
Sectional category of fibrations of fibre

K(Q, 2k).

J.-B. Gatsinzi ∗

Abstract

We show that the sectional category of a non trivial fibration p with fibre
K(Q, 2k) has sectional category 1 although all n-fold fibre joins p ∗ · · · ∗ p are
not trivial.

1 Introduction

We recall here some homotopic invariants related to the Lusternik-Schnirelmann
category [8].

Definition 1. The category of a map f : X → Y , denoted by cat(f), is the least
integer n such that X can be covered by n + 1 open subsets Ui, for which the
restriction of f to each Ui is null homotopic. The category of X, cat(X), is the
category of the identity mapping on X.

We have the relation

cat(f) ≤ min{cat(X), cat(Y )}. (1)

The rational category of X, denoted by cat0(X), is defined by cat0(X) = cat(X0).
Here X0 denotes the rationalization of X. For a mapping f : X → Y , cat0(f) will
denote cat(f0), where f0 : X0 → Y0 is the rationalization of f .
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Let X be a simply connected CW-complex for which H i(X, Q) is a finite dimen-
sional Q-vector space, for each i. The Sullivan minimal model of X is a free commu-
tative cochain algebra (∧Z, d) such that dZ ⊂ ∧≥2Z, with Zn ∼= HomQ(πn(X), Q)
(see [11], [7]). Félix and Halperin showed that the rational category can be computed
by the means of the Sullivan minimal model of X.

Theorem 2. [5] If (∧Z, d) is the Sullivan minimal model of X, then cat0(X) is the
least integer n such that i has a retraction ρ in the following diagram:

(∧Z, d)

p

�� i
((PPPPPPPPPPPPP

(∧Z/ ∧>n Z, d̄) ∧Z ⊗ ∧T

ρ
jj

≃oo

The rational Toomer invariant of X, written e0(X), is the largest integer k such
that some non trivial cohomology class is represented by a cocycle in ∧≥kZ. It is
always true that

e0(X) ≤ cat0(X) [13]. (2)

Definition 3. Let p : E → B be a fibration. The sectional category of p, secat(p),
is the least integer n such that B can be covered by (n + 1) open subsets, over each
of which p has a section.

Definition 4. The genus of a fibration X → E
p
→ B is the least integer n such that

B can be covered by (n+1) open subsets, over each of which p is a trivial fibration,
in the sense of fibre homotopy type [10, Chap.2, Sec.8].

It is straightforward that secat(p) ≤ genus(p) and equality holds when p is a
principal fibration.

Fibrations with fibre in the homotopy type of X are obtained, up to fibre homo-
topy equivalence, as pull back of the universal fibration

X → B aut•X → B aut X [2],

where aut X denotes the monoid of self-homotopy equivalences of X, aut•X is the
monoid of pointed self-homotopy equivalences of X, and B is the Dold-Lashof functor
from monoids to topological spaces [3].

Letting B̃ aut X → B aut X be the universal covering, the induced fibration
X → B̃ aut•X → B̃ aut X is universal for fibrations with simply connected base
spaces [4, Proposition 4.2]. Note that B̃ aut X is homeomorphic to B aut1(X),
where aut1(X) denotes the path component of aut X containing the identity.

The genus is related to classifying spaces by the following

Proposition 5. [8] If X → E
p
→ B is a fibration, then

genus(p) = cat(f), (3)

where f : B → B aut X is the classifying map of p.
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2 Fibrations with fibre a product of n copies of K(Q, 2k).

Let p : E → B be a fibration with fibre a product of n copies of K(Q, 2k). Then p is
represented by the KS-extension A → (A ⊗ ∧(y1, y2, . . . , yn), d), with |yi| = 2k and
where dyi = αi. The αi’s represent cohomology classes in H2k+1(A). A lower bound
of the sectional category is given by the nilpotency index of the ideal generated by
the αi’s [8]. Since the αi’s have odd degrees, this nilpotency index is ≤ n. The
following result provides an upper bound.

Theorem 6. Let X be a product of n copies of K(Q, 2k) and p a rational fibration
with fibre X, then secat(p) = genus(p) ≤ n.

