and S_{2}^{+}contains a component of $S_{1}^{+} \cap S_{2}^{+}$. The boundaries of the components of $S_{1}^{+} \cap S_{2}^{+}$are some of the rays $\arg z=\bar{\theta}_{j \gamma}$, we fix a component of $S_{1}^{+} \cap S_{2}^{+}$, say S^{*}. We may write

$$
S^{*}=\left\{\theta \in S_{1}^{+} \cap S_{2}^{+}: \theta_{1}^{*}<\theta<\theta_{2}^{*}, \delta_{1}\left(\theta_{1}^{*}\right)=\delta_{2}\left(\theta_{2}^{*}\right)=0\right\}
$$

or

$$
S^{*}=\left\{\theta \in S_{1}^{+} \cap S_{2}^{+}: \theta_{2}^{*}<\theta<\theta_{1}^{*}, \delta_{1}\left(\theta_{1}^{*}\right)=\delta_{2}\left(\theta_{2}^{*}\right)=0\right\} .
$$

We define

$$
D_{12}=\left\{\theta \in S_{1}^{+} \cap S_{2}^{+}: \delta_{1}(\theta)>\frac{k(\lambda+1)}{k-1} \delta_{2}(\theta)\right\}
$$

$$
D_{21}=\left\{\theta \in S_{1}^{+} \cap S_{2}^{+}: \delta_{2}(\theta)>\frac{\lambda+1}{\lambda} \delta_{1}(\theta)\right\},
$$

where $\lambda=\max \left\{\lambda_{j}: j=3,4, \ldots, \iota\right\}<\frac{1}{k}$. Since every component of S_{1}^{+}and S_{2}^{+} is a sector of opening $\frac{\pi}{n}$, the rays $\arg z=\theta_{1}^{*}$ and $\arg z=\theta_{2}^{*}$ are contained in S_{2}^{+} and S_{1}^{+}respectively. We treat the first case, the proof of the second case can be obtained similarly. Hence there exist $\eta_{1}>0, \eta_{2}>0$ such that

$$
\left\{\theta: \theta_{1}^{*}<\theta<\theta_{1}^{*}+\eta_{1}\right\} \subset D_{21}, \quad\left\{\theta: \theta_{2}^{*}-\eta_{2}<\theta<\theta_{2}^{*}\right\} \subset D_{12}
$$

Hence there exists a $\theta \in\left(S_{2 k}^{+} \cap D_{12}\right) \backslash E_{0}$ for any $k=1,2, \ldots, n$. Set $0<\frac{k(\lambda+1)}{k-1} \delta_{2}<$ $\sigma_{2}<\sigma_{1}<\delta_{1}, 0<\varepsilon_{1}<1-\frac{\sigma_{1}}{\delta_{1}}, 0<\varepsilon_{2}<\frac{(k-1) \sigma_{2}}{k \delta_{2}}-1, \ldots, 0<\varepsilon_{\iota}<\frac{(k-1) \sigma_{2}}{k \lambda_{l} \delta_{2}}-1$. By Lemma 2.2, we have

$$
\begin{align*}
& \left|Q_{1} e^{P_{1}\left(r e^{i \theta}\right)}+Q_{2} e^{P_{2}\left(r e^{i \theta}\right)}+\cdots+Q_{l} e^{P_{l}\left(r e^{i \theta}\right)}\right| \tag{15}\\
& \quad \geq\left|Q_{1} e^{P_{1}\left(r e^{i \theta}\right)}\right|\left|1-\left|\frac{Q_{2}}{Q_{1}} e^{P_{2}\left(r e^{i \theta}\right)-P_{1}\left(r e^{i \theta}\right)}\right|-\cdots-\left|\frac{Q_{l}}{Q_{1}} e^{P_{l}\left(r e^{i \theta}\right)-P_{1}\left(r e^{i \theta}\right)}\right|\right| \\
& \quad \geq \exp \left\{\left(1-\varepsilon_{1}\right) \delta_{1} r^{n}\right\}(1-o(1)) \\
& \quad \geq \exp \left\{\sigma_{1} r^{n}\right\}(1-o(1)), \quad r \rightarrow \infty .
\end{align*}
$$

