
Pretty pictures of geometries
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Abstract

We present four construction principles that allow us to produce many
beautiful plane and spatial models of some of the most important small finite
geometries.

1 Introduction

Did you ever ask yourself why there are only a handful of pictures that pop up in
texts on incidence geometry? The pictures we have in mind here are the traditional
pictures of the Fano plane, the affine plane of order 3, the Desargues and Pappus
configurations etc. How many times have you drawn these pictures in your lectures
and how many times have you drawn them to illustrate to somebody outside your
field what the kinds of objects are we are dealing with in incidence geometry? Once
you start asking these kinds of questions, you also immediately start wondering
whether these are really the only pictures which are worth drawing and whether
they are even the ‘best’ pictures of the geometries involved.

We are in the process of compiling a comprehensive collection of good plane and
spatial pictures of small incidence geometries which, eventually, will appear in [7].
While working on this collection, we have come to the conclusion that there are
many more amazing pictures and models of geometries that everybody interested in
geometry should know about.

In this note we describe four of the most useful construction principles for con-
structing pictures of small incidence geometries which capture large parts of the
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abstract beauty of the geometries they depict. In order to illustrate these construc-
tion principles, we use them to construct models for some of the most important
small geometries such as the Fano plane, the generalized quadrangle of order 2, the
Desargues configuration and the projective space PG(3, 2).

Why are good pictures important? Two of the main reasons that come to mind
are the following:

• To convey some of the abstract beauty of the objects we study to people
outside our field. This seems to be especially important today as it becomes
more and more important to ‘justify’ and ‘sell’ the kind of research we are
fascinated by.

• Many of us think in terms of pictures of various degrees of abstraction. The
kind of pictures we want to concentrate on in this note are immediately acces-
sible and can serve to lure students into studying incidence geometry and as
a first step in teaching students pictorial thinking in geometry.

2 Construction principles for pictures of small geometries

Whenever we are trying to create an appealing model of an abstract geometry,
we are trying to merge its abstract symmetries with spatial symmetries. After
having created some 500+ pictures while working on [7], we found that most of
these pictures, including the traditional ones, can be made up using a couple of
simple rules. Here is a first such rule.

Construction principle: number right → everything right

Given a small, highly symmetrical geometry with n points, look for the
same number of points arranged into a highly symmetrical spatial object.
Try to merge the two structures such that the symmetries of the spatial
object translate into symmetries of the geometry.

Examples for the symmetrical spatial objects that we have in mind here are the
regular solids and regular polygons. This construction principle may sound rather
naive, but yields attractive models for most small geometries. This should not come
as too much of a surprise. Just think of the multitude of interconnections that exist
between other small highly symmetrical mathematical structures.

Consider, for example, the various symmetrical sets of points associated with
the tetrahedron: the 4 vertices, the 4 centers of the faces, the 6 centers of the edges
and the set consisting of the center of the tetrahedron alone. By combining these
four different sets in all possible ways, symmetrical sets of 4, 5, 6, 7, 8, 9, 10, 11,
14 and 15 points can be generated. The affine plane of order 2, the inversive plane
of order 2 and the Laguerre plane of order 2 are geometries with 4, 5 and 6 points,
respectively. The Fano plane, the one-point extension of the Fano plane, the Desar-
gues configuration, the inversive plane of order 3 and the generalized quadrangle of
order 2 are geometries with 7, 8, 10, 11 and 15 points, respectively. The point sets
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of all these geometries can be identified with the set of points associated with the
tetrahedron having the respective number of points, such that all symmetries of the
tetrahedron translate into automorphisms of the geometries.

Example 1 The affine plane of order 2. The points and lines are the vertices and
edges of the tetrahedron on the left in Figure 1. Note that the 3 parallel classes in
this affine plane correspond to the 3 pairs of opposite edges of the tetrahedron.

Example 2 The inversive plane of order 2. We take the vertices and the center
of the tetrahedron as points and all triangles of such points as circles. See, again,
Figure 1. Note that the derived geometry at the center of the model yields the
model of the affine plane of order 2 on the left.

Figure 1: The affine and inversive planes of order 2

Example 3 The Fano plane. The points are the centers of the edges and the
center of the tetrahedron. Take as the lines the 4 circles inscribed in the faces of the
tetrahedron and the 3 line segments connecting opposite edges of the tetrahedron.

Figure 3 is a stereogram of this last geometry. It can be viewed with either the
parallel or the cross-eyed technique, that is, one of the techniques that you had to
master two or so years ago to be able to view some of the random-dot stereograms
that did come into fashion around that time.

Figure 2: The Fano plane
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The automorphism group of the model is the symmetry group of the tetrahedron
and coincides with the point stabilizer in the center point of the automorphism group
of the Fano plane. In this way, this model certainly captures more of the abstract
beauty of the Fano plane than the traditional triangular model. In fact, we arrive
at the traditional model by projecting the spatial model from one of the vertices of
the tetrahedron onto the face opposite this vertex.

Example 4 The Desargues configuration. The points are the vertices plus the cen-
ters of the edges of the tetrahedron, the lines are the edges and the circles inscribed
in the faces of the tetrahedron.

Figure 3: The Desargues configuration

Example 5 W(2), the generalized quadrangle of order 2. The points are all 15
points that we associated with the tetrahedron. The lines are the 12 medians of the
faces of the tetrahedron and the 3 line segments connecting opposite edges of the
tetrahedron.

Figure 4: The generalized quadrangle of order 2

We call a geometry a subset geometry (with respect to the set O) if its lines can
be identified with subsets of O and its points with sets of these distinguished subsets
such that every permutation of O translates into an automorphism of the geometry.
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Of course, a point is contained in a line if the set corresponding to the point contains
the subset corresponding to the line. Many small geometries are subset geometries.
The generalized quadrangle W(2), for example, has the following description as a
subset geometry: Let O consist of 6 elements. The lines of the geometry are the 15
pairs of elements in O and the points are the 15 partitions of O into pairs.