Proof. We use a model of the classifying space B aut1(X), as described by Sullivan
in [11]. A model of B aut1(X) is obtained as the Lie algebra of derivations of a
Sullivan model of X. Since the Sullivan minimal model of X is (∧(x1, . . . , xn), 0)
where |xi| = 2k, a Lie model of the classifying space is the abelian Lie algebra
⊕n

i=1Qαi, where all αi have degree 2k, and with zero differential. The classifying
space B aut1(X) has therefore the rational homotopy type of a product of n copies
of S2k+1. Applying Proposition 5 and the relation (1), we deduce that

genus(p) ≤ cat(S2k+1 × · · · × S2k+1) = n.

Using a model of the universal fibration as described in [12], a model of B aut•1(X) is
given by ⊗n

i=1(∧(xi, yi), d), with |xi| = 2k, |yi| = 2k+1, dxi = yi. Therefore the total
space is rationally contractible, hence the universal fibration is the path fibration.
We conclude that every rational fibration p with fibre X is principal. This yields
genus(p) = secat(p). �

In particular we have the following

Corollary 7. A non trivial rational fibration p with fibre K(Q, 2k) verifies secat(p) =
genus(p) = 1.

3 Join and cojoin operations

If F1 → E1
p1

→ B and F2 → E2
p2

→ B are fibrations with the same base space, then
the fibrewise join is the fibration p1 ∗ p2 : E1 ∗B E2 → B, where elements of E1 ∗B E2

are of the form (t1e1, t2e2), t1 + t2 = 1, p1(e1) = p2(e2), with the restriction that
tiei is independent of ei if ti = 0. Naturally (p1 ∗ p2)(t1e1, t2e2) = p1(e1) = p2(e2).
Note that the fibre is the join F1 ∗ F2. If p is a fibration, then p(n) will denote the
fibrewise join of n + 1 copies of p. Schwarz proved the following

Proposition 8. [8, 9] If p : E → B is a fibration, then the sectional category of p
is the least integer n such that the (n + 1)-fold fibre join p(n) admits a homotopic
section.

In the category of commutative differential graded algebras, we consider the
subcategory of 1-connected objects, that is, each object A verifies A0 = Q and
A1 = 0. This assumption is sufficient to enable us to compute cojoins in that
category [1], in which fibrations are surjective mappings while cofibrations are KS-
extensions A // // A ⊗ ∧V .
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Figure 1: Cojoin operation

Consider two maps f : A → B and g : A → C between commutative differential
graded algebras (see Figure 1). Factorize f = τ ◦ i, where i is a cofibration and τ a
weak equivalence, form then the push out of i and g. Now factorize g′ = p ◦σ where
p is a fibration and σ a weak equivalence. The pullback of p and i′, B ∗A C, is called
the cojoin of the maps f and g. If A is the zero object of the cojoin category, that
is, A0 = Q and A+ = 0, then B ∗A C is simply written B ∗C and is called the cojoin
of B and C.

We will use the cojoin process to prove the following

Theorem 9. Let K(Q, 2k) → E
p
→ B be a non trivial fibration between rational

spaces. The fibrations p(n) verify the following properties:

1. p(1) = p ∗ p admits a section,

2. For all n ≥ 1, p(n) is not trivial.

Proof. First of all, note that a fibration p with fibre K(Q, 2k) is trivial if and only
if genus(p) = secat(p) = 0.

Let p be a non trivial fibration with fibre K(Q, 2k). Consider the KS-extension

(A, dA) // ı // (A ⊗∧x, d) // (∧x, 0)

modelling the fibration p. The element α = dx ∈ A represents a non-trivial cohomol-
ogy class in H2k+1(A, dA), otherwise the fibration is trivial. Such a fibration does not

admit a section. A model of p∗p is the cojoin ı∗ı where ı : (A, dA) // // (A ⊗ ∧x, d) .
Now consider the push out

A // ı //



��

A ⊗∧x

̄

��
A ⊗ ∧y // ı̄ // A ⊗∧(x, y),

where A ⊗ ∧y is canonically isomorphic to A ⊗ ∧x.