We assume that there exists an unbounded sequence $\left\{r_{\kappa}\right\}_{\kappa=1}^{\infty}$ such that $0<$ $\left|h^{\prime}\left(r_{\kappa} e^{i \theta}\right)\right| \leq 1$. From (5) and (15) and Lemma 2.1, we get

$$
\begin{aligned}
\exp \left\{\sigma_{1} r_{\kappa}^{n}\right\}(1-o(1)) \leq & \left|h^{\prime}\left(r_{\kappa} e^{i \theta}\right)\right|^{k}+\left|E_{k-1}\left(h^{\prime}\left(r_{\kappa} e^{i \theta}\right)\right)\right| \\
\leq & 1+\sum|\mathcal{c}|\left|a_{\Lambda}\left(r_{\kappa} e^{i \theta}\right)\right|^{p}\left|\frac{\pi^{\prime}\left(r_{\kappa} e^{i \theta}\right)}{\pi\left(r_{\kappa} e^{i \theta}\right)}\right|^{s_{1}} \cdots\left|\frac{\pi^{(k)}\left(r_{\kappa} e^{i \theta}\right)}{\pi\left(r_{\kappa} e^{i \theta}\right)}\right|^{s_{k}} \\
& \times\left|h^{\prime}\left(r_{\kappa} e^{i \theta}\right)\right|^{l_{0}} \cdots\left|h^{(v)}\left(r_{\kappa} e^{i \theta}\right)\right|^{l_{v-1}} \\
\leq & 1+\sum|\mathcal{c}|\left|a_{\Lambda}\left(r_{\kappa} e^{i \theta}\right)\right|^{p}\left|\frac{\pi^{\prime}\left(r_{\kappa} e^{i \theta}\right)}{\pi\left(r_{\kappa} e^{i \theta}\right)}\right|^{s_{1}} \cdots\left|\frac{\pi^{(k)}\left(r_{\kappa} e^{i \theta}\right)}{\pi\left(r_{\kappa} e^{i \theta}\right)}\right|^{s_{k}} \\
& \times\left|\frac{h^{\prime \prime}\left(r_{\kappa} e^{i \theta}\right)}{h^{\prime}\left(r_{\kappa} e^{i \theta}\right)}\right|^{l_{1}} \cdots\left|\frac{h^{(v)}\left(r_{\kappa} e^{i \theta}\right)}{h^{\prime}\left(r_{\kappa} e^{i \theta}\right)}\right|^{l_{v-1}} \\
\leq & O\left(\exp \left\{r_{\kappa}^{\xi_{2}}\right\}\right), \quad(\kappa \rightarrow \infty),
\end{aligned}
$$

which is not true. Hence we may assume that $\left|h^{\prime}\left(r e^{i \theta}\right)\right| \geq 1$ for all r sufficiently large. From (5),(15) and Lemma 2.2, we get

$$
\begin{aligned}
\exp \left\{\sigma_{1} r^{n}\right\}(1-o(1)) \leq & \left|h^{\prime}\left(r e^{i \theta}\right)\right|^{k}+\left|E_{k-1}\left(h^{\prime}\left(r e^{i \theta}\right)\right)\right| \\
\leq & \left|h^{\prime}\left(r e^{i \theta}\right)\right|^{k}\left[1+\sum|c|\left|a_{\Lambda}\left(r e^{i \theta}\right)\right|^{p}\left|\frac{\pi^{\prime}\left(r e^{i \theta}\right)}{\pi\left(r e^{i \theta}\right)}\right|^{s_{1}} \cdots\left|\frac{\pi^{(k)}\left(r e^{i \theta}\right)}{\pi\left(r e^{i \theta}\right)}\right|^{s_{k}}\right. \\
& \left.\times\left|\frac{h^{\prime \prime}\left(r e^{i \theta}\right)}{h^{\prime}\left(r e^{i \theta}\right)}\right|^{l_{1}} \cdots\left|\frac{h^{(v)}\left(r e^{i \theta}\right)}{h^{\prime}\left(r e^{i \theta}\right)}\right|^{l_{v-1}}\right] \\
\leq & \left|h^{\prime}\left(r e^{i \theta}\right)\right|^{k}\left(1+O\left(\exp \left\{r^{\xi 2}\right\}\right)\right), \quad(r \rightarrow \infty),
\end{aligned}
$$

i.e.

$$
\left|h^{\prime}\left(r e^{i \theta}\right)\right|^{k} \geq \frac{1-o(1)}{1+O\left(\exp \left\{r r^{\xi} 2\right\}\right)} \exp \left\{\sigma_{1} r^{n}\right\}, \quad(r \rightarrow \infty)
$$

Then we obtain for all r large enough

$$
\begin{equation*}
\left|h^{\prime}\left(r e^{i \theta}\right)\right| \geq \exp \left\{\frac{1}{k} \sigma_{2} r^{n}\right\} . \tag{16}
\end{equation*}
$$

