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IN ALL DIMENSIONS 

FRANK QUINN 

Moving one submanifold to be transverse to another is a basic and essential 
operation in the study of manifolds. In the differentiate and PL categories 
the proof that this operation is always possible is straightforward, and one of 
the first objectives in developments of the subject. In the topological category 
it is more difficult; the first progress came in the profound work of Kirby and 
Siebenmann [4]. Most of what they left unsettled was completed in [7], but 
a few resistant 4-dimensional cases have remained open. Here we sketch a 
proof of these exceptional cases; details will appear in Chapter 9 of [3]. We 
also indicate modifications required in the proof of [4] to reduce the theorem 
to these cases. In particular this includes the intersection dimension 4 case, 
which was claimed without proof in [7]. 

THEOREM. Suppose M and X are proper submanifolds of Y, X has a 
normal microbundle £, there are closed subsets C C D C Y, and M is trans­
verse to Ç near C. Then there is an isotopy of M supported in any given 
neighborhood of (D — C)C\M C\X, to a submanifold transverse to f near D. 

A submanifold is "proper" if closed, and the intersection with the boundary 
is the boundary of the submanifold. Transversality to a microbundle f means 
that the intersection M Ci X is a manifold with a normal microbundle in M, 
and this microbundle is the restriction of f (see [4, III §1]). It is necessary 
to specify a bundle because the theorem is false for purely local versions of 
transversality; see [4, III §1]. Microbundle transversality implies transversality 
with respect to other bundle theories, e.g., [6]. 

Kirby and Siebenmann [4, p. 91] proved this assuming dim M ^ 4 ^ 
dim M H X, and either dim X ^ 4 ^ dim Y or codim M > 3. [7, Theorem 
2.4.1] gave the remaining cases except when dim Y = 4 and one of M,X has 
dimension greater than 2. 

Received by the editors November 5, 1987. 
1980 Mathematics Subject Classification. Primary 57N75. 

©1988 American Mathematical Society 
0273-0979/88 $1.00 + $.25 per page 

145 



146 FRANK QUINN 

SKETCH OF THE PROOF, FOLLOWING [4, p. 90]. The bounded case follows 
from two applications of the case with dY empty. The "strongly relative" 
nature of the theorem allows reduction to f trivial, M with one coordinate 
chart and Y open in a product M x R9. At this point Y has a PL structure 
as a subset of M x R9 , and M is PL in Y. The plan is to make X PL with 
respect to such a structure, and then use the PL transversality theorem. 

PRODUCT STRUCTURE THEOREM. Suppose NnxRr has a PL structure, 
which near W xRr is the product with a PL structure on a neighborhood of 
W C N. Suppose that the closure of N — W has no compact components if n 
is 3 or 4. Then there is a PL structure on N extending the one near W, so 
that the product structure on Nn x R r is concordant rel W x R r to the given 
one, and is isotopic except possibly when n + r = 4 and n>2. 

REFERENCES. If n > 5, or n + r > 5 and n < 3, then this comes from 
[4, I §1]. If n -f r < 3 the result follows from the existence and uniqueness of 
triangulations in these dimensions. 

If n = 4 then the 3-connectivity of TOP(4)/PL(4) -+ TOP/PL [7, 5], and 
noncompactness of N implies that the tangent microbundle of N has a PL 
structure compatible with the PL structure on the product. Immersion theory 
(see [4, p. 226]) shows this microbundle structure comes from a structure on 
the manifold, and implies the resulting product structure is concordant to the 
original. Since n + r > 5 the Concordance Implies Isotopy theorem [4] shows 
they are isotopic. 

If n + r = 4 the concordance statement again comes from immersion theory 
and the connectivity of TOP(4)/PL(4) -+ TOP/PL. The isotopy assertion 
when n < 1 comes from [7], see [8, Theorem 2.1]. 

This statement is false in the excluded cases. 3-manifolds have unique 
PL structures, while the high-dimensional theory predicts two on compact 
ones. The theorem therefore works about half the time in this case, and the 
obstruction is well understood. In dimension 4, PL structures behave rather 
strangely, and presently little useful can be said about "obstructions" (see [8] 
or [3, Chapter 8] for discussions). 

PROOF (CONTINUED). Let L0 denote a neighborhood of C D M D X in 
M n X , so that M is transverse to £ in a neighborhood of the closure of LQ. 
The first step is to arrange Lo to be PL in M. We may arrange that LQ has 
no compact components simply by deleting points from Y. A neighborhood 
in M is of the form Lo x R n (by transversality, and triviality of f ). According 
to the product structure theorem there is a concordance of the structure on 
M to one in which Lo is a PL flat submanifold of M - (M fl X — int Lo). No 
cases are excluded at this point. 

