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Abstract

The purpose of this paper is to study an analogue of Euler’s constant for
the Selberg zeta functions of a compact Riemann surface and the Dedekind
zeta function of an algebraic number field. Especially, we establish similar ex-
pressions of such Euler’s constants as de la Vallée-Poussin obtained in 1896 for
the Riemann zeta function. We also discuss, so to speak, higher Euler’s con-
stants and establish certain formulas concerning the power sums of essential
zeroes of these zeta functions similar to Riemann’s explicit formula.

1 Introduction

Recall first the Riemann zeta function

ζ(s) =
∏

p:prime

(

1 − p−s
)−1

.

Around 1859, Riemann discovered the following identity

∑

ρ∈Z

1

ρ
= 1 +

γ

2
−

1

2
log π − log 2 (1.1)

= 0.02309570896612103381 · · · ,

∗Work in part supported by Grant-in Aid for Exploratory Research No.13874004, Japan Society
for the Promotion of Science.

†Work in part supported by Grant-in Aid for Scientific Research (B) No.11440010, and by
Grant-in Aid for Exploratory Research No.13874004, Japan Society for the Promotion of Science.

Received by the editors April 2002.
Communicated by J. Mawhin.
1991 Mathematics Subject Classification : 11M06, 11M36.
Key words and phrases : Euler’s constant, Selberg zeta function, Dedekind zeta function.

Bull. Belg. Math. Soc. 11 (2004), 493–516



494 Y. Hashimoto – Y. Iijima – N. Kurokawa – M. Wakayama

where ρ runs over the set Z of the essential zeroes (i.e., 0 < Re(ρ) < 1) of ζ(s)
counting with a possible multiplicity, and γ is the Euler constant given by

γ = lim
s→1

(

ζ(s) −
1

s− 1

)

= lim
x→∞

(

∑

n<x

1

n
− log x

)

= 0.57721566490153286060 · · · .

Note also that the information of the equation (1.1) is contained in the following
factorization.

ζ(s) = e(log(2π)−1− γ

2
)s 1

2(s− 1)Γ(1 + s
2
)

∏

ρ∈Z

(

1 −
s

ρ

)

e
s
ρ . (1.2)

Riemann used (1.1) [the above numerical computation is due to Riemann] to cal-
culate essential zeros and verified his famous conjecture, Riemann hypothesis [R]
for several zeroes ; for example, he obtained that the first essential zero is ρ1 ≈
1

2
+ 14.14 i. Riemann’s studies on the essential zeroes were written in unpublished

manuscripts, and some details were investigated by Siegel [Sie].
Riemann’s identity (1.1) is the first example of the so called explicit formulas

for zeta functions. Zeta functions are in general defined as Euler products over
(generalized) primes, and so called explicit/trace formulas describe relations between
these (generalized) primes and zeroes (and poles) of zeta functions. The nature of
Riemann’s identity (1.1) becomes clear as a relation between zeroes and primes when
we recall the identity

γ = lim
x→∞





log x−
∑

p<x
p:prime

log p

p− 1





 = lim
x→∞

(

log x−
∑

n<x

Λ(n)

n

)

(1.3)

of de la Vallée-Poussin [VP] in 1896, where Λ(n) is the von Mangoldt function given
by

Λ(n) =







log p if n = pℓ for a prime p and a positive integer ℓ

0 otherwise.

Note also that de la Vallée-Poussin proved (1.3) together with the prime number
theorem.

There is a similar situation for the Selberg zeta function (see [Sel]). Actually
it describes the prime geodesic theorem for a Riemann surface. In order to make
things more explicit, let us consider a discrete co-compact torsion free subgroup Γ of
SL(2,R). Let H = SL(2,R)/SO(2) = {z = x + iy ; x, y ∈ R, y > 0} be the upper
half plane. Then the quotient Γ\H forms a Riemann surface of genus g > 1 with
area µ(Γ\H) = 4π(g − 1). The Selberg zeta function ZΓ(s) defined by

ZΓ(s) =
∏

P∈Prim(Γ)

∞
∏

n=0

(1 −N(P )−s−n) Re(s) > 1,

where Prim(Γ) is the set of primitive hyperbolic conjugacy classes of Γ, and N(P )
denotes the norm of P , that is, the square of the larger eigenvalue of a representative
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2×2 matrix of P . Here a hyperbolic element P (and hence also its conjugacy class)
is said to be primitive when P is a generator of an infinite cyclic group ZΓ(P ), the
centralizer of P in Γ. Hence the every hyperbolic element (class) γ can be uniquely
written as γ = P ℓ

γ for some Pγ ∈ Prim(Γ) and a positive integer ℓ. We denote also
by Hyp(Γ) the set of hyperbolic conjugacy classes of Γ.

It is well-known that ZΓ(s) is continued analytically to the whole plane C as an
entire function of order 2 via the following equation for the logarithmic derivative
of ZΓ(s), which is got by the trace formula;

1

2s− 1

Z ′
Γ(s)

ZΓ(s)
=

1

2β

Z ′
Γ(1

2
+ β)

ZΓ(1
2

+ β)
+

∞
∑

n=0

{

1

r2
n + (s− 1

2
)2

−
1

r2
n + β2

}

+ 2(g − 1)
∞
∑

k=0

{

1

k + 1
2

+ β
−

1

k + s

}

, (1.4)

where Re(β) > 1, and {1
4

+ r2
n}n=0,1,2,... are the eigenvalues of the Laplacian ∆Γ =

−y2( ∂2

∂x2 + ∂2

∂y2 ) on the Riemann surface Γ\H . We put λn = 1
4

+ r2
n and arrange

the order of λn by 0 = λ0 < λ1 < λ2 < . . ., each counting with multiplicity mn.
Then ZΓ(s) has essential (non-trivial) zeroes at s = 1

2
± irn of order mn. Since the

multiplicity m0 of the eigenvalue λ0 = 0 is equal to 1, it follows from (1.4) that the
logarithmic derivative of ZΓ(s) has a pole at 1 with residue 1, whence ZΓ(s) has a
simple zero at s = 1. Let

ZΓ(s) = α1(Γ)(s− 1) + α2(Γ)(s− 1)2 + α3(Γ)(s− 1)3 + · · · (1.5)

be the Taylor expansion around s = 1. Also, the logarithmic derivative of ZΓ(s) is
written as

Z ′
Γ(s)

ZΓ(s)
=

1

s− 1
+ γ

(0)
Γ + γ

(1)
Γ (s− 1) + γ

(2)
Γ (s− 1)2 + · · · , (1.6)

around s = 1. The following relations are clearly examined by comparing these two
expansions and from the expression (1.4) above.