From Lemma 2.1,(6) and (16), we get

$$
\begin{align*}
k\left|U_{1}\left(r e^{i \theta}\right)\right| \leq & \frac{\left|F_{k-1}^{1}\left(r e^{i \theta}\right)\right|}{\left|h^{\prime}\left(r e^{i \theta}\right)\right|^{k-1}}+\sum_{j=2}^{\iota} \frac{\left.\mid e^{P_{j}\left(r e^{i \theta}\right.}\right) \mid}{\left|h^{\prime}\left(r e^{i \theta}\right)\right| k-1} \tag{17}\\
& \times\left[\left|Q_{j}\left(r e^{i \theta}\right)\right|\left(\frac{\left|Q_{1}^{\prime}\left(r e^{i \theta}\right)\right|}{\left|Q_{1}\left(r e^{i \theta}\right)\right|}\left|Q_{1}\left(r e^{i \theta}\right)\right|+\left|Q_{1}\left(r e^{i \theta}\right)\right| \cdot\left|P_{1}^{\prime}\left(r e^{i \theta}\right)\right|\right)\right. \\
& \left.+\left|Q_{1}\left(r e^{i \theta}\right)\right| \times\left(\frac{\left|Q_{j}^{\prime}\left(r e^{i \theta}\right)\right|}{\left|Q_{j}\left(r e^{i \theta}\right)\right|}\left|Q_{j}\left(r e^{i \theta}\right)\right|+\left|Q_{j}\left(r e^{i \theta}\right)\right|\left|P_{j}^{\prime}\left(r e^{i \theta}\right)\right|\right)\right] \\
\leq & O\left(\exp \left\{r^{\xi 2}\right\}\right)+(1+o(1)) \exp \left\{\left(\delta_{2}\left(1+\varepsilon_{2}\right)-\frac{(k-1) \sigma_{2}}{k}\right) r^{n}\right\} \\
& +\cdots+(1+o(1)) \exp \left\{\left(\lambda_{l} \delta_{2}\left(1+\varepsilon_{l}\right)-\frac{(k-1) \sigma_{2}}{k}\right) r^{n}\right\}, \quad(r \rightarrow \infty) .
\end{align*}
$$

Since $\delta_{2}\left(1+\varepsilon_{2}\right)-\frac{(k-1) \sigma_{2}}{k}<0, \ldots, \lambda_{l} \delta_{2}\left(1+\varepsilon_{l}\right)-\frac{(k-1) \sigma_{2}}{k}<0$, it gives that for all sufficiently large r,

$$
\begin{equation*}
\left|U_{1}\left(r e^{i \theta}\right)\right| \leq O\left(\exp \left\{r^{\xi_{2}}\right\}\right) \tag{18}
\end{equation*}
$$

Now we fix a $\Phi\left(=\Phi_{2 k}\right) \in\left(S_{2 k}^{+} \cap D_{12}\right) \backslash E_{0}, k=1,2, \ldots, n$. Then we find $\Phi_{1}, \Phi_{2} \in$ $S_{2}^{-} \backslash E_{0}, \Phi_{1}<\Phi<\Phi_{2}$ such that $\Phi-\Phi_{1}<\frac{\pi}{n}, \Phi_{2}-\Phi<\frac{\pi}{n}$. We first prove that for any $\theta, \Phi_{1} \leq \theta \leq \Phi$, we have

$$
\begin{equation*}
\left|U_{1}\left(r e^{i \theta}\right)\right| \leq O\left(\exp \left\{r^{\xi_{3}}\right\}\right), \quad(r \rightarrow \infty) \tag{19}
\end{equation*}
$$

Write $\Phi-\Phi_{1}=\frac{\pi}{n+\tau_{1}}, \tau_{1}>0$, since $\sigma\left(U_{1}\right) \leq n$, we have that $\left|U_{1}\left(r e^{i \theta}\right)\right| \leq$ $e^{r^{n+\tau_{2}}}, 0<\tau_{2}<\tau_{1}$ for sufficiently large r. Set $g(z)=U_{1}(z) / \exp \left(\left(z e^{-\frac{\Phi+\Phi_{1}}{2}}\right)^{\xi_{3}}\right)$, then $g(z)$ is regular in the region $\left\{z: \Phi_{1} \leq \arg z \leq \Phi\right\}$. Since $\Phi_{1} \leq \arg z=\theta \leq$ $\Phi, \Phi-\Phi_{1}<\frac{\pi}{n}$, we infer that $\cos \left(\arg \left(\left(z e^{-\frac{\Phi+\Phi_{1}}{2}}\right)^{\xi_{3}}\right) \geq K\right.$ for some $K>0$. In fact,

