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geometry) although a few results, which_give sufficient conditions for M to be 
conformally flat, require instead that M have vanishing Bochner tensor. The 
well-organized proofs and calculations are cleanly presented in a straight­
forward easy-to-follow manner and, despite the many indices, are nearly 
always free of errors, even typographical. (Two exceptions: The proof of 
Theorem 4.1 of Chapter IH-and its analogues in later chapters-does not 
make it clear whether the distribution L lives in Mm(4) or in the frame 
bundle of that manifold; in Chapter IV, Example 8.1 appears to contradict 
Proposition 10.2, but including the hypothesis c > 1 fixes it up.) 

The organization of the book is straightforward and enhances its role as a 
reference work. Chapters I and II constitute a rapid yet lucid review of 
Riemannian geometry and the theory of submanifolds. Most of the results are 
in Chapters III (AIS's of AT-manifolds), IV (AIS's of S'-manifolds tangent to £) 
and V (AIS's of S'-manifolds normal to £). Within these chapters the results 
are organized into sections so that usually theorems having similar hypotheses 
are grouped together. Chapter VI (AIS's and Riemannian fibre bundles) is 
somewhat different in spirit. In_ it the authors relate the properties of 
submanifolds of an S-manifold M to those of submanifolds of ji_ ^-manifold 
N in the situation in which there is a Riemannian fibration <n: M -^> N whose 
fibres are the integral curves of the structure field £. The most important 
example is the standard S Vibration <n\ S2m+l -» CPm. 

General comments. The major strengths of the book under review are its 
clarity, its organization and its comprehensiveness. Researchers in this topic 
will find it most useful and should appreciate the considerable care which the 
authors (and also the publisher) used in its preparation. 

A weakness of the book, in my opinion, is that it does not give the reader 
sufficient information about the general behavior of anti-invariant submani­
folds. Almost all the results refer only to the AIS's in some highly restricted 
class of submanifolds (e.g., minimal submanifolds, submanifolds with parallel 
second fundamental form, etc.); very few results apply to a "generic" class of 
AIS's. 
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Degree theory, by N. G. Lloyd, Cambridge Tracts in Math., vol. 73, Cam­
bridge Univ. Press, Cambridge, Great Britain, 1978, x + 172 pp., $21.00. 

The classical topological degree is a useful tool for investigating the 
equation F(x) — p, where F: D -> Rn is a continuous map of the closure of a 
bounded open subset D of R" and/? ER", If F(x) i^p for x G 3D one can 
associate an integer deg(F, D,p) to the triple (F, D,p); this integer, called the 
topological degree of F on D with respect top, has certain properties-usually 
referred to as the additivity, homotopy and normalization properties-which 
axiomatically determine the degree and sometimes make its computation 
possible. 
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From the viewpoint of solving F(x) = p, the most important fact is that 
deg(/% D,p) T^ 0 implies existence oî x G D with F(x) = p. It is also useful 
to know that if G: D-*Rn is a continuous map such that sup{||G(x) -
F(x)\\: x E dD) < inf{||F(jc) - p\\: x G dD}, then deg(F, D, p) = 
deg(G, />,/?); and iî D = D{ \j D2 where Z>1 and D2 are open sets such that 
F(x) ¥= p for x G dDx u 3Z)2 U (£>! H Z>2), then deg(F, Z>, p) = 
deg(F, Z>i,/?) + deg(F, Dx,p). Of course if F is C1,/> is a regular value of F, 
and JF(x) denotes the determinant of the Jacobian matrix of F at x, it is 
known that 

deg(F, £>,ƒ>) = 2 sgn(JF(x)). 

The difficulty is to pass from the above formula to a definition for general 
continuous functions. 

The interest of analysts in the topological degree was stimulated when J. 
Leray and J. Schauder [11] showed how a degree could be defined for an 
important class of maps defined on bounded open subsets D of a Banach 
space X. It is not hard to see that in an infinite dimensional Banach space one 
cannot define a useful degree theory for all continuous maps. Leray and 
Schauder singled out the class of maps of the form F = I — ƒ, where I is the 
identity map and ƒ is a compact map, i.e., ƒ is a map which takes bounded sets 
to sets with compact closure. Leray and Schauder showed that a degree which 
preserved all properties of the finite dimensional degree could be defined for 
such compact perturbations of the identity map. More to the point, many 
questions about nonlinear equations can be transformed to problems of 
solving (ƒ — f)(x) = p for x and;? in a Banach space and ƒ compact. 