γ
(0)
Γ =

α2(Γ)

α1(Γ)
= lim

s→1

(

1

2s− 1

Z ′
Γ(s)

ZΓ(s)
−

1

s(s− 1)

)

=
1

2

Z ′′
Γ(1)

Z ′
Γ(1)

(1.7)

We call this γ
(0)
Γ the Euler-Selberg constant for Γ. The Euler-Selberg constant has

been appeared in [KW1]. It is also immediate to see the relations

γ
(1)
Γ = −

α2(Γ)2

α1(Γ)2
+ 2

α3(Γ)

α1(Γ)
, γ

(2)
Γ = 2

α2(Γ)3

α1(Γ)3
− 3

α2(Γ)α3(Γ)

α1(Γ)2
+ 3

α4(Γ)

α1(Γ)
, . . . .

Moreover the factorization formula for ZΓ(s) which is a close analogue of (1.2) is
known as follows.

ZΓ(s) = Z ′
Γ(1)s(s− 1)e{γ

(0)
Γ +2(g−1)γ}s(s−1)[(2π)s−1Γ2(s)Γ2(s+ 1)]−2(g−1)

×
∞
∏

n=1

(

1 +
s(s− 1)

λn

)

exp

(

−
s(s− 1)

λn

)

,
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where Γ2(s) denotes the double Gamma function. See [Ste], [Vor] for details. Fur-
thermore, note that ZΓ(s) satisfies the following functional equation;

ZΓ(s) = ZΓ(1 − s) exp
(

4π(g − 1)
∫ s− 1

2

0
r tan (πr)dr

)

. (1.8)

If we set ẐΓ(s) = {Γ2(s)Γ2(s+1)}1−gZΓ(s), it is known that the functional equation
(1.8) can be recast into the simpler form ẐΓ(s) = ẐΓ(1 − s).

The purpose of this paper is to generalize the Euler constant and describe the
power of essential zeroes such as (1.1), in more general situations. Especially, we
generalize (1.1) and (1.3) to the case of the Selberg zeta functions for compact
Riemann surfaces and the case of the Dedekind zeta function of algebraic number
fields.

We have first the following formulas of the Euler-Selberg constant and the ana-
logue of (1.1) for the essential zeroes of the Selberg zeta function.

Theorem A. Let Γ be a discrete co-compact torsion free subgroup of SL(2,R).
For γ ∈ Hyp(Γ), we denote by Pγ the primitive hyperbolic class class such that
γ ∈ ZΓ(Pγ). Then we have

(1) γ
(0)
Γ = lim

x→∞







∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1
− log x







.

(2)
∑

n>0

1

λ2
n

= 2γ
(0)
Γ − γ

(1)
Γ + (g − 1)

π2

3
− 3.

Remark 1.1. The assertion (2) above shows that it is preferable to get similar
expressions for the higher Euler-Selberg constants. We shall thus establish such
formulas in the following section.

Remark 1.2. It would be interesting to ask, for instance, whether the Euler-Selberg
constant (and its higher version) for Γ is algebraic or not? Is there any discrete
subgroup Γ of which the Euler-Selberg constant is algebraic (modulo some invariant
of the corresponding Riemann surface)? etc. Furthermore, numerical calculations
of those constants seem also interesting.

Next, we consider an algebraic number field K. Recall the Dedekind zeta func-
tion;

ζK(s) =
∏

p

(

1 −N(p)−s
)−1

=
∑

a

N(a)−s,

where p and a respectively runs over prime ideals and integral ideals. Let

ζK(s) =
γ−1(K)

s− 1
+ γ0(K) + γ1(K)(s− 1) + γ2(K)(s− 1)2 + · · ·

be the Laurent expansion around s = 1. We call

γ0(K) = lim
s→1

(

ζK(s) −
γ−1(K)

s− 1

)
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the Euler constant of K, and we may consider γ1(K), γ2(K), . . . as higher Euler’s
constant of K. The residue γ−1(K) was calculated by Dedekind (1877) :

γ−1(K) =
2r1(2π)r2h(K)R(K)

w(K)|D(K)|1/2
,

which is called the class number formula, where r1 is the number of real infinite
primes, r2 is the number of complex infinite primes, h(K) is the class number of K,
R(K) is the regulator of K, w(K) is the number of roots of 1 in K, and D(K) is
the discriminant of K.

Theorem B. Let K be an algebraic number field. Then we have

(1) γ0(K) = γ−1(K) lim
x→∞



log x−
∑

N(p)<x

logN(p)

N(p) − 1



.

(2)
∑

ρ∈ZK

1

ρ
=

γ0(K)

γ−1(K)
− r1

(

log 2 +
γ

2

)

− r2(log 2 + γ) +

1

2
log |D(K)| −

[K : Q]

2
log π + 1,

where ρ runs over the set ZK of the essential zeroes of ζK(s).

The work in [KW1] has provided the one of motivations of the present study.
In fact, both higher Euler’s constants γ, γ1 for K = Q and higher Euler-Selberg’s
constants γ

(0)
Γ , γ

(1)
Γ are involved in the comparison formula of essential zeroes of the

Riemann zeta and Selberg zeta functions established in [KW1].

2 Higher Euler-Selberg’s constants

We prove first the following formulas of the Euler-Selberg constant γ
(0)
Γ and the

higher Euler-Selberg constants γ
(n)
Γ . After that we shall give formulas for the power

sum over the essential zeroes of the Selberg zeta functions as the corollary of this
result.

Theorem 1. For any n ≥ 0, we have

γ
(n)
Γ =

(−1)n

n!
lim

x→∞







∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1
(logN(γ))n −

(log x)n+1

n + 1







.

In particular, we have

α2(Γ) = α1(Γ) lim
x→∞







∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1
− log x







.

It is clear that the assertion (1) in Theorem A is nothing but the statement of
the case n = 0 in the theorem above.
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Remark 2.1. Write the Laurent expansion of the Riemann zeta function as

ζ(s) =
1

s− 1
+

∞
∑

k=0

γk(s− 1)k.

Then one knows (Stieltjes, 1885; see Berndt [Ber], p.164) that the following formula
holds.

γk =
(−1)k

k !
lim
x→∞

{

∑

n<x

(logn)k

n
−

(log x)k+1

k + 1

}

.

Thus the theorem above can be regarded as the Selberg zeta counterpart of the
formulas of the higher Euler constants. However, if we look at them more precisely
there are some differences between their respective denominators and exponents.