$$
-\frac{\pi}{2}<-\frac{\pi \xi_{3}}{2 n} \leq-\xi_{3} \frac{\Phi-\Phi_{1}}{2} \leq \arg \left(\left(z e^{-\frac{\Phi+\Phi_{1}}{2}}\right)^{\xi_{3}}\right) \leq \xi_{3} \frac{\Phi-\Phi_{1}}{2} \leq \frac{\pi \xi_{3}}{2 n}<\frac{\pi}{2}
$$

Hence for $\Phi_{1}<\theta<\Phi$,

$$
\left|g\left(r e^{i \theta}\right)\right| \leq\left|\frac{U_{1}\left(r e^{i \theta}\right)}{\exp \left\{K r r_{3}\right\}}\right| \leq O\left(\exp \left\{r^{n+\tau_{2}}\right\}\right), \quad(r \rightarrow \infty)
$$

It follows from (10) and (18) that for some $M>0$, as $r \rightarrow \infty$

$$
\left|g\left(r e^{i \Phi_{1}}\right)\right| \leq \frac{O\left(e^{r^{\xi_{2}}}\right)}{\exp \left\{K r^{\xi_{3}}\right\}} \leq M
$$

and

$$
\left|g\left(r e^{i \Phi}\right)\right| \leq \frac{O\left(e^{r^{\xi_{2}}}\right)}{\exp \left\{K r^{\xi_{3}}\right\}} \leq M
$$

By the Phragmen-Lindelöf theorem, we obtain (19). Similarly we see that (19) holds for $\Phi<\theta<\Phi_{2}$. Hence we conclude that (19) holds for any $\theta \in[0,2 \pi)$.

By a similar proof as before we can prove that for any $\theta \in[0,2 \pi)$

$$
\begin{equation*}
\left|U_{2}\left(r e^{i \theta}\right)\right| \leq O\left(\exp \left\{r^{\xi_{3}}\right\}\right), \quad(r \rightarrow \infty) \tag{20}
\end{equation*}
$$

By (7) and (9), we have

$$
\begin{equation*}
Q_{2} U_{1}-Q_{1} U_{2}=\frac{1}{k} h^{\prime}\left[Q_{1}\left(Q_{2}^{\prime}+Q_{2} P_{2}^{\prime}\right)-Q_{2}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)\right] \tag{21}
\end{equation*}
$$

Since $\sigma\left(Q_{j}\right)<\xi_{2}<\xi_{3}(j=1,2,3)$, by (5),(10),(20), (21) and Lemma 2.9, we have

$$
\begin{align*}
m\left(r, Q_{1} e^{P_{1}(z)}\right. & \left.+Q_{2} e^{P_{2}(z)}+\cdots+Q_{l} e^{P_{l}(z)}\right) \tag{22}\\
& \leq k m\left(r, h^{\prime}\right)+O(\log r) \leq k m\left(r, Q_{2} U_{1}-Q_{1} U_{2}\right)+O\left(r^{\xi_{2}}\right) \\
& \leq O\left(r^{\xi_{3}}\right), \quad(r \rightarrow \infty)
\end{align*}
$$

Since $\frac{\zeta_{1}}{\zeta_{2}}$ is non-real, $S_{1}^{+} \cap S_{2}^{-}$contains an interval $I=\left[\varphi_{1}, \varphi_{2}\right]$ satisfying $\min _{\theta \in I} \delta_{1}(\theta)=\chi>0$. By Lemma 2.2, there exists an $R(I)(>0)$ such that for any $\theta \in I$ and $r \geq R(I)$,

$$
\left|Q_{1} e^{P_{1}\left(r e^{i \theta}\right)}\right| \geq \exp \left((1-\varepsilon) \delta_{1} r^{n}\right), \quad\left|Q_{2} e^{P_{2}\left(r e^{i \theta}\right)}\right| \leq \exp \left((1-\varepsilon) \delta_{2} r^{n}\right), \quad \ldots,
$$

and

$$
\left|Q_{l} e^{P_{l}\left(r e^{i \theta}\right)}\right| \leq \exp \left((1-\varepsilon) \lambda_{l} \delta_{2} r^{n}\right) .
$$

