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1. The subject. A uniform space is a topological space in which Cauchy's 
criterion for convergence makes sense; a complete uniform space is a uniform 
space in which Cauchy's criterion is true (Cauchy => convergent). Every 
uniform space X may be enlarged (via a generalization of Cantor's construc­
tion of the reals from the rationals) to a complete uniform space X, called its 
completion, in which it is dense. {To keep the discussion as nontechnical as 
possible, all topological spaces will be assumed to be Hausdorff spaces.} 

The seeds of uniformity appear in Cauchy's criterion for the convergence of 
a sequence of real numbers (an): it is sufficient that for every e > 0 there exist 
an index n0 beyond which any two terms am, an of the sequence are within e 
of each other. What is essential here is that there is a 'floating' notion of 
mutual distance < e, not tied down to any particular point of the line (in 
particular, not tied down to a hypothetical limit of the sequence). 

A second classical example of uniformity is the proposition that every 
continuous, real-valued function ƒ defined on a closed interval is uniformly 
continuous', for every e > 0, there exists a Ô > 0 such that whenever x and y 
are points of the interval within 8 of each other, their images f(x) and f(y) 
under ƒ are within e of each other. Once again, a roving notion of mutual 
nearness: it does not matter, for instance, whether x and / are near the left 
endpoint or near the right endpoint; what matters is that they are near each 
other. 

A third classical example is the proposition that a real power series 
2^L0

 ak%k converges uniformly on any closed interval [a, b] interior to its 
interval of convergence: writing sn(x) = 2X«o ***** f° r the partial sums of the 
series, the crux of the proposition is that for every e > 0 there exists an index 
n0 such that for m > n0, n > n0, one has \sm(x) — sn(x)\ < e for all x in 
[a, £].What is essential here is that sm and sn, regarded as functions on [a, b], 
are everywhere within e of each other; their graphs may be near to or far 
from the x-axis, but they are within e of each other throughout the interval 
[a, b]. The significance of this proposition is that it opens the door for 
term-by-term differentiation and integration of power series, whence much of 
their usefulness in analysis (e.g. in the solution of differential equations). 

A concept bound up so intimately with convergence, completeness and 
compactness is destined to permeate analysis. It does indeed permeate analy­
sis, spilling over to create new domains of general topology having as their 
original objective the clarification and unification of uniformity phenomena 
in analysis. 

The main sources of uniform structure are metric spaces, compact spaces, 
and topological algebraic structures. It is instructive to look first at metric 
spaces, which provide the most transparent examples. 

Let A" be a metric space, with distance function d. For each e > 0, there is 
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centered at every point of the space a ball of (uniform) radius e. So to speak, 
there is in the neighborhood of all points a simultaneous notion of nearness. 
For each 6 > 0 let us write Ue = {(x,y) G X X X: d(x,y) < e). The intui­
tive statement "the points x and y of X are within e of each other" has the 
formal meaning (x,y) G Ue; and the "open ball of radius e centered at y" is 
the set Ue(y) = {x: (x,y) G Ue}, consisting of all points of X that are within 
e of y. To say that a sequence (xn) in X is Cauchy, means that for every e > 0 
one has (xm, xn) G Ut for all sufficiently large m and n; to say that the 
sequence converges to a point x means that for every e > 0, one has 
(xn, x) G Ue for all sufficiently large n. Thus, questions of convergence and 
completeness may be expressed in terms of the family (£/c)e>0 of sets of 
ordered pairs of points of the space X, i.e., a family of subsets of the cartesian 
product XXX. 

The idea of the theory of uniform structures is to start with a set X and a 
specified set % of subsets of X X X. The set % is required to satisfy certain 
axioms. The axioms are natural, few in number, and lead quickly to a 
topology on X; they reflect, in a set-theoretic way, the familiar properties of a 
metric space (notably symmetry and the triangle inequality). We need not set 
down the list of axioms explicitly; instead, the sets of % will be described 
fully for the various examples to be discussed. {The best place to learn about 
uniform structures is in Chapter II of Bourbaki's Topologie générale [1], my 
nominee for the best-written mathematics textbook of all time.} The elements 
of % are called the entourages for the uniform structure, and the set % of all 
entourages is called the uniformity of the uniform structure. When (X, d) is a 
metric space, the entourages for its uniform structure are the subsets of 
X X X that contain some Ue; that is, U G % means that there exists an 
e > 0 such that Ue c U c X X X, 

A recurrent trait of uniform structures is that one often seems to get more 
than one bargained for-something extra, free of charge. Here is one of many 
examples. A topological space is said to be uniformizable if its topology arises 
from a uniform structure. A priori, all we know is that the space is Hausdorff 
(T2); in fact, every uniformizable space must be completely regular (T3i/2), 
and, conversely, every completely regular space is uniformizable [1, Chapter 
IX, §1, n° 5, Theorem 1]. This is quite startling: the uniformizable spaces 
(defined by an innocent list of set-theoretical axioms) are, so to speak, the 
topological spaces whose topology is determined by the continuous real-val­
ued functions that they admit. 