In the past ten or fifteen years much effort has been spent on generalizing 
the Leray-Schauder degree. One now has a degree theory for maps of the 
form F = I — ƒ, where ƒ is a condensing map, for A -proper maps, for maps 
F(u) = S(u, u), where S is a homeomorphism in one variable and compact in 
the other, and for certain multivalued maps. We omit definitions and remark 
only that all these classes are substantial generalizations of the Leray-
Schauder class and all arise in applications in analysis. In a somewhat 
different direction one can define an integer valued degree for certain classes 
of C *, proper maps F whose Fréchet derivative at every point is Fredholm of 
index zero. 

Another line of generalization involves the fixed point index of a map ƒ 
defined on an open subset U of a topological space X9 written ix(f, U). 
Typically, X might be a finite union of closed, convex sets in a Banach space 
Y, and the index is an algebraic count of the number of fixed points of ƒ in U 
with respect to X. If X is a Banach space and ƒ is compact, deg(7 — ƒ, U, 0) 
= ix(f, U). Notation here is bad: the term index is also used, in the context 
of degree theory, for the degree of F = I — ƒ on a small neighborhood of an 
isolated solution x0 of F(x) = p. Generalizations of the classical fixed point 
index have involved extending the class of functions and spaces for which 
such an index can be defined. Broadening the class of spaces is useful for 
problems in analysis; one may, for example, have f unction ƒ which are only 
naturally defined on cones of nonnegative functions. 
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N. G. Lloyd's book provides a careful and essentially self-contained pre­
sentation of some of the topics discussed above. The first three chapters 
present the finite dimensional degree and some of its applications-the 
Brouwer fixed point theorem, the Borsuk-Ulam theorem, the Jordan separa­
tion theorem and the invariance of domain theorem (a one-to-one continuous 
map takes open sets to open sets). The fourth chapter describes Leray-
Schauder degree. All of this is done in a way which analysts will find 
congenial; the approach to finite dimensional degree theory is that of E. 
Heinz [8] and involves only the easy version of Sard's theorem and some 
advanced calculus. Lloyd's proof of the Borsuk-Ulam theorem, and indeed 
the exposition in the first four chapters, closely follows that in J. T. 
Schwartz's book [17]. 

The remaining five chapters of Lloyd's book provide one of the first 
English language treatments in book form of the generalized degree theories 
previously mentioned (see, also, [2]). The exposition here is sketchier than in 
the early part of the book, and some proofs use lemmas which are not 
explicitly stated. Thus the proof of Theorem 8.2.4 uses (without saying so) the 
fact that a compact one dimensional manifold with boundary is a union of 
intervals and circles, and the proof of Lemma 9.5.6 uses a result (Theorem 
9.3, Chapter 1) from Whyburn's book [19]. There are some surprising omis­
sions. Nothing is said about the fixed point index for condensing maps, even 
though such a fixed point index (at least for condensing maps defined on 
relatively open subsets U of closed convex sets A' in a Banach space Y) could 
have been easily defined. As a result at least one theorem (Theorem 6.3.4) is 
proved under unnecessarily restrictive assumptions. The key point is that it is 
unclear if a strict set contraction ƒ: S -» S, S a closed convex subset of a 
Banach space X, has an extension as a strict set contraction to a map ƒ,: 
X -> S; this difficulty, by the way, vitiates Lloyd's proof of Darbo's theorem 
on p. 103. 

The final (and longest) chapter of the book provides some applications of 
degree theory to analysis, in this case mostly to the question of periodic 
solution of nonautonomous ordinary differential equations. Some of the 
applications are pretty, notably a result of Ezeilo and (later) Reissig on 
existence of periodic solutions for a class of third order ODE's. Also sand­
wiched into Chapter 9 are sections on degree theory for holomorphic maps 
and bifurcation theory. The latter section seems something of an 
afterthought. 