Hence, we have

$$
\begin{align*}
m\left(r, Q_{1} e^{P_{1}(z)}\right. & \left.+Q_{2} e^{P_{2}(z)}+\cdots+Q_{l} e^{P_{l}(z)}\right) \tag{23}\\
& \geq \int_{\varphi_{1}}^{\varphi_{2}} \log ^{+}\left|Q_{1} e^{P_{1}(z)}+Q_{2} e^{P_{2}(z)}+\cdots+Q_{l} e^{P_{l}(z)}\right| d \theta \\
& \geq \int_{\varphi_{1}}^{\varphi_{2}}(1-o(1)) \log ^{+}\left|Q_{1} e^{P_{1}(z)}\right| d \theta \\
& \geq \int_{\varphi_{1}}^{\varphi_{2}}(1-o(1))(1-\varepsilon) s r^{n} d \theta \\
& \geq(1-o(1))(1-\varepsilon) s r^{n}\left(\varphi_{2}-\varphi_{1}\right), \quad(r \rightarrow \infty)
\end{align*}
$$

Combining (22) and (23) and recalling that $\xi_{3}<n$, we get a contradiction. Hence, $\lambda(f)=\infty$.

4 Proof of Theorem 1.1(ii)

Let $f \not \equiv 0$ be a solution of (3). Write $f=\pi e^{h}$, suppose that $\lambda(f)<n$. From our hypothesis, we have $\sigma(\pi)=\lambda(\pi)<n$. Eliminating $e^{P_{1}}$ from (5), we have

$$
\begin{equation*}
k U\left(h^{\prime}\right)^{k-1}=F_{k-1}\left(h^{\prime}\right)+\sum_{j=2}^{\iota} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right] \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
U=Q_{1} h^{\prime \prime}-\frac{1}{k}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right) h^{\prime} \tag{25}
\end{equation*}
$$

From (24), (25) and Lemma 2.7, we have

$$
\begin{align*}
& c_{k-1}(z)\left(h^{\prime}\right)^{k-1}+c_{k-2}\left(h^{\prime}\right)^{k-2}+\cdots+c_{1}(z) h^{\prime} \tag{26}\\
& \quad=c_{0}(z)+\sum_{j=2}^{l} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right]
\end{align*}
$$

where $c_{j}(z)(j=0,1,2, \ldots, k-1)$ is an algebraic expression in the terms $U^{(l)}$ $(l=0,1, \ldots, k-2), Q_{1}^{(i)}(i=0,1 \ldots, k-1), P_{1}^{(s)}(s=0,1, \ldots, l-1), \frac{1}{k}, \frac{1}{Q_{1}}, \frac{\pi^{(t)}}{\pi}$ $(t=1,2, \ldots, k)$ and $a_{j}, a_{j}^{\prime}(j=1,2, \ldots, k-1)$, such as addition, subtraction and multiplication.

Now we suppose that at least one of $c_{j}(z)(j=1,2, \ldots, k-1)$ is not identically vanishing and $c_{0}(z)+\sum_{j=2}^{l} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right] \not \equiv 0$. Without loss of generality, suppose $c_{k-1}(z) \not \equiv 0$, from (26) and Lemma 2.8, we have

$$
\begin{align*}
T\left(r, h^{\prime}\right)=m\left(r, h^{\prime}\right) \leq & \sum_{i=0}^{k-1} T\left(r, c_{i}(z)\right)+m\left(r, \sum_{j=2}^{\iota} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)\right.\right. \tag{27}\\
& \left.\left.-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right]\right)+O(1)
\end{align*}
$$

Set $\max \left\{\lambda(f), \sigma\left(Q_{j}\right):(j=1,2, \ldots, l)\right\}<\xi_{2}<\xi_{3}<n$. From (5), we obtain

$$
\begin{equation*}
T\left(r, Q_{1} e^{P_{1}(z)}+Q_{2} e^{P_{2}(z)}+\cdots+Q_{l} e^{P_{l}(z)}\right) \leq k T\left(r, h^{\prime}\right)+O(\log r) \tag{28}
\end{equation*}
$$

By Lemma 2.5, we have

$$
\begin{align*}
m\left(r, Q_{1} e^{P_{1}(z)}\right. & \left.+Q_{2} e^{P_{2}(z)}+\cdots+Q_{l} e^{P_{l}(z)}\right) \tag{29}\\
& \geq(1-\varepsilon) m\left(r, e^{P_{1}}\right)+O\left(r^{\xi_{3}}\right), \quad(r \rightarrow \infty, r \notin E)
\end{align*}
$$

where E has finite linear measure. From (28) and (29), we obtain

$$
\begin{equation*}
T\left(r, h^{\prime}\right) \geq \frac{1-\varepsilon}{k} T\left(r, e^{P_{1}}\right)+O\left(r^{\Sigma_{3}}\right), \quad(r \rightarrow \infty, r \notin E) . \tag{30}
\end{equation*}
$$