Every compact space X is uniformizable, with unique uniformity %, 
consisting of all neighborhoods of the diagonal {(x, x): x G X} in the 
product topological space X X X. It is elementary that every subspace of a 
uniformizable space is uniformizable; in particular, every subspace of a 
compact space is uniformizable. On the other hand, every completely regular 
space is a subspace of a compact space (Stone-Cech compactification). Thus, 
a topological space is uniformizable if and only if it is a subspace of a compact 
space [1, Chapter IX, §1, n° 5, Proposition 3]. In particular (one-point 
compactification) every locally compact space is uniformizable; it is perhaps 
surprising, and certainly important, that the uniformity of a locally compact 
space need not be unique (more about this later). 
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We have seen how uniformity arises in metric spaces and in compact 
spaces; let us now see how it arises in topological algebraic structures. The 
most important topological algebraic structures are the topological groups. 
(Even in topological vector spaces, rings, modules, algebras and fields, 
questions of uniformity refer to the underlying additive topological group 
structure.) A topological group is a group G (say with multiplicative notation) 
equipped with a topology for which the mappings (x, y) H» xy and x H» x~l 

are continuous mappings G X G -» G and G -> G, respectively. For each 
element a of G, the mapping x H» ax (called left-translation by a) is a 
homeomorphism of G; thus if V runs over the set of neighborhoods of the 
neutral element e of G, then aV runs over the set of neighborhoods of the 
point a. On the other hand, for fixed V and variable a, the family (aV)aŒG is 
a family of neighborhoods of "uniform size V" of the points of G. A 
uniformity % on G is obtained by letting the V9s play the role of e's: for 
each neighborhood V of e, one defines Uv = {(x,y) G G X G: x~V e V}; 
%! consists of the sets U c G X G such that U D Uv for some neighbor­
hood F of e. The uniformity %, is said to define the left uniform structure of 
G. From the formula aV = {y Œ G: (a,y) £ Uv] one infers that the topol­
ogy on G derived from the uniformity %7 coincides with the original topology 
on G. (Consideration of right-translations x H> xa and neighborhoods Va 
leads to the right uniform structure of G, with uniformity denoted %r.) In 
particular, every topological group G is a uniformizable topological space. A 
priori, G is only assumed to be a Hausdorff space, but the compatibility of its 
topology with the group operations has produced an unexpected bonus: every 
topological group is completely regular. Here is another example of a topologi­
cal bonus. Recall that every metrizable space is first-countable (that is, each 
point has a denumerable fundamental system of neighborhoods). For topo­
logical groups, the converse is true (Birkhoff-Kakutani theorem): every first-
countable topological group is metrizable. (This is really a theorem about 
uniform structures having a denumerable fundamental system of entourages 
[1, Chapter IX, §2, n° 4 Theorem 1].) 

Uniformity makes many striking appearances in analysis. Here are some 
memorable examples, drawn mostly from the theory of locally compact 
groups. 

Every locally compact topological group is completely regular (T3\/2), for 
two reasons: because it is locally compact, and because it is a topological 
group. In fact, every locally compact group is paracompact, hence normal (T4) 
[1, Chapter III, §4, n° 6, Proposition 13 and Chapter IX, §4, w°4, Proposition 
4]. 

The left and right uniformities of a topological group G need not coincide; 
when they do, let us say that G is bi-uniform. {Examples: G compact 
(uniqueness of uniformity!), or discrete, or abelian.} Let G be the completion 
of G with respect to its (say) left uniform structure. In general, the operations 
of G cannot be extended so as to make G a topological group, but all is well 
when G is bi-uniform (this sufficient condition is not necessary). For locally 
compact groups, there is no problem at all: they are already complete [1, 
Chapter III, §3, n° 3,Corollary 1 of Proposition 4]. 

Every locally compact group possesses a left-invariant measure (and a 
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right-invariant measure), unique up to proportionality, called the left (resp. 
right) Haar measure of the group. Uniformity properties figure so essentially 
in the proof that there is a generalization to group actions on uniformly 
locally compact spaces (theorem of I. E. Segal [4]). 

