Grid-symmetric generalized quadrangles*

William M. Kantor

Abstract

A generalized quadrangle is classical if it has a grid of axes of symmetry.

In a finite generalized quadrangle \mathbf{Q} of order (s, t) with $s, t>1$, a line L is called an axis of symmetry if the group $T(L)$ of all automorphisms ("symmetries") that fix every line meeting L has the maximal possible order s. Moreover, \mathbf{Q} is called spansymmetric if there are two disjoint axes of symmetry; we will call \mathbf{Q} grid-symmetric if there are two further disjoint axes of symmetry, each of which meets L and M.

Span-symmetric generalized quadrangles were first studied in [Pa] (cf. [PT1]), in view of the known examples $Q(4, q)$ and $Q(5, q)$, arising respectively from quadrics in 4 - and 5 -dimensional projective spaces. More than 20 years ago it was shown that the generalized quadrangles $Q(4, q)$ are the only span-symmetric ones with $t \neq s^{2}$ (cf. [Ka, Th1]). While nonclassical examples exist if $t=s^{2}$, this is not so in the grid-symmetric case:

Theorem. Any grid-symmetric generalized quadrangle of order (s, t) is isomorphic to $Q(4, s)$ or $Q(5, s)$.
Proof. By the result just noted, we may assume that $t=s^{2}$. There are sets Λ and Λ^{\perp}, each consisting of $s+1$ lines of symmetry, where each line in Λ meets each line in Λ^{\perp}. Let A and B be the groups generated by the symmetries corresponding to Λ and Λ^{\perp}, respectively. By [Th2, 12.5.5], $A \cong B \cong \operatorname{SL}(2, s)$. If $L \in \Lambda$ and $M \in \Lambda^{\perp}$ then $T(L)$ fixes M and hence normalizes $T(M)$. Also $T(M)$ normalizes $T(L)$, so that these two groups commute since $T(L) \cap T(M)=1$. Thus, A and B are commuting groups each of which is isomorphic to $\operatorname{SL}(2, s)$.

[^0]Let Ω denote the set of points on all lines of Λ, and hence of Λ^{\perp}. If x is any point not in Ω then $\Omega \cup x^{A}$ is the set of points of a $Q(4, s)$-subquadrangle $\mathbf{Q}_{x}[\mathrm{Th} 2$, 12.5.5]. If $M \in \Lambda^{\perp}$ then $T(M)$ fixes each line of \mathbf{Q}_{x} meeting M and hence acts on the union \mathbf{Q}_{x} of these lines. Thus, $A B$ acts on \mathbf{Q}_{x}, and hence acts in the natural manner as $\Omega^{+}(4, s)$ on the space $\mathbf{P}_{x}=\mathrm{PG}(4, s)$ underlying \mathbf{Q}_{x}, fixing the point m of $\mathbf{P}_{x} \backslash \mathbf{Q}_{x}$ perpendicular to $\langle\Omega\rangle$. Note that $A B \cong \Omega^{+}(4, s)$: if s is odd and z_{A} and z_{B} are the involutions in A and B, respectively, then $z_{A} z_{B}=1$ on \mathbf{Q}_{x} for each point $x \notin \Omega$, and hence is 1 on \mathbf{Q}.

Note that, if $x \notin \Omega$ as above, then $(A B)_{x} \cong \operatorname{PSL}(2, s)$. For, x lies on the line of \mathbf{P}_{x} joining m and some point n of $\langle\Omega\rangle \backslash \Omega$, so that the stabilizer $(A B)_{x}$ fixes n. However, $(A B)_{n} \cong \Omega(3, s) \cong \operatorname{PSL}(2, s)$ has no proper subgroup of index $(2, s-1)$. Since $(A B)_{n}$ permutes the $(2, s-1)$ points of \mathbf{Q}_{x} on the line $\langle m, n\rangle$, it follows that $(A B)_{x}=(A B)_{n} \cong \operatorname{PSL}(2, s)$.