Since $0<\rho=\frac{\zeta_{2}}{\zeta_{1}}<\frac{1}{2 k}, \zeta_{j}=\lambda_{j} \zeta_{2}, \lambda_{j}>0$ and $0<\sum_{j=3}^{l} \lambda<1$, we get $\delta\left(P_{2}, \theta\right)=\rho \delta\left(P_{1}, \theta\right)$, and

$$
S_{1 m}^{+}=S_{2 m}^{+}=\cdots=S_{l m}^{+}, \quad S_{1 m}^{-}=S_{2 m}^{-}=\cdots=S_{\iota m}^{-}, \quad(m=1, \ldots, n)
$$

By the same reasoning as in (11) and (14), we have

$$
\begin{equation*}
\left|U\left(r e^{i \theta}\right)\right| \leq O\left(\exp \left\{r^{\xi_{2}^{2}}\right\}\right), \quad(r \rightarrow \infty) \tag{31}
\end{equation*}
$$

for any $\theta \in S_{1}^{-} \backslash E_{0}, m\left(E_{0}\right)=0$. Also by the same reasoning as in (15)-(18), we have

$$
\begin{equation*}
\left|U\left(r e^{i \theta}\right)\right| \leq O\left(\exp \left\{r^{\xi ँ}\right\}\right), \quad(r \rightarrow \infty) \tag{32}
\end{equation*}
$$

for any $\theta \in S_{1}^{+} \backslash E_{0}, m\left(E_{0}\right)=0$. Since $\sigma(U) \leq n$, by the Phragmen-Lindelöf theorem, we have

$$
\begin{equation*}
\left|U\left(r e^{i \theta}\right)\right| \leq O\left(\exp \left\{r^{\xi_{3}}\right\}\right), \quad(r \rightarrow \infty) \tag{33}
\end{equation*}
$$

for any $\theta \in[0,2 \pi)$.
We will estimate $T\left(r, c_{j}\right)$ as follows.
By our hypothesis $f=\pi e^{h}, \lambda(f)<\xi_{3}<n$, from Lemma 2.3 we have $\bar{N}\left(r, \frac{1}{\pi}\right) \leq$ $O\left(r^{\xi_{3}}\right)$. Thus, from (33), the assumptions of Theorem 1.1, the forms of $c_{j}(z)$ and the theorem on the logarithmic derivatives, we have

$$
\begin{align*}
T\left(r, c_{j}\right) \leq & O\left(\sum_{i=0}^{k-1} T\left(r, Q_{1}^{(i)}\right)+\sum_{\Lambda=0}^{k-1} m\left(r, a_{\Lambda}\right)+\sum_{\Lambda=0}^{k-1} m\left(r, a_{\Lambda}^{\prime}\right)+\sum_{s=0}^{k-1} m\left(r, P_{1}^{(s)}\right)\right. \tag{34}\\
& \left.+\sum_{t=1}^{k-2} m\left(r, \frac{U^{(t)}}{U}\right)+m(r, U)+\bar{N}\left(r, \frac{1}{\pi}\right)+O(\log r)\right) \\
\leq & O\left(r^{\xi_{3}}\right), \quad r \rightarrow \infty, \quad j=0,1, \ldots, k-1,
\end{align*}
$$

and

$$
\begin{align*}
& T\left(r, \sum_{j=2}^{\iota} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right]\right) \tag{35}\\
& \quad \leq O\left(r^{\xi_{3}}\right)+T\left(r, e^{P_{2}}\right)+T\left(r, e^{P_{3}}\right)+\cdots+T\left(r, e^{P_{\iota}}\right) \\
& \quad=\left(1+\sum_{j=3}^{\iota} \lambda_{j}\right) T\left(r, e^{P_{2}}\right)+O\left(r^{\xi_{3}}\right) \\
& \quad \leq\left(1+\sum_{j=3}^{\iota} \lambda_{j}\right) \rho T\left(r, e^{P_{1}}\right)+O\left(r^{\xi_{3}}\right), \quad r \rightarrow \infty .
\end{align*}
$$

