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WEB GEOMETRY 

BY SHIING-SHEN CHERN1 

Introduction. Poincaré published two papers on surfaces of translation [10, 
l l ] . 2 They were among his lesser known papers. In the following pages I wish 
to show that the subject he touched is an exciting one and deserves further 
investigation. 

1. Lie's theorem on surfaces of double translation and its developments. A 
surface M of translation in R3 is defined by the parametric equations 

(1) xx = fx(u) + gx(v), 1 < X < 3 , 

where xx are the coordinates in R3 a n d / \ gx are arbitrary smooth functions. 
It is immediately seen that the tangent lines to the «-curves (respectively the v 
curves) are independent of v (resp. w) and define a curve Cu (resp. Cv) in the 
plane at infinity. 

M is called a surface of double translation if it is a surface of translation in a 
second way, i.e., given also by the equations 

(2) xx = h\s) + k\t), 1 < X < 3, 

such that exactly two of the equations 

(3) f(u) + g\v) - h\s) - k\i) = 0, 1 < X < 3, 

are independent. In 1882 Sophus Lie proved the remarkable theorem [7]: 

If M is a surface of double translation in R3, the four curves CM, Q , C5, Ct in 
the plane at infinity defined by the tangent lines to the four families of 
parametric curves belong to the same algebraic curve of degree four. 

The theorem means that the solutions of the functional equations (3) on a 
surface arise from an algebraic structure. Lie's proof makes use of the 
integrability conditions of over-determined systems of partial differential 
equations. In fact, from (1) we have 

(4) d2xx/dudv = 0, 

which means that the parametric curves form a conjugate net, i.e., their 
tangent directions separate harmonically the asymptotic directions at each 
point. If the surface M is given in the nonparametric form 

(5) z = z(x,y), 
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this condition is expressed by an equation 

(6) R(p, q)r + Q(p9 q)s + T(p, q)t - 0 

where 

(7) P = zx, q = Zy, r = zxx9 s = z^ , / = z^ . 

A surface M of double translation satisfies, besides (6), another equation 

(60 *'(/>, *)r + £'(/>> q)s + r ( /7 , *)/ - 0. 

An investigation of the integrability conditions of the system of equations (6), 
(6') involves long and tedious calculations. In particular, the fourth-order 
partial derivatives of z come into play. The work was a true tour de force, but 
Lie reached his goal. 

Poincaré was quick to recognize the importance of Lie's work, and to 
observe its relation with the theory of abelian functions. In [10, 11] he gave 
two proofs of Lie's theorem based on abelian functions and algebraic geome­
try rather than on partial differential equations.3 Although the proofs are 
perhaps not complete, Poincaré introduced fresh ideas and new viewpoints. 
As a consequence of Poincaré's work it follows that a surface of double 
translation can be defined by equating a theta function to zero. As a result 
the surface 

(8) xxx2x3 = alxl + a2x2 + a3x3, 

where the a9s are constants, is a surface of double translation. The best proof 
of Lie's theorem was given by Darboux, using the theory of residues [5]. 

It should be remarked that Lie started his program on surfaces of transla­
tion through his work on minimal surfaces. It was known to Monge that an 
analytic minimal surface is a surface of translation (1) with parametric curves 
which are minimal or isotropic curves. 

Lie proceeded to study the high-dimensional case. A translation manifold 
in Rn+1 is the hypersurface defined by the parametric equations 

(9) xx = 2 f\ua), 1< X < n + 1, 
Ka<n 

where xx are the coordinates in Rn+1 and the/ 's are smooth functions in the 
respective variables. Lie tried to determine all hypersurfaces of double trans­
lation and settled the case n = 3 in a long paper [8]. In the same paper he 
promised to return to the general case. He had several posthumous papers on 
the subject, without bringing the problem to a satisfactory conclusion [9], The 
high-dimensional case was also considered by Poincaré. It was W. Wirtinger 
who in 1938 completely solved the problem, using Chow coordinates for 
projective varieties [14]. We will show below that web geometry offers a 
broader setting where the subject can be integrated. 