To show Theorem 1, we need some preparations.

2.1 Some lemmas

Lemma 2.1. For any n ≥ 0, we have

∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1
(logN(γ))n =

(log x)n+1

n + 1
+ An +O(x−δ) as x → ∞,

where An and δ > 0 are some constants.
Proof. It is enough to consider

∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ)
(logN(γ))n,

since the difference

∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

(N(γ) − 1)N(γ)
(logN(γ))n

converges as x→ ∞. We may write the above as the Stieltjes integral:

∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ)
(logN(γ))n =

∫ x

τ

(log t)n

t
dψ(t), (2.1)

where we put

ψ(x) =
∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ).

The following fact is known (see, for e.g. [Gan]),

ψ(x) = x+O(x1−δ) as x→ ∞, (2.2)
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for some positive constant δ.
Put τ = minγ∈Hyp(Γ)N(γ). Then we may calculate the right hand side of (2.1)

as
∫ x

τ

(log t)n

t
dψ(t)

=
(log x)n

x
ψ(x) −

∫ x

τ

1

t2
{n(log t)n−1 − (log t)n}ψ(t)dt

=
(log x)n

x
(x+O(x1−δ)) −

∫ x

τ

1

t2
{n(log t)n−1 − (log t)n}(t+ O(t1−δ))dt

= (log x)n − n
∫ x

τ

(log t)n−1

t
dt+

∫ x

τ

(log t)n

t
dt+ Cn +O(x−δ′)

=
(log x)n+1

n + 1
+ C ′

n +O(x−δ′) as x→ ∞

for some constants Cn, C
′
n depending on n and δ′ > 0. Hence the proof immediately

follows. �

Lemma 2.2. If | Im s| is sufficiently large and Re s ≥ 1
2

+ δ (0 < δ < 1), then

∣

∣

∣

∣

∣

Z ′
Γ(s)

ZΓ(s)

∣

∣

∣

∣

∣

= O

(

δ−1(Im s)2max(0,1+δ−Re s)

)

.

Proof. For the proof, see [Hej2], Chap2, Prop 6.7. �

We also recall the following well-known formula of the inverse Mellin transform.

Lemma 2..3. If y > 0 and n ≥ 0, then we have

1

2πi
lim

T→∞

∫ c+iT

c−iT

ys

sn+1
ds =







1
n!

(log y)n (y > 1)

0 (0 < y ≤ 1).

2.2 The case n = 0

We calculate the following limit of integral in two ways.

I(γ
(0)
Γ ) :=

1

2πi
lim

T→∞

∫ 2+iT

2−iT

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
ds.

From the Euler product of ZΓ(s), using Lemma 2.3 we have

I(γ
(0)
Γ ) =

∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1

1

2πi
lim

T→∞

∫ 2+iT

2−iT

1

s(s+ 1)
(

x

N(γ)
)sds

=
∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1

1

2πi
lim

T→∞

∫ 2+iT

2−iT

(1

s
−

1

s+ 1

)

(
x

N(γ)
)sds

=
∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1
(1 −

N(γ)

x
).



500 Y. Hashimoto – Y. Iijima – N. Kurokawa – M. Wakayama

Therefore, by the result of Lemma 2.1 and (2.2) it follows that

I(γ
(0)
Γ ) = (1 −

1

x
)

∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1
−

1

x

∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ).

=
∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1
− 1 + o(1) as x→ ∞. (2.3)

We now calculate the integral I(γ
(0)
Γ ) in another way by the residue theorem. So

we introduce the following contour C̃R,T .

−1−2
2−R

−3

−1
2

iT

−iT

By (1.4), the poles and the residues of Z ′
Γ(s+ 1)/ZΓ(s+ 1) are given as follows;

pole residue

s =
1

2
± irl(l > 0) ml (multiplicity of the eigenvalue λl)

s =0 1

s = − 1 2g − 1

s = − k(k ≥ 2) 2(g − 1)(2k − 1).

By the residue theorem, we have

1

2πi

∫

C̃R,T

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
ds

=







∑

|rl|<T

( Res
s=− 1

2
+irl

+ Res
s=− 1

2
−irl

) +
[R]
∑

k=2

Res
s=−k

+ Res
s=−1

+ Res
s=0







ZΓ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
. (2.4)

Now we calculate each term in the right hand side of (2.4).
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Since s = −1
2
± irl are simple poles, it is immediate to see that

Res
s=− 1

2
±irl

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
= ml

x−
1
2
±irl

−1
4
− r2

l

.

Thus we have

∑

|rl|<T

( Res
s=− 1

2
+irl

+ Res
s=− 1

2
−irl

)
Z ′

Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
= −

∑

|rl|<T

ml
x−

1
2 cos (rl log x)

1
4

+ r2
l

. (2.5)

The pole at s = −k(k ≥ 2) is also simple, so that

Res
s=−k

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
= 2(g − 1)

2k − 1

k(k − 1)
x−k

= 2(g − 1)
(

1

k − 1
+

1

k

)

x−k.

By the elementary fact

∞
∑

k=1

x−k

k
= − log (1 −

1

x
),

we have

[R]
∑

k=2

Res
s=−k

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)

R→∞
−→ 2(g − 1){−x−1 − log(1 − x−1) − x−1 log(1 − x−1)} = o(1) as x→ ∞. (2.6)

Since s = −1 and 0 are double poles, consider the Laurent expansion. First,
around s = −1 we observe that

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)

=
(

(2g − 1)(s+ 1)−1 + a0 + a1(s+ 1) + . . .
)

×
(

1 + (s+ 1) + . . .
)

× (s + 1)−1 × x−1
(

1 + (log x)(s + 1) + . . . )

= (2g − 1)x−1(s+ 1)−2 + x−1
(

(2g − 1)(log x+ 1) + a0

)

(s+ 1)−1 + . . . ,

whence one has

Res
s=−1

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
= x−1

(

(2g − 1)(log x+ 1) + a0

)

= o(1) as x→ ∞. (2.7)

Similarly, around s = 0 one may expand

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)

=
(

s−1 + γΓ + γ
(1)
Γ s+ . . .

)

× s−1 ×
(

1 − s+ . . .
)

×
(

1 + (log x)s+ . . . )

= s−2 + (log x+ γΓ − 1)s−1 + . . . .
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Hence we have

Res
s=0

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
= log x+ γΓ − 1. (2.8)

By substituting these above into (2.4), we conclude that

1

2πi

∫

C̃R,T

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
ds

= log x+ γΓ − 1 −
∑

|rl|<T

ml
x−

1
2 cos (rl log x)

1
4

+ r2
l

+ o(1) as x→ ∞. (2.9)

Next we estimate the integration along C̃R,T excluding the line Re s = 2. In
order to do this, we divide this integral into the following eight parts.