From (27),(30),(34) and (35), we get

$$
\begin{align*}
\frac{1-\varepsilon}{k} T\left(r, e^{P_{1}}\right) & +O\left(r^{\xi_{3}}\right) \leq T\left(r, h^{\prime}\right) \tag{36}\\
& \leq\left(1+\sum_{j=3}^{\iota} \lambda_{j}\right) \rho T\left(r, e^{P_{1}}\right)+O\left(r^{\xi_{3}}\right), \quad r \rightarrow \infty, r \notin E .
\end{align*}
$$

Thus, (36) implies

$$
\begin{equation*}
\left(\frac{1-\varepsilon}{k}-\left(1+\sum_{j=3}^{\iota} \lambda_{j}\right) \rho-o(1)\right) T\left(r, e^{P_{1}}\right) \leq 0, \quad r \rightarrow \infty, r \notin E . \tag{37}
\end{equation*}
$$

From $0<\rho=\frac{\zeta_{2}}{\zeta_{1}}<\frac{1}{2 k}, 0<\sum_{j=3}^{l} \lambda_{j}<1$ and (37), we get a contradiction. Hence $c_{k-1}=\cdots=c_{1}=c_{0}+\sum_{j=2}^{l} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right] \equiv 0$, that is,

$$
\begin{equation*}
-c_{0}(z)=\sum_{j=2}^{\iota} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right] \tag{38}
\end{equation*}
$$

First, we show that $Q_{2}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{2}^{\prime}+Q_{2} P_{2}^{\prime}\right) \not \equiv 0$ as follows. If $Q_{2}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{2}^{\prime}+Q_{2} P_{2}^{\prime}\right) \equiv 0$, that is, $P_{1}^{\prime}-P_{2}^{\prime}=\frac{Q_{1}^{\prime}}{Q_{1}}-\frac{Q_{2}^{\prime}}{Q_{2}}$. By solving this differential equation, we get $Q_{1}=\varsigma Q_{2} e^{P_{1}-P_{2}}$, where ς is a non-zero constant. Thus, we can get $\sigma\left(Q_{1}\right)=n$ which contradicts with $\sigma\left(Q_{1}\right)<n$. Therefore, we have $Q_{2}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{2}^{\prime}+Q_{2} P_{2}^{\prime}\right) \not \equiv 0$. Since $\sigma\left(Q_{j}\right)<n(j=1,2, \ldots, \iota)$ and $P_{j}(z)$ are polynomials of degree n, we have $\sigma\left(Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right)<$ $n(j=2,3, \ldots, \iota)$.

Next, we assume that $\sum_{j=2}^{\iota} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right] \not \equiv 0$. If $\sum_{j=2}^{l} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right] \equiv 0$, that is,

$$
\begin{align*}
-e^{P_{2}}\left[Q _ { 2 } \left(Q_{1}^{\prime}\right.\right. & \left.\left.+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{2}^{\prime}+Q_{2} P_{2}^{\prime}\right)\right] \tag{39}\\
& =\sum_{j=3}^{\iota} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right]
\end{align*}
$$

If $\delta\left(P_{2}, \theta\right)=\delta_{2}(\theta)>0, \theta \in[0,2 \pi)$. Since $\zeta_{j}=\lambda_{j} \zeta_{2}, 0<\lambda_{j},(j=3,4, \ldots, \iota)$, we have $\delta\left(P_{j}, \theta\right)=\delta_{j}(\theta)>0,(j=3,4, \ldots, \iota)$. Set $\lambda_{0}=\max \left\{\lambda_{j}: j=3,4, \ldots, \iota\right\}$, from (39), Lemma 2.5 and the assumptions of Theorem 1.1, for any $\varepsilon_{0}\left(0<\varepsilon_{0}<\frac{1-\lambda_{0}}{1+\lambda_{0}}\right)$, we have

$$
\begin{align*}
\exp \left\{\left(1-\varepsilon_{0}\right) \delta_{2} r^{n}\right\} & \leq\left|e^{P_{2}}\left[Q_{2}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{2}^{\prime}+Q_{2} P_{2}^{\prime}\right)\right]\right| \tag{40}\\
& \leq\left|\sum_{j=3}^{\iota} e^{P_{j}}\left[Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right]\right| \\
& \leq(\iota-2) \exp \left\{\left(1+\varepsilon_{0}\right) \lambda_{0} \delta_{2} r^{n}\right\} .
\end{align*}
$$

Since $\delta_{2}>0, \lambda_{0}>0$ and $0<\varepsilon_{0}<\frac{1-\lambda_{0}}{1+\lambda_{0}}$, we can get a contradiction.
If $\delta\left(P_{2}, \theta\right)=\delta_{2}(\theta)<0, \theta \in[0,2 \pi)$, similar to the above argument, we can also get a contradiction.