3Lie was unhappy with Poincaré's intrusion: He said: "Unfortunately the distinguished author 
(i.e., Poincaré), whose achievements in other fields were recognized by nobody more than myself, 
failed to understand my investigations. I can only say that his works on translation surfaces and 
translation manifolds deal with results which are entirely special cases of my general theorems." 
(Ges. Abh, Bd II, Teil II, 527) 



WEB GEOMETRY 3 

The conclusion that the functional equations imply an algebraic structure is 
a powerful one. This was utilized by B. St. Donat in 1975 to give a new proof 
of Torelli's theorem that a compact Riemann surface is determined up to 
isomorphism by its period matrix (or more exactly, by its polarized Jacobian 
variety) [12]. 

2. Web geometry of Blaschke-Bol [2]. Web geometry had its debut in 
1926-27 on the beaches of Italy when W. Blaschke and G. Thomsen realized 
that the configuration of three foliations of the plane by curves, has local 
invariants. The distinguished geometric figure in this case is the hexagon 
(Figure 1). When all such hexagons are closed, for any point O and any 
neighboring point P on the first curve through 0 , the web is called hexagonal. 
Thomsen proved that a hexagonal web is locally homeomorphic to three 
families of parallel lines. 

FIGURE 1 

The relation of this subject to algebraic geometry is immediate. Before 
Blaschke and Thomsen started their work on web geometry, Graf and Sauer 
proved in 1924 a theorem which, in web geometry language, can be stated as 
follows: If the curves of a hexagonal web are straight lines, they are the tangent 
lines of an algebraic curve of class three. 

Generally, a d-web in the plane is defined by d foliations in a neighbor­
hood of the plane by curves such that through every point the d leaves have 
mutually distinct tangents. If x, y are the coordinates in the plane, a d-wéb 
can be defined by 

(10) ut{x,y) = const, 1 < i < d. 

We shall assume that the functions ut(x9y) are smooth and satisfying the 
condition grad ut ^ 0. 

An equation of the form 

(11) 2 M«d au,-0 
\<i<d 
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is called an abelian equation. The maximum number of linearly independent 
abelian equations, is called the rank of the web, to be denoted by TT. It can be 
proved that 

(12) v<\(d- l ) (< / -2) . 

We see easily that for d = 3, the rank one webs are exactly the hexagonal 
webs. For d = 4, we have m < 3, and the 4-webs of rank 3 satisfy 3 linearly 
independent abelian equations 

(13) 2^00<ft4-0, 1<X<3. 
By setting 

(14) 

xx = ƒƒ?(«,) dux + ff£(u2) = - ff£(u3) du3 - ffi(u4) du4, 1 < X < 3, 

we get in R3 a surface of double translation. Lie's theorem can be interpreted 
as saying that a 4-web of rank 3, is locally equivalent to one consisting of 
straight lines; the latter must then be the tangent lines of a curve of class 4. 

The deep question is whether any af-web of maximum rank 
(d — \)(d — 2)/2 is locally equivalent to one all whose leaves are straight 
lines. Bol gave an example showing that this is not always the case for a 
5-web of rank 6. Bol's example consists of four pencils of lines, no three of 
whose vertices are collinear, with the fifth family consisting of the conies 
through the four vertices. Of the six abelian equations one involves the 
transcendental function which is Euler's dilogarithm. The latter has played a 
role in several recent mathematical investigations, such as the volume of a 
simplex in an odd-dimensional noneuclidean space, the Pontrjagin number of 
a combinatorial 4-dimensional manifold and, more generally, in algebraic 
ÂT-theory. A primary reason must be the fact that it satisfies an abelian 
equation. For a recent work cf. [15]. 