Construction principle: subset geometries

Given a subset geometry on |O| = n points, try to translate automor-
phisms of symmetrical arrangements of n points in the plane or in space
into ‘good’ models of the geometry which exhibit as many of these auto-
morphisms as possible.

We construct a picture for W(2) using this principle: One symmetrical arrange-
ment of 6 points in the plane consists of the 5 vertices of a regular pentagon plus
its center. Figure 5 shows the 3 essentially different partitions of the six points
corresponding to 5 partitions each.

Figure 5: The different partitions of 6 points into pairs

In Figure 6 we arrange the 15 partitions on 3 regular pentagons having a common
center and draw in the 15 lines of the geometry. Note that the order 5 automorphism
apparent in the arrangement of the 6 points we started with translates into an
automorphism of the resulting picture.

This picture (minus the labels) of the generalized quadrangle W(2) was first
constructed by Payne (see the cover of [5]). He calls this picture the ‘doily’. Other
symmetrical arrangements of 6 points in space yield more beautiful models of this ge-
ometry. Further examples of subset geometries include the Desargues configuration
and the Petersen graph.

Other important geometries can also be described with respect to a small set O
of points such that at least some ‘good’ permutations of O translate into automor-
phisms of the geometry. By matching up this kind of automorphism with a similar
one of a symmetrical spatial object, it is often possible to arrive at symmetrical mod-
els of the geometry that exhibit this automorphism, that is, the above construction
principle can be applied modulo some fiddling. Let us call geometries that fall in
the extended category upset geometries.

Example 6 The small classical finite projective planes are upset geometries. In a
plane like this O can be chosen to be an oval or a hyperoval in the plane. To every



422 B. Polster

Figure 6: The ‘doily’

point of the plane not contained in O there corresponds a bundle involution of O
which has exactly 0 or 2 fixed points. In turn, this bundle involution corresponds
to a partition of O into the fixed points and the pairs of points that get exchanged
by the involution. In order to describe the projective plane with respect to the
oval, we let the points of the plane be the elements of O plus all the partitions of
O corresponding to the bundle involutions. The secants of O correspond, in the
natural way, to pairs of elements of O, the tangents to the single points of O. For
classical projective planes of small orders it is also not very hard to give an intrinsic
definition of the exterior lines of O (see, for example, [2] for such a description in
the case of the projective plane of order 5).

Example 7 Small biplanes are upset geometries. Given such a biplane, the set O
can be chosen to be one of the blocks in the biplane and the description of the
geometry with respect to this set that usually does the trick is the description via a
set of Hussain graphs (see [3]).

Construction principle: subgeometry → full geometry

Try to extend ‘good’ models of subgeometries of a given geometry to a
‘good’ model of the full geometry.

The generalized quadrangle W(2), for example, is contained as a subgeometry
in the generalized quadrangles of orders (4, 2) and (2, 4) (see [6, Chapter 6]), the
projective plane of order 4 (see [1]), and the projective space PG(3, 2) (see, again,
[6]). It turns out that most ‘good’ models of W(2) have extensions to good models
of the other four geometries.
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Example 8 The projective space PG(3, 2). This projective space has 15 points
which coincide with the points of the generalized quadrangle and 35 lines of three
points each. See [4] for detailed information about this space. Let S be a subset of
points of W(2). Then S⊥ denotes the set of points in W(2) which are collinear in
W(2) to every single point in S. The lines of the projective space are the sets {x, y}⊥,
where x and y are different points. Note that, if x and y are collinear in W(2), then
{x, y}⊥ is the line in W(2) connecting x and y. In Figure 7 we extend the doily to
a model of the projective space. The diagram on the right shows the 7 essentially
different lines in the model. The other lines are constructed by successively rotating
these lines. The 3 lines that generate the lines of the quadrangles are highlighted.

Figure 7: Constructing a projective space around the ‘doily’

Construction principle: geometry → subgeometry

Try to find models of subgeometries of a given geometry ‘right in the
middle’ of a good model of the geometry.

Figure 8: Spread, Desargues configuration and 2-spread

Figure 8 shows some examples of models of such subgeometries. The first one
is a spread, the second one a Desargues configuration and the third one a 2-spread,
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that is, a set of lines such that every point is contained in exactly two of the lines
in the set. Note that the union of the spread and the 2-spread is the generalized
quadrangle we started with. Note also that the Desargues configuration is the union
of two pentagons. See whether you can find some subgeometries with 15 points and
lines, 3 points on every line and 3 lines through every point that are no generalized
quadrangles.

Figure 9: Elliptic quadric, inversive plane and Petersen graph

In Figure 9 the 5 solid points are the points of an elliptic quadric in the projective
space as well as the points of an ovoid in the generalized quadrangle. The points
of the quadric and the non-trivial plane sections of the quadric are the points and
circles of an inversive plane of order 2. The middle diagram is a model for this
geometry. Its points are the 5 solid points and its circles are the 10 triangles in the
complete graph on the 5 points. By removing the solid points from the generalized
quadrangle, we are left with the model of the Petersen graph on the right.

There are 56 spreads in our space. As a final example of the multitude of
interesting substructures in PG(3, 2), we present an example of a packing of the line
set of the space consisting of 7 spreads in Figure 10.

Finally, we remark that if we extend the spatial model of W(2) in Example 5 to
a model of PG(3, 2), we discover the spatial models of the Fano plane in Example 3
and the Desargues configuration in Example 4 ‘right in the middle’ of this spatial
model of PG(3, 2).
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Figure 10: A packing of the projective space
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