∫

C̃R,T

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
ds

=
∫ 2+iT

2−iT
+
∫ − 1

2
+ε+iT

2+iT
+
∫ − 1

2
−ε+iT

− 1
2
+ε+iT

+
∫ −R+iT

− 1
2
−ε+iT

+
∫ −R−iT

−R+iT
+
∫ − 1

2
−ε−iT

−R−iT
+
∫ − 1

2
+ε−iT

− 1
2
−ε−iT

+
∫ 2−iT

− 1
2
+ε−iT

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
ds,

where ε is taken such as 0 < ε < 1
2
.

We denote by I1, . . . , I8 respectively the integrals of the right hand side of the
above. Note that I(γ

(0)
Γ ) = 1

2πi
limT→∞ I1. Our task is then to estimate I2, I3, . . . , I8.

[Estimate of I5:] By the functional equation (1.8) of the logarithmic derivative of
ZΓ(s), we have

I5 =
∫ −R−iT

−R+iT

{

−
Z ′

Γ(−s)

ZΓ(−s)
+ µ(Γ\H)(s+

1

2
) cotπs

}

xs

s(s+ 1)
ds

= −
∫ −R−iT

−R+iT

Z ′
Γ(−s)

ZΓ(−s)

xs

s(s+ 1)
ds+ µ(Γ\H)

∫ −R−iT

−R+iT
(s+

1

2
) cotπs

xs

s(s+ 1)
ds.

(2.10)

The first term of (2.10) is estimated as follows.
∣

∣

∣

∣

∣

∣

∫ −R−iT

−R+iT

Z ′
Γ(−s)

ZΓ(−s)

xs

s(s+ 1)
ds

∣

∣

∣

∣

∣

∣

≤
∫ T

−T

Z ′
Γ(R)

ZΓ(R)

x−R

t2 +R2
dt.

Since limT→∞

∫ T
−T

1
t2+R2dt exists, we have

∣

∣

∣

∣

∣

∣

∫ −R−iT

−R+iT

Z ′
Γ(−s)

ZΓ(−s)

xs

s(s+ 1)
ds

∣

∣

∣

∣

∣

∣

T,R→∞
−→ 0.

It is clear that the second term of (2.10) can be written as

∫ −R−iT

−R+iT
(s+

1

2
) cotπs

xs

s(s+ 1)
ds =

1

2

∫ −R−iT

−R+iT

(1

s
+

1

s+ 1

)

xs cot πsds.
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It is also easy to see that

∫ −R−iT

−R+iT

xs

s
cot πsds

T,R→∞
−→ 0,

and

∫ −R−iT

−R+iT

xs

s+ 1
cotπsds

T,R→∞
−→ 0.

Hence we have

I5
T,R→∞
−→ 0. (2.11)

[Estimate of I2 and I8:] By applying Lemma 2.2 for a fixed δ(< ε), we have for I2

|I2| ≤
∫ − 1

2
+ε

2
O
(

δ−1T 2max(0,δ−t)
)

xt

T 2
dt = O

(

T−1
)

. (2.12)

Similarly

I8
T→∞
−→ 0. (2.13)

[Estimate of I4 and I6:] By the functional equation (1.8) again, we have

I4 =
∫ −R+iT

− 1
2
−ε+iT

{

−
Z ′

Γ(−s)

ZΓ(−s)
+ µ(Γ\H)(s+

1

2
) cotπs

}

xs

s(s+ 1)
ds.

It follows from Lemma 2.2 that
∣

∣

∣

∣

∣

∣

∫ −R+iT

− 1
2
−ε+iT

Z ′
Γ(−s)

ZΓ(−s)

xs

s(s+ 1)
ds

∣

∣

∣

∣

∣

∣

≤
∫ −R

− 1
2
−ε
O(T )

xt

T 2
dt.

Since the integral
∫ −R
− 1

2
−ε
xtdt converges as R → ∞, it is clear that

∣

∣

∣

∣

∣

∣

∫ −R+iT

− 1
2
−ε+iT

Z ′
Γ(−s)

ZΓ(−s)

xs

s(s+ 1)
ds

∣

∣

∣

∣

∣

∣

R,T→∞
−→ 0.

Also since
∣

∣

∣

∣

∣

∣

∫ −R+iT

− 1
2
−ε+iT

(s+
1

2
) cotπs

xs

s(s+ 1)
ds

∣

∣

∣

∣

∣

∣

≤
∫ −R

− 1
2
−ε
o(1)

xt

T
dt

R,T→∞
−→ 0.

one obtains I4
R,T→∞
−→ 0. Quite similarly we have I6

R,T→∞
−→ 0.
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[Estimate of I3 and I7:] To estimate I3 and I7 we consider the following contour
Cε

T .

−1
2

−1

iT

−iT

−1
2
− ε −1

2
+ ε

Inside of the contour Cε
T , the poles of

Z′

Γ(s+1)

ZΓ(s+1)
xs

s(s+1)
are located at s = −1

2
± irl,

where rl is either real with |rl| < T , or pure imaginary with |rl| < ε. Hence by the
residue theorem, we have

1

2πi

∫

Cε
T

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
ds =

∑

rl∈R,|rl|<T,
or rl∈iR,|rl|<ε

( Res
s=− 1

2
+irl

+ Res
s=− 1

2
−irl

)
Z ′

Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)

= −
∑

rl∈R,|rl|<T,
or rl∈iR,|rl|<ε

ml
x−

1
2 cos (rl log x)

1
4

+ r2
l

.

Since the number of rl ∈ iR is finite, the right hand side of the above equation turns
to be

−
∑

|rl|<T

ml
x−

1
2 cos (rl log x)

1
4

+ r2
l

+ o(1) as x→ ∞.

