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PRIME VALUES OF POLYNOMIALS 
AND IRREDUCIBILITY TESTING 

BY KEVIN S. McCURLEY 

In 1857 Bouniakowsky [6] made a conjecture concerning prime values of 
polynomials that would, for instance, imply that x2 + 1 is prime for infinitely 
many integers x. Let ƒ (x) be a polynomial with integer coefficients and define 
the fixed divisor of ƒ, written d(ƒ), as the largest integer d such that d divides 
f(x) for all integers x. Bouniakowsky conjectured that if f(x) is nonconstant 
and irreducible over the integers, then there exist infinitely many integers x 
such that f(x)/d(f) is a prime. An even stronger conjecture of Bateman and 
Horn [3, 4] would imply that if ƒ (x) is a nonconstant irreducible polynomial 
of degree n, with d(f) = 1, then 

ir[x:f)~—— : , asx—>oo, 
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where 7r(x; ƒ) is the number of integers m with 1 < m < x for which | f{m)\ is 
prime, and 

p r 

where w(p) is the number of solutions of the congruence f(x) = 0 (modp). 
The only case of this conjecture that is know to be true is when n = 1, 
where the conjecture is equivalent to the prime number theorem for arith­
metic progressions. At present there seems to be very little hope of proving 
the Bouniakowsky conjecture when n > 2, much less the Bateman-Horn con­
jecture. 

In this note we will be concerned with a related question, namely whether 
there exist irreducible polynomials ƒ with d( ƒ ) = 1 such that the smallest value 
of x for which ƒ(x) is prime is somehow "large". For example, Pomerance [8] 
has shown that there exist linear polynomials ƒ (x) = a + qx with 0 < a < q 
and d( ƒ) = 1 such that ƒ(x) is composite for all nonnegative integers x with 

| s | < ( e - € ) l o g ç l o g 2 , ^ , 

where \ogmq is the m-fold iterated natural logarithm. The proof of this result 
uses a method developed by Erdös, Rankin, and Schönhage for showing that 
there exist large gaps between consecutive primes. The author has recently 
discovered that this method will also yield nontrivial results for polynomials of 
higher degree. For example, it can be proved that there exist positive integers 
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a such that x2 + a is composite for all integers x with |x| < loga(logloga)2~c. 
Details of this and other results will be forthcoming. In this note, however, 
we will instead present a somewhat different approach. 

For polynomials of large degree, we should probably measure the size ^f 
the smallest x for which f(x) is prime in terms of the degree of ƒ and the 
size of the coefficients of ƒ. For this reason we define the length of ƒ, written 
L(ƒ), of the polynomial f(x) = S/t=o akxk by 

£(ƒ) = £ Ml, 
fc=0 

where ||afc|| is the length of â  when written in binary, with ||0|| = 1. Our 
main result is the following. 

THEOREM. There exist infinitely many irreducible polynomials f(x) with 
d(f) = 1 such that ƒ(x) is composite for all integers x with 

where C\ is a positive absolute constant. 

The proof of this theorem uses a result due to A. Odlyzko (see [2]) which 
says that there exist infinitely many integers n such that n has at least 

logn \ 
log log n) 

divisors of the form p — 1, where p is a prime. Let n be such a number, and 
let piy... ,pfc be the odd primes for which p% — \ divides n. We now define 
f(x) = i n + D, where D = p r • -pk — 1 or D = 3pr • -p^ — 1, chosen so that 
D = 2 (mod 4). It follows from Eisenstein's criterion that ƒ is irreducible and, 
furthermore, /(O) ^ /(I) (modp), so that d(f) = 1. If x ^ 0 (modp^), then 
it follows from Fermat's "little" theorem that f(x) = 0 (modp*), so f(x) is 
composite. Hence if f(x) is prime we have x = 0 (modpr • 'Pk), and since /(O) 
is composite, it follows that 

W > P l . . . P f c > 2 ^ > e x p ( è x p ( c l i ^ ) ) 

provided C\ < C2 and n is sufficiently large. The theorem then follows from 
the fact that 

L(f) = n + ||£>|| = n + O(logD) - n, 

since for n sufficiently large we have 

logD < log) 3n(<*+1) j < X > g ( 3 n + 3) < nc. 
\ d\n J d\n 

Note that we have actually proved slightly more than we claimed, namely 
that if f{x\) and f fa) are distinct primes, then 

*-*'>-K«5&)> 
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It may be of interest to consider some examples of polynomials with d( ƒ ) = 
1 that have no small prime values. In a computer search conducted by the 
author among polynomials of the form xn 4 D, the following examples were 
discovered: 

ft (x) = x6 + 82991, composite for all |x| < 7980, 
/2(x) = x12 + 4094, composite for all |x| < 170625, 
/3(x) = x12 4- 488669, composite for all |x| < 616980. 

Note that the smallest prime value of ƒ3 (x) has at least seventy decimal digits! 
The theorem presented here has an interesting connection with a polyno­

mial irreducibility proving algorithm proposed by Brillhart [5]. He observed 
that if m is an integer for which all zeros of f(x) lie in |x| < m, and if /(xo) 
is prime for some integer xo with |xo| > m 4-1, then ƒ is irreducible over the 
integers. Brillhart gave two methods for calculating m. For the polynomials 
constructed in the proof of our theorem, one method gives m = D + l, and 
the other method gives m = 2 if n is sufficiently large. Suppose now that we 
test individually the numbers /(±(m 4 fc)), k = 1,2,..., until we find a prime 
value. According to the theorem, we would have to test at least 

values before we found a prime. In the language of computational complexity 
theory, this means that the algorithm will not terminate in polynomial time, 
since the number of operations required grows faster than any polynomial 
function of L( ƒ ), the length of the input to the algorithm. 

We have shown that there exist polynomials ƒ with d(f) = 1 having an 
extremely low density of prime values, and that this can cause some difficulties 
in finding a prime value of ƒ, but this does not altogether invalidate the 
usefulness of Brillhart's criterion. First of all, the type of behaviour exhibited 
by the polynomials in this note is probably quite rare, and it is probably 
not difficult to locate a prime value of an "average" polynomial with d(ƒ) = 
1. Furthermore, as Brillhart himself observed, if p divides /(x), then p also 
divides /(x4fcp) for every fc, and this fact can be used in a sieve procedure to 
remove from consideration many other values of x. This sort of approach has 
also been suggested by Adleman and Odlyzko [1]. They also describe how to 
deal with the case d(f) # 1. 

In closing we note that Lenstra, Lenstra, and Lovasz [7] have recently 
proved that there exists a polynomial time algorithm to factor polynomials 
over the integers, and hence also to prove irreducibility. It remains to be 
seen whether there exists an algorithm to decide if ƒ is irreducible that has a 
shorter running time than the known algorithms that depend on an attempt 
to factor ƒ. This appears to be the case in the corresponding problem for 
integers (see [2]), where the current methods for primality testing are much 
faster than current factorization methods. 
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