Factorize ̄ : A ⊗∧x // A ⊗ ∧(x, y) as

A ⊗ ∧x
≃ // (A ⊗ ∧(x, y, t), d̃)

π // // A ⊗∧(x, y),



Sectional category of fibrations of fibre K(Q, 2k). 69

where d̃x = α, d̃y = α + t and d̃t = 0. The mapping π is such that π|A⊗∧x = ̄,
π(y) = y and π(t) = 0. The total space of the fibre join p ∗ p is the pullback

(A1, D1) //

π′

����

A ⊗∧(x, y, t)

π
����

A ⊗∧y ı̄ // A ⊗ ∧(x, y)

The natural inclusion mapping ι(1) : A → A1 is a model of the fibre join fibration
p ∗ p.

Note that

A1 =
{

(u, v) ∈ [A ⊗ ∧y]
⊕

[A ⊗ ∧(x, y, t)] : ı̄(u) = π(v)
}

.

One can verify that the algebra A1 is isomorphic to A⊗ (∧y ⊕
∼ t.∧ (x, y)), of which

the underlying vector space is A⊗ (∧y⊕ t.∧ (x, y)), but ym.txnyr = txnym+r. More-
over D1y = α + t, D1t = 0, D1y

n = nyn−1α + nyn−1t and for r ≥ 1 or s ≥ 1,
D1(x

ryst) = rαxr−1yst + sx(α + t)ys−1t = rαxr−1yst + sxαys−1t. The cohomology
of the fibre (Q ⊗A A1, D̄1) is isomorphic to t. ∧+ x ⊗ ∧y. The projection map is
surjective onto [tx] because [tx + αy] maps to [tx], but there is no cohomology class
in A1 that maps to [tx2]. Suppose in fact that there exists such a class [u]. We write
u = tx2 + δy2 + ρtx + σty + µt + νy + θ, with |δ| = 2k + 1, |ρ| = |σ| = 2k, |µ| = 4k,
|ν| = 4k + 1 and |θ| = 6k + 1. The equation D1u = 0 implies 2α = −dA(ρ) which
is in contradiction with our assumption on α. This shows that the fibration is not
trivial.

Furthermore one can define a retraction ρ : A1 → A as follows:

ρ|A = idA, ρ(y) = 0, ρ(t) = −α and ρ(xryst) = 0 for r > 0 or s > 0.

It is easily checked that ρ commutes with the differentials. Hence the fibration p ∗ p
has sectional category 1 as expected (see Corollary 7).

To show that p(n) is not trivial, we have to repeat the above cojoin process.
Computations yield

(An, Dn) = (A ⊗ (∧yn ⊕
∼ tn.(Vn−1 ⊗ ∧yn)), Dn),

where |yn| = 2k, |tn| = 2k + 1. The algebras Vi, i ≥ 1 are defined inductively by the
formula

V1 = ∧y1 ⊕
∼ t1. ∧ (y0, y1), Vi = ∧yi ⊕

∼ ti.(Vi−1 ⊗∧(yi)),

where |yi| = 2k and |ti| = 2k + 1.

The differential verifies Dn(y0) = α and Dn(yp) = α + tp for p = 1, . . . , n. The
same argument as in the case n = 1 works. The element tn . . . t1y

2
0 represents a

nonzero cohomology class in the quotient that can not lift into a cocycle in An.
Therefore the fibration is not trivial. �
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The following example shows that Theorem 6 does not hold if the fibre is a
product of distinct Eilenberg-MacLane spaces.

Example 10. Consider the space X = K(Q, 2) × K(Q, 4). The minimal Sullivan
model of B aut1(X) is (∧(x3, y3, x5), d), with dx3 = dy3 = 0, dx5 = x3y3. Here sub-
scripts indicate degrees. Applying Theorem 2 in conjunction with the inequality (2),
we deduce that cat(B aut1(X)) = 3 since the nilpotency index of (∧(x3, y3, x5), d) is
three and x3y3z5 represents a nonzero cohomology class. Therefore the genus of the
universal fibration is 3.
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