Moreover, since the left hand side is equal to

I3 + I7 +
∫ − 1

2
+ε+iT

− 1
2
+ε−iT

+
∫ − 1

2
−ε−iT

− 1
2
−ε+iT

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
ds,

we find

−
∑

|rl|<T

ml
x−

1
2 cos (rl log x)

1
4

+ r2
l

−
1

2πi
(I3 + I7)

=
1

2πi

{

∫ − 1
2
+ε+iT

− 1
2
+ε−iT

+
∫ − 1

2
−ε−iT

− 1
2
−ε+iT

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
ds

}

+ o(1) as x→ ∞. (2.14)

Now we call respectively by I9, I10 the integrals of the right hand side of (2.14). It
is then enough to estimate I9 and I10. Take sufficiently large number T ′(< T ) and
consider I9 as

I9 =
∫ − 1

2
+ε+T

− 1
2
+ε+T ′

+
∫ − 1

2
+ε+T ′

− 1
2
+ε−T ′

+
∫ − 1

2
+ε−′T

− 1
2
+ε−T

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

s(s+ 1)
ds.
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By Lemma 2.1, the first integral of the expression of I9 above is bounded by

∫ T

T ′

O(t1−ε)
x−

1
2
+ε

t2 + ε2
dt

T→∞
−→ O(x−

1
2
+ε) as x→ ∞.

The exactly same estimate holds for the third integral. Also it is clear that the
second integral is O(x−

1
2
+ε). Hence we have

I9
T→∞
−→ O(x−

1
2
+ε) as x→ ∞. (2.15)

Next, by (1.8) we see that

I10 =
∫ − 1

2
−ε−iT

− 1
2
−ε+iT

{

−
Z ′

Γ(−s)

ZΓ(−s)
+ µ(Γ\H)(s+

1

2
) cotπs

}

xs

s(s+ 1)
ds.

A similar argument as we made above yields

∣

∣

∣

∣

∣

∣

∫ − 1
2
−ε−iT

− 1
2
−ε+iT

Z ′
Γ(−s)

ZΓ(−s)

xs

s(s+ 1)
ds

∣

∣

∣

∣

∣

∣

T→∞
−→ O(x−

1
2
−ε) as x→ ∞.

Since it is also obvious to see that

∫ − 1
2
−ε−iT

− 1
2
−ε+iT

cotπs
xs

s
ds

T→∞
−→ O(x−

1
2
−ε) as x→ ∞,

we have

I10
T→∞
−→ O(x−

1
2
+ε) as x→ ∞. (2.16)

By these estimates for I9, I10, we have

∣

∣

∣

∣

∣

∣

∑

|rl|<T

ml
x−

1
2 cos (rl log x)

1
4

+ r2
l

+
1

2πi
(I3 + I7)

∣

∣

∣

∣

∣

∣

T→∞
−→ o(1) as x→ ∞. (2.17)

Combining the results we obtained so far, we conclude that

∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1
= log x+ γΓ + o(1) as x→ ∞.

This completes the proof of the case n = 0. �

2.3 The case n ≥ 1

To prove the case for n ≥ 1, we consider the integral.

J(γ
(n)
Γ ) =:

1

2πi
lim

T→∞

∫ 2+iT

2−iT

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

sn+1
ds. (2.18)
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Similar to the case of n = 0, using the definition of ZΓ(s), one calculates

J(γ
(n)
Γ ) =

∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1

1

2πi
lim

T→∞

∫ 2+iT

2−iT

1

sn+1
(

x

N(γ)
)sds.

=
∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1

1

n!
(log

x

N(γ)
)n (by Lemma 2.3)

=
∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1

1

n!

n
∑

l=0

(

n

l

)

(−1)l(log x)n−l(logN(γ))l

=
n
∑

l=0

(−1)l

l!(n− l)!
(log x)n−l

∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1
(logN(γ))l

=
n
∑

l=0

(−1)l

l!(n− l)!
(log x)n−l

{ 1

l + 1
(log x)l+1 + Al +O(x−δ)

}

(by Lemma 2.1)

=
(log x)n+1

(n+ 1)!

n
∑

l=0

(

n+ 1

l + 1

)

(−1)l +
n
∑

l=0

(−1)l

l!(n− l)!
(log x)n−lAl +O(x−δ)

=
(log x)n+1

(n+ 1)!
+

n
∑

l=0

(log x)n−l

(n− l)!

(−1)l

l!
Al +O(x−δ) as x→ ∞. (2.19)

On the other hand, we consider the same contour C̃R,T as we used before. Then
the residue theorem asserts

1

2πi

∫

C̃R,T

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

sn+1
ds (2.20)

=







∑

|rl|<T

( Res
s=− 1

2
+irl

+ Res
s=− 1

2
−irl

) +
[R]
∑

k=2

Res
s=−k

+ Res
s=−1

+ Res
s=0







Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

sn+1
.

It is not hard to confirm the following three evaluations.

∑

|rl|<T

( Res
s=− 1

2
+irl

+ Res
s=− 1

2
−irl

)
Z ′

Γ(s+ 1)

ZΓ(s+ 1)

xs

sn+1
=

∑

|rl|<T

ml







x−
1
2
+irl

(−1
2

+ irl)n+1
+

x−
1
2
−irl

(−1
2
− irl)n+1







.

(2.21)

[R]
∑

k=2

Res
s=−k

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

sn+1
=

[R]
∑

k=2

2(g − 1)(2k − 1)
x−k

(−k)n+1
= o(1) as x → ∞. (2.22)

Res
s=−1

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

sn+1
= (2g − 1)(−1)n+1x−1 = o(1) as x→ ∞. (2.23)
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Moreover, since one has

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

sn+1
=
( ∞
∑

l=0

γ
(l−1)
Γ sl−1

)( ∞
∑

m=0

(log x)m

m!
sm
)

s−n−1

=
∞
∑

m=0

∞
∑

l=0

γ
(l−1)
Γ

(log x)m

m!
sm+l−n−2

=
∞
∑

k=0

k
∑

l=0

γ
(l−1)
Γ

(log x)k−l

(k − l)!
sk−n−2

around s = 0, it follows that

Res
s=0

Z ′
Γ(s+ 1)

ZΓ(s+ 1)

xs

sn+1
=

n+1
∑

l=0

γ
(l−1)
Γ

(log x)n+1−l

(n+ 1 − l)!

=
(log x)n+1

(n + 1)!
+

n
∑

l=0

γ
(l)
Γ

(log x)n−l

(n− l)!
. (2.24)

Using the estimates above we see that

J(γ
(n)
Γ ) =

∑

|rl|<T

ml







x−
1
2
+irl

(−1
2

+ irl)n+1
+

x−
1
2
−irl

(−1
2
− irl)n+1







+
(log x)n+1

(n + 1)!
+

n
∑

l=0

γ
(l)
Γ

(log x)n−l

(n− l)!
+ o(1) as x→ ∞. (2.25)

Similar estimates work for J(γ
(n)
Γ ) as we done in the case of n = 0. Thus, when

x→ ∞ we have

(log x)n+1

(n+ 1)!
+

n
∑

l=0

(log x)n−l

(n− l)!