3. High-dimensional webs. A d-v/éb of dimension N — k in RN consists of d 
foliations of a neighborhood U of RN by submanifolds of dimension N — k; 
k is called the codimension of the web. As an example consider an algebraic 
variety V of dimension k and degree d in a projective space Pm of dimension 
m. A linear subspace pm~k of dimension m — k meets V in d points through 
each of which pass ook(m~k)Pm~k9s. This gives in the Grassmann manifold 
G(m — k, m) of all pm~k*s in Pm d foliations of dimension k(m — k). Since 

dim G(m — k, m) = k(m - k + 1), 

the variety V gives rise to d foliations of codimension k in G(m — k> w), 
which is locally Rkn, n = m — A :+ l . In order to keep algebraic geometry in 
sight, we will consider on the basis of this example, only webs of codimension 
k in RN, with TV = kn. Even so the subject is a wide generalization of the 
geometry of projective algebraic varieties. Just as intrinsic algebraic varieties 
are generalized to Kâhler manifolds and complex manifolds, such a generali­
zation to web geometry seems justifiable. 
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The tangent spaces to the d leaves through a point x G Rkn give d linear 
subspaces of codimension k in the tangent space Tx to Rkn at x or, what is 
the same, d linear subspaces Œ, of dimension k in the cotangent space T*. We 
will suppose that they are in general position. For k = 1 the meaning of this 
is clear: no kn = n of the d lines in 7? lie in a hyperplane of 7J. For k > 1 
the right notion has to be introduced. We gave one in [4], again based on the 
example of projective varieties. 

Analytically suppose the ith foliation of the web be defined by the 
equations 

(15) 

un(x) = const, , . . . , uik{x) = const, \ < i < d, x G Rkn. 

We will suppose the w's to be smooth functions satisfying 

(16) Q,(x) = dun A • • • /\duik * 0. 

For a fixed / the functions un, . . . , uik are defined up to a diffeomorphism 
and S,-(x) is defined up to a factor. The notation is so chosen that it defines 
the linear space Ü, c T$ introduced above; we will call it the ith web normal. 

An abelian equation is an equation of the form 

(17) 2 ƒ , ( « % „ . . . , «fc)Q, - 0. 
\<i<d 

The maximum number of the linearly independent abelian equations is called 
the rank of the web. In [4] we proved that the rank has an upper bound 
ir(d9 n9 k), which depends only on d, n, k. This bound is sharp. In particular, 
for k = 1 we have 
(18) 

•n(d, n) = v(d, n, 1) = ( l /2(n - 1)){(<* - l)(d - n) + s(n - s - 1)} 
def 

where s is defined by 

(19) s = -d+\ mod n - \, 0 < s < n - 2. 

This number ir(d, n) has an important meaning in algebraic geometry. In 
fact, Castelnuovo proved that m{d, ri) is the maximum genus of an algebraic 
curve of degree d in Pn, which does not belong to a hyperplane Pn~K By 
taking such a curve C* in the dual space P*", we have through each point of 
Pn d hyperplanes belonging to C* and it follows from Abel's theorem that the 
d-wéb so constructed is of rank m(dy ri). In relating web geometry to algebraic 
geometry it should be remarked that our web geometry is over real numbers 
while the corresponding notions of algebraic geometry refer to the complex 
field. The transition is not immediate, but it is possible owing mainly to the 
fact that we are dealing with local properties in web geometry. 

It is clear that an important problem is to determine the d-webs of 
codimension 1 and maximum rank <n(d, n) in Rn. If the leaves are all 
hyperplanes, the answer is given by the following converse to Abel's [6] 
theorem (generalization of theorems of Graf-Sauer and Lie): 
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Consider a d-web of codimension 1 in a neighborhood of Rn whose leaves are 
hyperplanes such that an abelian equation 

(20) S fiu^du^O 

holds, with fi{ut) =£ 0. Then the leaves belong to an algebraic curve of degree d 
in the dual projective space. 

For this theorem it is sufficient to have one abelian equation. The crucial 
question is thus the linearization problem: Is a d-web of codimension one and 
rank *n(d, n) in Rn linearizable, i.e., is it locally equivalent to one having 
hyperplanes as leaves? Bol's example in §2 shows that the answer is no for 
n = 2, d = 5. 