One serious criticism must be made of Lloyd's book. There is no historical 
discussion whatsoever, and the attribution of credit for more recent theorems 
is often incorrect or incomplete. The reader will not find here that Kronecker 
had already defined what we would call a degree theory in 1878 (see [10]; 
Hadamard presented an exposition of Kronecker's work in [7]). The Poin-
caré-Bohl theorem appears on p. 25, but the reader will search in vain for any 
references to Poincaré or Bohl, for any explanation of how the theorem got its 
name, or for any explanation of why the "Brouwer fixed point theorem" is so 
named if Poincaré and Bohl had a better theorem earlier. 

Moving to more recent times, Chapter 5 discusses axiomatic characteriza-
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tion of degree theory. The crucial point, as was discovered by Führer [6], is 
that the multiplicative formula is not necessary to determine the degree 
axiomatically in finite dimensions. This result was rediscovered by Amann 
and Weiss [1], who gave the axiomatic treatment presented by Lloyd. How­
ever, Führer's work is not cited. Chapter 6 presents a result on uniqueness of 
the degree for condensing maps which was first proved in the stated general­
ity by this reviewer [13], but the article is not cited. An invariance of domain 
theorem which Lloyd attributes to Webb [18] on p. 105 was in fact first 
proved by this reviewer in his 1969 dissertation and is so acknowledged by 
Webb [18]. There is only one listed reference for Sadov'skiï, even though he 
has worked extensively on the theory of condensing maps (including degree 
theory). The results of Chapter 8 were obtained (for the harder case of C1 

Fredholm maps) by C. Isnard [9], but Isnard's work and other related work is 
not mentioned. Theorem 9.3.3, for which Lloyd cites his own paper [12], is 
actually a classical result in the degree theory of holomorphic maps. It follows 
easily from results of J. Cronin [3] and is explicitly stated in a 1963 article of 
J. Schwartz [16] and is rederived in an elegant 1973 article by P. Rabinowitz 
[15]. These examples can, unfortunately, be multiplied. 

In fairness to Lloyd it must be said that the history of degree theory 
presents a tangled skein. Disentangling even the recent history would be a 
difficult job, but the reader can reasonably expect more than is done here. 

Should a person who is seriously interested in learning degree theory read 
Lloyd's book? If he has had no acquaintance with the subject, this is certainly 
a reasonable introduction-though the previous criticisms must be kept in 
mind. If he is already familiar with the Leray-Schauder degree, the answer 
will depend on his interest in the introduction to generalized degree theories 
to be found in Lloyd's book. The mathematician who reads German may also 
want to consider a recent book by Eisenack and Fenske [5]. The Eisenack-
Fenske book touches on the fixed point index and on other results (e.g., the 
connection between the fixed point index and the Lefschetz fixed point 
theorem) which are not treated by Lloyd. 
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The Minkowski multidimensional problem, by Aleksey Vasil'yevich Pogorelov, 
translated by V. Oliker, with an introductory comment by L. Nirenberg, Wiley, 
New York, Toronto, London, Sydney, 1978, v + 106 pp., $13.75. 

The book under review is, to the reviewer's knowledge, the first exposition 
in English of an important topic in geometry since Busemann's text Convex 
surfaces (Interscience, 1958). It is hoped that this review, as well as Niren-
berg's Introductory commentary which prefaces the English translation, may 
help popularize this beautiful subject in the English reading mathematical 
community. 

The Minkowski problem, in its original formulation [l],1 deals with the 
determination of a closed, convex hypersurface F in euclidean «-space, in 
terms of a given, positive valued function ƒ(£) (£ = (£1?, . . . , £„), 2,-§2 = 1) 
defined on the unit hypersphere Sn~l

9 where ƒ(£) represents the reciprocal of 
the Gaussian curvature of F at the point where the outward unit normal is the 
vector £. The function ƒ (which we call the Minkowski data) must necessarily 
satisfy the exactness condition expressed by the vector equation 

f&QOMO - o, (l) 
the integration being meant over the sphere Sn~l. 

This problem was solved originally by Minkowski only in the following, 
"weak" sense: given the Minkowski data satisfying (1), there exists a closed, 
convex hypersurface F, unique up to a translation, such that, for any given, 
closed region G c Sn~l the integral 

JG 

References in square brackets are in terms of the bibliography at the end of Pogorelov's book. 