(−1)l

l!
Al =

(log x)n+1

(n+ 1)!
+

n
∑

l=0

γ
(l)
Γ

(log x)n−l

(n− l)!
+ o(1)

This means clearly that γ
(n)
Γ = (−1)n

n!
An. We therefore obtain from Lemma 2.1 that

γ
(n)
Γ =

(−1)n

n!
An =

(−1)n

n!
lim

x→∞







∑

γ∈Hyp(Γ)
N(γ)<x

logN(Pγ)

N(γ) − 1
(logN(γ))n −

(log x)n+1

n+ 1







.

(2.26)

This proves the case n ≥ 1 and Theorem 1 now follows. �

2.4 Powers of essential zeroes of the Selberg zeta function

We prove the statement (2) in Theorem B. In fact, we establish the formulas which
express the sum of the integral powers of essential zeroes of the Selberg zeta function.

Define the spectral zeta function ζ∆(s) by

ζ∆(s) =
∞
∑

n=1

λ−s
n =

∞
∑

n=1

(
1

4
+ r2

n)
−s.



508 Y. Hashimoto – Y. Iijima – N. Kurokawa – M. Wakayama

From the expression (1.4) the

following Laurent expansion around s = 1 ([Ste]) follows immediately.

1

2s− 1

Z ′
Γ(s)

ZΓ(s)
=

1

s− 1
+

∞
∑

n=0

an(s− 1)n,

where the coefficients an are given by

a0 = lim
s→1

{ 1

2s− 1

Z ′
Γ(s)

ZΓ(s)
−

1

s− 1

}

,

an = (−1)n+1
{

1 + 2(g − 1)ζ(n+ 1) +

[ n
2
]

∑

l=0

(−1)l+1

(

n− l

l

)

ζ∆(n+ 1 − l)
}

.

By Theorem 2.1 one easily has

γ
(n)
Γ = 2an−1 + an, (2.27)

where we put a−1 = 1 for convenience. Hence it follows that

γ
(0)
Γ = 2 + a0.

If we put n = 1 in (2.27) then since γ
(1)
Γ = 2a0 + a1 we have

−A1 = 2(A0 − 2) + {1 + 2(g − 1)ζ(2) − ζ∆(2)},

whence

ζ∆(2) = A1 + 2A0 + 2(g − 1)ζ(2)− 3.

Suppose n ≥ 2.. Then

(−1)n

n!
An = 2(−1)n

{

1 + 2(g − 1)ζ(n) +

[ n−1
2

]
∑

l=0

(−1)l+1

(

n− 1 − l

l

)

ζ∆(n− l)
}

+ (−1)n+1
{

1 + 2(g − 1)ζ(n+ 1) +

[ n
2
]

∑

l=0

(−1)l+1

(

n− l

l

)

ζ∆(n+ 1 − l)
}

.

Namely we have

An

n!
= 1 + 2(g − 1)

{

2ζ(n) − ζ(n+ 1)
}

+ 2

[ n−1
2

]
∑

l=0

(−1)l+1

(

n− 1 − l

l

)

ζ∆(n− l)

−

[ n
2
]−1
∑

l=0

(−1)l+1

(

n− 1 − l

l + 1

)

ζ∆(n− l) + ζ∆(n + 1).

Thus we obtain the following result.
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Corollary. The values ζ∆(n) (n ≥ 2) is determined successively by the following
recurrence formulas.

ζ∆(2) = A1 + 2A0 + 2(g − 1)ζ(2) − 3

= 2γ
(0)
Γ − γ

(1)
Γ + (g − 1)

π2

3
− 3,

ζ∆(n + 1) =

[ n
2
]−1
∑

l=0

(−1)l

{(

n− 1 − l

l + 1

)

+ 2

(

n− 1 − l

l

)}

ζ∆(n− l)

+ {(−1)n+1 + 1}(−1)[ n+1
2

] + ζ∆([
n+ 1

2
])

+
An

n!
− 2(g − 1)

{

2ζ(n) − ζ(n+ 1)
}

− 1.

3 Euler’s constants of algebraic number fields

We give the proof of Theorem B concerning the Euler constants of algebraic number
fields. The way of proving (1) is quite similar to the one for the case of n = 0 in
Theorem A. Thus we shall skip some detail of the estimates.

Proof of Theorem B (1). Since

−
ζK

′(s)

ζK(s)
=
∑

p

∞
∑

m=1

logN(p)

N(p)ms

where p runs over prime ideals, by Lemma 2.3 with n = 0 we see that

−
1

2πi

∫ 2+i∞

2−i∞

ζK
′(s+ 1)

ζK(s+ 1)
xss−1ds =

∑

p

∞
∑

m=1

logN(p)

N(p)m ·
1

2πi

∫ 2+i∞

2−i∞

(

x

N(p)m

)s

s−1ds

=
∑

N(p)m<x

logN(p)

N(p)m
+ o(1)

=
∑

N(p)<x

logN(p)

N(p) − 1
+ o(1)

when x → ∞. We refer to Narkiewicz [Nar] for basic analytic properties of the
Dedekind zeta functions.

Take a path CR,T : 2 − iT → −R − iT → −R + iT → 2 + iT for suitable large
numbers T and R. (Note that CR,T = (−C̃R,T ) ∪ [2 − iT, 2 + iT ] in the previously
defined contour C̃R,T ). Then using estimates for the Dedekind zeta function, as we
did in the Section 2, we have

lim
T→∞

{

−
1

2πi

∫ 2+iT

2−iT

ζK
′(s+ 1)

ζK(s+ 1)
xss−1ds

}

= lim
T→∞

lim
R→∞

(

∫ 2+iT

2−iT
−
∫

CR,T

)(

−
1

2πi
·
ζK

′(s+ 1)

ζK(s+ 1)
xss−1

)

ds

+ lim
T→∞

lim
R→∞

{

−
1

2πi

∫

CR,T

ζK
′(s+ 1)

ζK(s+ 1)
xss−1ds

}

= log x−
γ0(K)

γ−1(K)
+ o(1) as x→ ∞
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since
ζK

′(s)

ζK(s)
= −

1

s− 1
+

γ0(K)

γ−1(K)
+ · · · (3.1)

around s = 1. Hence it is immediate to see

∑

N(p)<x

logN(p)

N(p) − 1
= log x−

γ0(K)

γ−1(K)
+ o(1) as x → ∞.

Hence it follows that

γ0(K) = γ−1(K) lim
x→∞



log x−
∑

N(p)<x

logN(p)

N(p) − 1



 .