Consider next the case n > 3. For n + \<d<2n — l w e have ir{d, n) = 
d — n, and there are simple examples of nonlinearizable d-webs of rank 
d — n, which depend on arbitrary functions. Lie's case of hypersurfaces of 
double translation corresponds to d = In. In this case we have 7r(2n, n) = n 
+ 1. For a 2«-web of rank n + 1 the abelian equations 

(21) *2fHut) didi^O, 1 < X < 77 = n + 1, 

can be written 
(22) 

2 ( fftu,) dut = - 2 f fïiu,) du,, 1 < X < n + 1. 

As a generalization of (14) these common expressions can be regarded as the 
coordinates in Rn+l of a hypersurface of double translation. 

An essential step in the proof of the Lie-Wirtinger theorem on hyper­
surfaces of double translation is to show that a 2«-web in R" of codimension 
one and rank n + 1 is linearizable, from which the theorem follows from the 
converse to Abel's theorem. In this particular case the linearization follows by 
a simple argument, using an idea of Poincaré. It goes as follows: For 
x e U c Rn let Zt(x) be the point in a projective space of dimension m — 1, 
whose homogeneous coordinates are [^(w,), . . . ,ƒ*(«/)]. The mapping which 
sends x E U c Rn to the space {Zv . . . , Zd) c P7r~1 spanned by the Z/s is 
called Poincaré's mapping. If ul9 . . . , un are regarded as a local coordinate 
system in U, we have, from (21), 

It follows that Zj is a linear combination of Zw+1, . . . , Zd. Since a similar 
equation holds for any Z, (instead of Zj), we have 

(23) {Zv...,Zd} = d-n-L 

In the case d = 2«, 77 = n + 1, the Poincaré mapping maps the points of U 
into hyperplanes of Pw, such that the ith leaf goes to the point Z,. The 
Poincaré mapping followed by duality in Pn maps the points of V into the 
points of the dual space P*n such that all the leaves of the web go to 
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hyperplanes. This proves the linearization, and the Lie-Wirtinger theorem 
follows. 

For n = 3 Bol proved the remarkable theorem: In R3 a d-web of codimen­
sion 1 and rank m(d, 3), d > 6, is linearizable. 

Griffiths and I tried to generalize Bol's theorem to Rn [3]. So far we have 
only succeeded to prove the theorem under the additional condition of 
normality. The exact statement is: In Rn a normal d-web of codimension 1 and 
rank 7r(d, n), d > 2n, is linearizable. For the definition of normality we refer 
to [3]. 

In recent years works on web geometry have also been done by M. A. 
Akivis and V. Goldberg in the Soviet Union. It is not clear to me how much 
these works are related to those of Poincaré. The reader is referred to [1] for 
further information. 

Tschebotarow generalized Lie's idea to the study of surfaces which admit 
imprimitive systems relative to an arbitrary Lie group (instead of the group of 
translations) [13]. To my knowledge this generalization has not been further 
pursued. 

4. Unsolved problems. In the following I wish to list a few most immediate 
unsolved problems: 

1. Determine all d-webs of curves in the plane having maximum rank 
\{d - l)(d -2\d> 5. 

2. Is the above linearization theorem in Rn, n > 4, true without normality? 
3 (Griffiths'). The hexagonal condition is meaningful for a 3-web of 

dimension k in R2k. The construction described in the beginning of §3, with 
m = k + 1, so that n = 2, defines from a cubic hypersurface in pk+l a 3-web 
of dimension k in R 2k. It can be shown that such a web is hexagonal. Is the 
converse true, i.e., does every hexagonal 3-web of dimension k in R2k arise 
from such a construction (up to a local diffeomorphism)? 

ADDED DURING PROOF. I am indebted to V. Goldberg that the answer to 
this question is "no". 

4. Lie's treatment makes heavy use of overdetermined systems of partial 
differential equations. Give a proof of the Lie-Wirtinger theorem by PDE. 
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