The next step [4, p. 93] involves a division according to the codimension 
of M. When codim M > 3 the given proof applies without change, and 
completes these cases. 

When codim M < 2 there is a normal bundle for L0 in X. The case with 
dim Lo = 2, dim X = 4 is excluded in [4], but is now known [2]. Extend this 
to a normal bundle in Y for a neighborhood of Lo in M, using [4, Lemma 1,9, 
p. 99]. Extend this further to a normal bundle for M C Y using the relative 
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version of existence for normal bundles. Since we have reduced to M flat in 
Y this bundle must be trivial. 

Now consider the intersection of X with this normal bundle for M. There 
is a PL structure on a neighborhood of LQ in X which is a PL submanifold 
of Y and PL transverse to M. Since X has a product neighborhood I x R n 

in Y, the product structure theorem implies that, if dim Y ^ 4, there is an 
isotopy of X rel L0 to a PL submanifold of Y. 

The PL transversality theorem applies to give a further isotopy rel LQ to 
make X transverse to M. Inverting these isotopies gives an isotopy which 
makes M transverse to X, as required for the theorem. 

EXCEPTIONAL CASES. Cases with dim Y = 4 and dim X, dim M > 2 are 
excluded in the last step because the product structure theorem only gives a 
concordance. The case dim X = dim Y = 2 is proved in [8]. Roughly, M 
is arranged to be PL as above, and X is changed by regular homotopy to be 
PL, and then transverse. An isotopy is obtained by working back past the 
singularities of the regular homotopy. 

In the remaining case we assume dim X = 3. The first step is to refine 
the initial reduction to reduce consideration to X = R3, Y = D = R4, and 
C = (R3 - int D3) x R. 

Choose a triangulation of X fine enough so that X fi C can be replaced by 
a subcomplex. Now proceed by induction (for 4 steps): suppose M is trans­
verse to a neighborhood of C U X1, and show it can be made transverse to a 
neighborhood of C U X1*1. The induction step requires extending transver­
sality from near the boundary of an (i + l)-simplex to a neighborhood of the 
entire simplex. Note that if M is transverse to the simplex itself then minor 
adjustment makes it transverse to X in a neighborhood of the simplex. But 
if i + 1 < 3 then transversality to the simplex is a lower-dimensional problem, 
which we may assume already known. The remaining problem is the induction 
step for 3-simplices; X = R 3 as above. 

Recall that although Y ~ R4, it is to be given a PL structure as a sub­
set of M x R9 . This may be different from the standard structure on R4. 
X has been arranged to be PL with respect to this structure near M O 
(R3 — int D3). Next approximate X by a PL submanifold; choose a PL 
codimension 1 X4 disjoint from, and in a neighborhood of, X, so that the 
intersection with M near R 3 - int D3 is parallel (in M) to the intersection 
with X. We also assume X4 transverse to M, and discard any compact com­
ponents. 

Denote the region between X and X4 by W. Since W is noncompact it has 
a handlebody structure; a collar on X union handles. Using the "parallel" 
condition it can be arranged that near R 3 — int D3 only the collar intersects 
M, and intersects in a subcollar. Consequently M intersects only finitely 
many of the handles of W. 

Let Xi denote the level between the i and (i + l)-handles. Then Xi is 
obtained from Xi-\ via i-handles, and dually X^\ is obtained from Xi via 
(4 — i)-handles. (This is "ambient surgery" on Xi). If Xi is transverse to 
M, and the cores of these dual handles are also transverse to M, then (as 
in the simplicial reduction above) M can be adjusted to be transverse to the 
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"handlebody", and therefore to JK»_i. Transversality to the cores is a lower-
dimensional problem as long as 4 - i < 3, so can be assumed to be possible. 
This means we can make X\ transverse to M. 

The 0-handles in W can be easily cancelled with 1-handles, so X = XQ. 
The conclusion is that by changing X using finitely many 1-handles, it can be 
made transverse to M. 

Now since Y = R4 and X = R3 (topologically), the 1-handles are homo-
topically trivial. Since homotopy implies isotopy for 1-manifolds, they are 
topologically trivial. In particular there are cancelling 2-handles, so it is also 
possible to retrieve X from X\ using only 2-handles. But 2-handles are a 
lower-dimensional case, so as above M can be made transverse to the cores, 
and therefore to X. 
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