Proof of (2). Put

ζ̂K(s) = s(1 − s)





√

|D(K)|

2r2π[K:Q]/2





s

Γ
(

s

2

)r1

Γ(s)r2ζK(s). (3.2)

Then, it is known that the following functional equation holds.

ζ̂K(s) = ζ̂K(1 − s). (3.3)

Since ζ̂K(s) is of order 1, one may write

ζ̂K(s) = eas+b
∏

ρ∈ZK

(

1 −
s

ρ

)

e
s
ρ (3.4)

with some complex numbers a and b.
Taking the logarithmic derivative of right-hand sides of (3.2) and (3.4) respec-

tively, we have

a+
∑

ρ∈ZK











−
1

ρ

1 −
s

ρ

+
1

ρ











=
1

s
+

−1

1 − s
+log

√

|D(K)|

2r2π[K:Q]/2
+r1

Γ′

(

s

2

)

2Γ
(

s

2

)+r2
Γ′(s)

Γ(s)
+
ζK

′(s)

ζK(s)
.

(3.5)
By the functional equation (3.3), one sees that the left-hand side of (3.5) is equal to
also

−a−
∑

ρ∈ZK











−
1

ρ

1 −
1 − s

ρ

+
1

ρ











.

It is hence clear that

−2a =
∑

ρ∈ZK

(

1

s− ρ
+

1

ρ

)

+
∑

ρ∈ZK

(

1

1 − s− ρ
+

1

ρ

)

.

Putting s = 1 yields

a = −
1

2

∑

ρ∈ZK

(

1

ρ
+

1

1 − ρ

)

.
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Hence it follows from (3.5) that

−
1

2

∑

ρ∈ZK

(

1

ρ
+

1

1 − ρ

)

+
∑

ρ∈ZK

(

1

s− ρ
+

1

ρ

)

=
1

s
+

1

s− 1
+

1

2
log |D(K)|−

[K : Q]

2
log π + r1

Γ′

(

s

2

)

2Γ
(

s

2

) + r2

{

Γ′(s)

Γ(s)
− log 2

}

+
ζK

′(s)

ζK(s)
.

Therefore if we let s→ 1 and use the expression (3.1) we obtain

1

2

∑

ρ∈ZK

(

1

1 − ρ
+

1

ρ

)

= 1 +
1

2
log |D(K)| −

[K : Q]

2
log π + r1

Γ′

(

1

2

)

2Γ
(

1

2

) + r2

{

Γ′(1)

Γ(1)
− log 2

}

+
γ0(K)

γ−1(K)
.

Since one knows that Γ′
(

1
2

)

/Γ
(

1
2

)

= −γ−2 log 2 and Γ′(1)/Γ(1) = −γ, the following
equation follows immediately.

∑

ρ∈ZK

1

ρ
=

γ0(K)

γ−1(K)
−r1

(

log 2 +
γ

2

)

−r2(log 2+γ)+
1

2
log |D(K)|−

[K : Q]

2
log π+1.

This completes the proof of the theorem.

Example 3.1. Consider the case K = Q. Then, since n = 1, r1 = 1, r2 = 0,
D(Q) = 1, γ−1(Q) = 1 and γ0(Q) = γ, we recover the Riemann’s explicit formula
(1.1) as follows.

∑

ρ∈ZQ

1

ρ
= γ −

(

log 2 +
γ

2

)

−
1

2
log π + 1

= 1 +
γ

2
−

1

2
log π − log 2.

Remark 3.2. We remark here that the following another expression of γ0(K) is
known.

γ0(K) = lim
x→∞





∑

N(a)<x

1

N(a)
− γ−1(K) log x



 (Landau, 1902).

4 Higher Euler’s constants and powers of essential zeroes

In this section we give certain formulas of powers of essential zeros of the Riemann
zeta function. It is actually considered as the higher power analogue of Riemann’s
explicit formula (1.1).

Theorem 3. Let

ζ(s) =
1

s− 1
+ γ + γ1(s− 1) + γ2(s− 1)2 + · · ·

be the Laurent expansion around s = 1. Then the following relations hold :
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(1) 2γ1 − γ2 = 1 −
π2

8
−
∑

ρ∈Z

1

ρ2
.

(2) 2γ1 − γ2 = lim
x→∞

{

1

2
(log x)2 − γ log x−

∑

n<x

Λ(n)

n
log

x

n

}

.

(3) 3γ2 − 3γ1γ + γ3 =
7

8
ζ(3) − 1 +

∑

ρ∈Z

1

ρ3
.

(4) 3γ2 − 3γ1γ + γ3 = lim
x→∞

{

1

6
(log x)3 −

1

2
γ(log x)2 − (2γ1 − γ2) log x

−
1

2

∑

n<x

Λ(n)

n

(

log
x

n

)2
}

.

Before starting the proof, we first note that the Laurent expansion.

ζ ′(s)

ζ(s)
= −

1

s− 1
+ γ + (2γ1 − γ2)(s− 1) + (3γ2 − 3γ1γ + γ3)(s− 1)2 + · · · . (4.1)

For convenience, set

b1 = 2γ1 − γ2, b2 = 3γ2 − 3γ1γ + γ3.

Proof of (1). Put

J := lim
T→∞

{

−
1

2πi

∫ 2+iT

2−iT

ζ ′(s+ 1)

ζ(s+ 1)
s−2ds

}

. (4.2)

Similar to the discussion we made in the Section 2, we evaluate J by changing the
path. In fact, we show first that J = 0 as follows. Consider the path given by

CT : 2 − iT → T − iT → T + iT → 2 + iT.

We may choose T large enough. By the residue theorem it is obvious to see that

(

∫

CT

−
∫ 2+iT

2−iT

)(

−
1

2πi
·
ζ ′(s+ 1)

ζ(s+ 1)
s−2

)

ds = 0.

Therefore, since
∣

∣

∣

∣

∣

1

2πi

∫

CT

ζ ′(s+ 1)

ζ(s+ 1)
s−2ds

∣

∣

∣

∣

∣

= O
(

T−1
)

,

one concludes that J = 0. We consider next the following path defined before;

CR,T : 2 − iT → −R − iT → −R + iT → 2 + iT,

where R is taken to be a large even integer. By (4.1), one also see that

lim
T→∞

lim
R→∞

(

∫ 2+iT

2−iT
−
∫

CR,T

)(

−
1

2πi
·
ζ ′(s+ 1)

ζ(s+ 1)
s−2

)

ds = −
∑

ρ∈Z

1

(ρ− 1)2
−

∞
∑

n=1

1

(2n+ 1)2
−b1.
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Moreover, the arguments similar to those in the proof of Theorem 1.1 yields

lim
T→∞

lim
R→∞

∣

∣

∣

∣

∣

1

2πi

∫

CR,T

ζ ′(s+ 1)

ζ(s+ 1)
s−2ds

∣

∣

∣

∣

∣

= 0.