Now consider any point y of \mathbf{Q} not in $\Omega \cup x^{A}$ and the resulting point-orbit y^{A} and subquadrangle. As in the preceding paragraph, $G:=(A B)_{y} \cong \operatorname{PSL}(2, s)$. Here G acts on $\mathcal{O}:=y^{\perp} \cap \mathbf{Q}_{x}$, which is an ovoid of \mathbf{Q}_{x} [PT2, p. 26]: each of the $s^{2}+1$ lines through y meets \mathbf{Q}_{x}, and no two of the resulting $s^{2}+1$ points are perpendicular.

Under the Klein correspondence for a suitable quadric of $\mathbf{P}=\mathrm{PG}(5, q)$ containing \mathbf{Q}_{x}, the ovoid \mathcal{O} produces a spread of lines in $\operatorname{PG}(3, s)$ and hence also a translation plane π of order s^{2}, with kernel containing $\operatorname{GF}(s)$. Moreover, under this correspondence, the group $A B \cong \Omega^{+}(4, s)$ produces a subgroup of $\operatorname{GL}(4, s)$, isomorphic to $A \times B$, that has a subgroup $\hat{G} \cong \operatorname{PSL}(2, s)$ or $\operatorname{SL}(2, s)$ produced by G; moreover \hat{G} preserves the spread. If q is odd then $\hat{G} \not \not 二 \operatorname{PSL}(2, s)$ since all involutions in $A \times B$ lie in its center. For all q it follows that G produces a collineation group $\hat{G} \cong \operatorname{SL}(2, s)$ of π.

All translation planes having the preceding properties are known [Sch, Wa]: the nondesarguesian ones are Hall, Hering, Walker and Ott-Schaeffer planes. It is easy to check that, for each of these nondesarguesian planes, the corresponding ovoid spans \mathbf{P}, whereas our ovoid \mathcal{O} lies in \mathbf{Q}_{x} and hence in the hyperplane \mathbf{P}_{x} of \mathbf{P}. Hence π is desarguesian and \mathcal{O} is an elliptic quadric.

Thus, $y^{\perp} \cap \mathbf{Q}_{x}$ is an elliptic quadric of \mathbf{Q}_{x} for each point y of $\mathbf{Q} \backslash \mathbf{Q}_{x}$. Consequently, our original generalized quadrangle is classical [TP, Br].

References

[Br$] \quad$ M. R. Brown, A characterisation of the generalized quadrangle $Q(5, q)$ using cohomology. J. Algebraic Combin. 15 (2002) 107-125.
[Ka] W. M. Kantor, Note on span-symmetric generalized quadrangles. Adv. Geom. 2 (2002) 197-200.
[Pa] S. E. Payne, Span-symmetric generalized quadrangles, pp. 231-242 in: The geometric vein (The Coxeter Festschrift; eds. C. Davis et al.), Springer, New York-Heidelberg-Berlin 1981.
[PT1] S. E. Payne and J. A. Thas, Generalized quadrangles and the Higman-Sims technique. Eur. J. Comb. 2 (1982) 79-89.
[PT2] S. E. Payne and J. A. Thas, Finite generalized quadrangles. Pitman, Boston-London-Melbourne 1984.
[Sch] H.-J. Schaeffer, Translationsebenen auf denen die Gruppe SL $\left(2, p^{n}\right)$ operiert, Diplomarbeit, Univ. Tübingen 1975/76.
[TP] J. A. Thas and S. E. Payne, Spreads and ovoids in finite generalized quadrangles. Geom. Dedicata 52 (1994) 227-253.
[Th1] K. Thas, Classification of span-symmetric generalized quadrangles of order s. Adv. Geom. 2 (2002) 189-196.
[Th2] K. Thas, Automorphisms and combinatorics of finite generalized quadrangles. Ph.D. thesis, Univ. Ghent 2002.
[Wa] M. Walker, A characterization of some translation planes. Abh. Math. Sem. Univ. Hamburg 49 (1979) 216-233.

William M. Kantor
Department of Mathematics
University of Oregon
Eugene, OR 97403, USA
email: kantor@math.uoregon.edu

[^0]: *This research was supported in part by the National Science Foundation.
 Received by the editors August 2002.
 Communicated by J. Thas.
 2000 Mathematics Subject Classification : Primary 51E12.
 Key words and phrases : generalized quadrangle, quadric, ovoid.