From (38), $Q_{2}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-Q_{1}\left(Q_{2}^{\prime}+Q_{2} P_{2}^{\prime}\right) \not \equiv 0$ and $\sigma\left(Q_{j}\left(Q_{1}^{\prime}+Q_{1} P_{1}^{\prime}\right)-\right.$ $\left.Q_{1}\left(Q_{j}^{\prime}+Q_{j} P_{j}^{\prime}\right)\right)<n(j=2,3, \ldots, \iota)$, by (34) and Lemma 2.5, we get

$$
\begin{equation*}
(1-\varepsilon) T\left(r, e^{P_{2}}\right)+O\left(r^{\xi}\right) \leq O\left(r^{\xi_{3}}\right), \quad r \rightarrow \infty . \tag{41}
\end{equation*}
$$

From (41), we have $\sigma\left(e^{P_{2}}\right) \leq \max \left\{\xi_{,}, \xi_{3}\right\}<n$, we get a contradiction. Hence $\lambda(f) \geq n$.

References

[1] S. Bank and I. Laine, On the oscillation theory of $f^{\prime \prime}+A f=0$ where A is entire, Trans. Amer. Math. Soc. 273 (1982), 351-363.
[2] S. Bank and I. Laine, On the zeros of meromorphic solutions of second order linear differential equations, Comment. Math. Helv. 58 (1983), 656-677.
[3] S. Bank, I. Laine and J. Langley, Oscillation results for solutions of linear differential equations in the complex domain. Results Math. 16 (1989), no. 1-2, 3-15.
[4] S. Bank and J. Langley, On the oscillation of solutions of certain linear differential equations in the complex domain, Proc. Edinburgh Math. Soc. 30 (3) (1987), 455-469.
[5] R. P. Boas, Entire Functions, Academic Press Inc., New York, 1954.
[6] Z. X. Chen, The growth of solutions of the differential equation $f^{\prime \prime}+e^{z} f^{\prime}+$ $Q(z) f=0$, Sci. China Ser. A 31 (2001), 775-784 (in Chinese).
[7] Z. X. Chen, On the hyper order of solutions of some second order linear differential equations, Acta Math. Sinica B. 18(1) (2002), 79-88.
[8] G. G. Gundersen, Estimates for the logarithmic derivate of a meromorphic function, plus similar estimates, J. London Math. Soc. 37 (2) (1988), 88-104.
[9] W. Hayman, Meromorphic Functions, Clarendon, Oxford,1964.
[10] K. Ishizaki, An oscillation result for a certain linear differential equation of second order, Hokkaido Math. J. 26(1997), 421-434.
[11] K. Ishizaki and K. Tohge , On the complex oscillation of some linear differential equations, J. Math. Anal. Appl. 206(1997), 503-517.
[12] I. Laine, Complex differential equations, Handbook of Differential Equations: Ordinary Differential Equations, 4 (2008), 269-363.
[13] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin, 1993.
[14] A. I. Markushevich, Theory of Functions of a Complex Variable, vol. 2, translated by R. Silverman, Prentice Hall, Englewood Cliffs, NJ, 1965.
[15] J. Tu and Z. X. Chen, Zeros of solutions of certain second order linear differential equation, J. Math. Anal. Appl. 332 (2007), 279-291.
[16] J. Tu and X. D. Yang, On the zeros of solutions of a class of second order linear differential equations, Kodai Math. J. 33 (2010), 251-266.
[17] J. Wang and Z. X. Chen, Zeros of solutions of higher order linear differential equations, J. Sys. Sci. \& Math. Scis. 21(3)(2001), 314-324(in Chinese).

Department of Informatics and Engineering, Jingdezhen Ceramic Institute (Xiang Hu Xiao Qu), Jingdezhen, Jiangxi, 333403, China
e-mail: xhyhhh@126.com
Institute of Mathematics and informatics, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China e-mail: tujin2008@sina.com

[^0]: *This work was supported by the National Natural Science Foundation of China (11126145 and 61202313) and the Natural Science Foundation of Jiang-Xi Province in China (No. 2010GQS0119 and No. 20122BAB201016).
 ${ }^{\dagger}$ Corresponding author
 Received by the editors April 2011.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : 34A20,30D35.
 Key words and phrases : Linear differential equation; entire function; the exponent of convergence of zeros.