(In order to show the fact above, we need the several estimates for ζ′(s+1)
ζ(s+1)

. More

precisely, see [KW3].) Therefore, since J = 0 one has

b1 = −
∑

ρ∈Z

1

(ρ− 1)2
−

∞
∑

n=1

1

(2n+ 1)2

= −

(

∞
∑

n=1

1

n2
− 1 −

∞
∑

n=1

1

(2n)2

)

−
∑

ρ∈Z

1

ρ2

= 1 −
3

4
ζ(2) −

∑

ρ∈Z

1

ρ2

= 1 −
π2

8
−
∑

ρ∈Z

1

ρ2
.

Proof of (2). We evaluate

lim
T→∞

{

−
1

2πi

∫ 2+iT

2−iT

ζ ′(s+ 1)

ζ(s+ 1)
xss−2ds

}

(4.3)

in two ways. For the path CR,T defined in the proof of (1) above, using the residue
theorem we obtain

lim
T→∞

lim
R→∞

(

∫ 2+iT

2−iT
−
∫

CR,T

)(

−
1

2πi
·
ζ ′(s+ 1)

ζ(s+ 1)
xss−2

)

ds

= −
∑

ρ∈Z

xρ−1

(ρ− 1)2
−

∞
∑

n=1

x−2n−1

(2n+ 1)2
+

1

2
(log x)2 − γ log x− b1,

since around s = 0 one has the expansion

−
ζ ′(s+ 1)

ζ(s+ 1)
xss−2 = −

(

−s−1 + γ + b1s + · · ·
)

(

1 + (log x)s +
1

2
(log x)2s2 + · · ·

)

s−2

= s−3 + (log x− γ)s−2 +
(

1

2
(log x)2 − γ log x− b1

)

s−1 + · · · .

On the other hand, by Lemma 2.3 one sees that (4.3) becomes

1

2πi

∫ 2+i∞

2−i∞

(

∞
∑

n=1

Λ(n)

ns+1
xss−2

)

ds =
∞
∑

n=1

Λ(n)

n
·

1

2πi

∫ 2+i∞

2−i∞

(

x

n

)s

s−2ds

=
∑

n<x

Λ(n)

n
log

x

n
.

Therefore we obtain

∑

n<x

Λ(n)

n
log

x

n
= −

∑

ρ∈Z

xρ−1

(ρ− 1)2
−

∞
∑

n=1

x−2n−1

(2n+ 1)2
+

1

2
(log x)2 − γ log x− b1.
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It follows that immediately

b1 = lim
x→∞

{

1

2
(log x)2 − γ log x−

∑

n<x

Λ(n)

n
log

x

n

}

.

Proof of (3). The proof is similar to that of (1). In fact, we have

−
∑

ρ∈Z

1

(ρ− 1)3
+

∞
∑

n=1

1

(2n+ 1)3
− b2 = 0

by considering

lim
T→∞

{

−
1

2πi

∫ 2+iT

2−iT

ζ ′(s+ 1)

ζ(s+ 1)
s−3ds

}

.

Hence

b2 =
∞
∑

n=1

1

(2n+ 1)3
−
∑

ρ∈Z

1

(ρ− 1)3
=

(

∞
∑

n=1

1

n3
−

∞
∑

n=1

1

(2n)3
− 1

)

+
∑

ρ∈Z

1

ρ3

=
7

8
ζ(3) − 1 +

∑

ρ∈Z

1

ρ3
.

Proof of (4). We study the following limit.

lim
T→∞

{

−
1

2πi

∫ 2+iT

2−iT

ζ ′(s+ 1)

ζ(s+ 1)
xss−3ds

}

. (4.4)

By the residue theorem again, we see that the limit (4.4) is equal to

−
∑

ρ∈Z

xρ−1

(ρ− 1)3
+

∞
∑

n=1

x−2n−1

(2n+ 1)3
+

1

6
(log x)3 −

γ

2
(log x)2 − b1 log x− b2

since

−
ζ ′(s+ 1)

ζ(s+ 1)
xss−3

= −
(

−s−1 + γ + b1s+ b2s
2 + · · ·

)

(

1 + (log x)s+
1

2
(log x)2s2 +

1

6
(log x)3s3 + · · ·

)

s−3

= · · ·+
(

1

6
(log x)3 −

γ

2
(log x)2 − b1 log x− b2

)

s−1 + · · ·

around s = 0. On the other hand, using lemma 2.3 again for n = 2 one finds that
(4.4) is equal to

∑

n<x

Λ(n)

n
·

1

2

(

log
x

n

)2

.

Therefore, we have

∑

n<x

Λ(n)

n
·

1

2

(

log
x

n

)2

=

−
∑

ρ∈Z

xρ−1

(ρ− 1)3
+

∞
∑

n=1

x−2n−1

(2n+ 1)3
+

1

6
(log x)3 −

γ

2
(log x)2 − b1 log x− b2,

whence it follows that

b2 = lim
x→∞

{

1

6
(log x)3 −

1

2
γ(log x)2 − b1 log x−

1

2

∑

n<x

Λ(n)

n

(

log
x

n

)2
}

.

These complete the whole of the proof of Theorem B. �
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Remark 4.1. Clearly, equating the two expressions (1) and (2) of Theorem 3, one
arrives at the following identity. that

∑

ρ∈Z

1

ρ2
= 1 −

π2

8
− lim

x→∞

{

1

2
(log x)2 − γ log x−

∑

n<x

Λ(n)

n
log

x

n

}

.

Furthermore, by equating (3) and (4) and using (2) again one has

∑

ρ∈Z

1

ρ3
= 1−

7

8
ζ(3)+ lim

x→∞

{

−
1

3
(log x)3 +

1

2
γ(log x)2 +

1

2

∑

n<x

Λ(n)

n
(log

x

n
)(log nx)

}

.

Note here that ζ(3) is expressed as

7

8
ζ(3) = π2







1

4
log 2 −

1

8
+

∞
∑

m=1

ζ(2m)

(m+ 1)4m+1







. (see [KW1])

Similar analysis we developed here enables us to obtain in principle the formulas
for further higher powers of essential zeroes.
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