A sparkling example of the role of uniformity at the crossroads of algebra 
and analysis is the following beautiful theorem of R. Godement. Let G be a 
locally compact group, with left Haar measure JU, and let L2{G) be the Hilbert 
space of complex-valued functions on G square-integrable with respect to p. 
There is associated with G an algebra & of operators in L2(G), analogous to 
the group algebra of a finite group (called the left von Neumann algebra of 
G). Suppose, in addition, that [x is also a right Haar measure (groups with this 
property are called unimodular). Godement's theorem: In order that every 
left-invertible element of the ring & be right-invertible, it is necessary and 
sufficient that G be bi-uniform (% = % r), [3, p. 46, Theorem 6]. 

One of the cornerstones of functional analysis is the Baire category theo­
rem: Every complete metric space is a Baire space (i.e., every nonempty open 
subset is of the second category). This leads to the Banach-Steinhaus "uni­
form boundedness principle", and to Banach's "open-mapping theorem" and 
"closed graph theorem". At the base of the pyramid: uniformity. 

As a concluding example of uniformity at work, I cite the following pretty 
result of Robert Ellis. Let G be a group equipped with a locally compact 
topology for which multiplication is separately continuous (i.e., for each 
a E G, the translation mappings x H-> ax and x\-> xa are continuous). Ellis' 
theorem [2]: G is a topological group. The proof is a deft exploitation of the 
topology of uniform convergence on compact sets, and the fact that every 
locally compact space is a Baire space. 

The concept of uniform structure is due to André Weil; all of the results on 
uniformizability cited above already appear in his 1938 monograph [5]. 
{Weil's monograph serves as a blueprint for Chapter II of Bourbaki's (then 
yet to be published) Topologie générale, as well as for parts of Chapters III 
and IX.} 

2. The book. The emphasis of the book under review is revealed in the 
chapter headings: Uniform spaces (66 pp.), Topological groups (65 pp.), 
Topological vector spaces (120 pp.), Topological algebras (66 pp.), Abstract 
harmonic analysis (45 pp.). The emphasis is not on general uniform struc­
tures, to which only the first one-sixth of the book is devoted; nor is the 
emphasis on uniformity considerations that occur in various applications; the 
emphasis is on topological algebraic structures, with (despite the page-count 
of the third chapter) the center of gravity in abstract harmonic analysis 
(duality theory pf locally compact abelian groups). 

In the opening chapter, several concepts more general than uniformity are 
exercised for the sake of perspective (quasi-uniformity, local uniformity, 
semi-uniformity), but the chapter quickly settles down to developing the 
fundamentals of the theory of uniform structures. The second chapter in­
cludes a detailed construction of Haar measure in locally compact groups; 
there is an interesting discussion of characters of arbitrary locally compact 
groups (a technical prelude, mostly topological, to the final chapter). In the 
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third chapter, besides the standard topics on topological vector spaces 
(Hahn-Banach, Krein-Milman, duality), there is a special emphasis on topics 
pertaining to completeness (hence to uniformity). The fourth chapter includes 
standard material on normed algebras and Banach algebras, with and without 
involution, as well as not-so-standard material on more esoteric topological 
algebras (locally m-convex g-algebras, etc.). The fifth and final chapter 
culminates in a proof of the Pontrjagin duality theorem. The prerequisites for 
reading the book (drawn mainly from general topology and integration 
theory) are sketched in three brief appendices. 

Proofs are detailed and carefully done. The layout is excellent; the printer 
deserves a medal for his skill in representing the many, often intricate and 
unusual, notations. The text is heavy on special symbols and terminology; 
since these are usually defined once and used from then on without explana­
tion, the burden on the reader's power of concentration builds quickly. (The 
burden on the proofreader's concentration was more than occasionally over­
whelming.) An index of symbols and a good general index help, but the 
reader's task is still formidable (the browser's, hopeless). 

The author states in his Preface: "This work is reasonably self-contained 
and accessible to students with a background in elementary analysis, linear 
algebra and point set topology. At the same time it covers a good amount of 
advanced material without going off into the purple deep." The reviewer 
concurs; there is a lot of fine material in this book for second-year graduate 
courses and seminars. 

Every mathematician needs to speak a little topology. The message of this 
book is that every analyst needs to speak a little uniformity; it is a central 
language of analysis, not just a peripheral dialect. Uniform structures deserve 
a niche in every first-year graduate course in general topology; this book 
effectively demonstrates why. 
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General theory of Lie algebras, by Yutze Chow, Gordon and Breach, New 
York, 1978, Volume 1, xxii + 461 pp., Volume 2, xx + 436 pp., $72.00. 

1. Among the three main types of nonassociative algebras, Lie, alternative 
and Jordan algebras, the Lie algebras were the first to be studied and are still 
the most important because of their connections with other parts of mathe-


