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JORDAN ALGEBRAS AND THEIR APPLICATIONS 

BY KEVIN MCCRIMMON 

In this article I want to sketch for nonexperts what Jordan algebras are 
why people might want to study such strange objects. I start with the 
assumption that the reader knows little or nothing about Jordan algebras, but 
has at least some respect for the terms Lie algebra, Lie group, Riemannian 
symmetric space, and bounded symmetric domain. 

I. Jordan algebras in antiquity (1933-1966). I am unable to prove Jordan 
algebras were known to Archimedes, or that a complete theory has been 
found in the unpublished papers of Gauss. Their first appearance in recorded 
history seems to be in the early 1930's when the theory bursts forth full-grown 
from the mind, not of Zeus, but of Pascual Jordan, John von Neumann, and 
Eugene Wigner in their 1934 paper, On an algebraic generalization of the 
quantum mechanical formalism [14]. 

In the usual interpretation of quantum mechanics, the observables are 
Hermitian matrices (or Hermitian operators on Hilbert space) x* = x, where 
the adjoint x* is the conjugate transpose Jc'. The basic algebraic operations 
on such observables x are the matrix operations: 

Xx multiplication by a complex scalar X; 
x + y addition; 
xy matrix multiplication; 
JC* adjoint. 

This formulation is open to the objection that the operations are not 
intrinsic to the physically significant part of the system: the scalar multiple Xx 
is not again Hermitian unless the scalar is real, and the product xy is not 
again Hermitian unless x ànd y commute (or, as the physicists say, xy is not 
observable unless x and y are simultaneously observable). It was philosophi­
cally unsatisfactory to derive the algebraic structure from an unobservable 
operation xy, and, in addition, the matrix interpretation seemed insufficient 
when one attempted to apply quantum mechanics to relativistic and nuclear 
phenomena. 

The program proposed by Jordan was to study the algebraic properties of 
Hermitian matrices without reference to the underlying (unobservable) matrix 
algebra. The strategy was: 

(1) to formulate formal properties which seemed essential and physically 
significant; 

(2) to consider abstract systems with these same formal properties taken as 
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axioms, and to determine what other systems satisfy these axioms. 
The hope was to find a system which wasn't a system of Hermitian 

matrices, but acted like one. 
The observable operations on Hermitian matrices or operators were 

ax multiplication by a real scalar a; 
x + y addition; 
x ° y = xy + yx symmetric product; 
xyx quadratic product; 
xn powers (n = 0, 1 ,2 , . . . ). 

Note that if x* = x,y* = y are Hermitian, so are xy + yx, xyx, and xn. 
After a little empirical experimentation, it seemed that two basic identities 

of degrees 2 and 4 implied all the others. Jordan took as his axioms the 
existence of a bilinear product x ° y on a real vector space satisfying the 
identities: 

(Jl) x ° y = y ° x (commutative law), 

(J2) (JC2 ° y) o x *= x2 ° (y ° x) (Jordan identity). (LI) 
Such systems are now called (linear) Jordan algebras. In the fundamental 

1934 paper the authors showed that all such finite-dimensional "formally 
real" systems were direct sums of simple systems, where there were 5 simple 
building blocks: 

Hn(R), Hn{C), Hn(H), H3(0), J(Q) ( U ) 

where Hn(A) denotes Hermitian n X n matrices with entries in A (the reals R, 
complexes C, quaternions H, octonions or Cayley numbers O), and multipli­
cation in / ( C ) is given in terms of a real-valued quadratic form Q by 
x °y = Q(x,y)l. 

Call a linear Jordan algebra special if it can be imbedded in an associative 
algebra so that x ° y = xy + yx. Thus in a special Jordan algebra the 
algebraic structure x ° y is derived from an ambient associative structure xy. 
The first 3 building blocks in (1.2) clearly lie in associative matrix algebras, 
and the fifth is imbedded in the Clifford algebra of Q. The fourth example 
H3(0) does not seem to be special, since its coordinates come from the 
nonassociative algebra O of Cayley numbers. In 1934 A. A. Albert [1] showed 
that H3(0) actually is not special, thus is exceptional: it cannot be imbedded 
in any associative algebra whatsoever.1 

1 It is not even the homomoiphic image of a special algebra. P. M. Cohn [4] was the first to 
show that a special Jordan algebra J cA could have a homomoiphic image J/1 which was not 
special (taking a Jordan ideal / which was not the restriction B n / of an associative ideal B of 
A). Thus the special Jordan algebras do not form a variety defined by identities. However, by a 
general theorem of Birkhoff, the special algebras together with their homomorphic images do 
form a variety, and are therefore characterized by the Jordan identity plus some "special" or 
"j-identities" valid in all special algebras (therefore their homomorphic images as well), but not 
in all Jordan algebras. THESE IDENTITIES HAVE NEVER BEEN FOUND. To date only two 
j-identities are known, the Glennie identities G$ and G9 of degrees 8 and 9 in 3 variables x, y, z. 
The modern proof of exceptionality of H3(0) is to check that Glennie's identity holds in all 
special Jordan algebras but fails in H3(0) for judicious choice of x,y, z. No one knows whether 
there are infinitely many essentially different J-identities (i.e. if the ideal of all ^-identities in the 
free Jordan algebra is finitely generated). 
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Thus after isolating the basic algebraic properties of Hermitian matrices 
and investigating these properties axiomatically, what resulted were special 
algebras plus one lone exceptional algebra H3(0) (of degree 3 and dimension 
27). As the authors said, "Physical considerations demand an algebra 
essentially more general than matrix algebras The one Jordan algebra 
which is not a matrix algebra is too narrow for the generalization needed." 
Having met with failure in the search for a new algebra, the authors held out 
a slight hope: "One thinks of omitting the condition of finiteness, since the 
algebra appearing in quantum mechanics is infinite. It may well happen that 
new types of algebra will arise with the removal of restrictions... in 
ordinary quantum mechanics many important features first appear in infinite 
algebras" [12, p. 30]. 

In 1936 von Neumann made an initial study [28] of some infinite dimen­
sional algebras (Jordan " W*-algebras"); as axiom he took power associativity 
xnxm = xn+m (or f(g(x)) * (ƒ ° g)(x) for all polynomials/, g), and showed 
this was equivalent to the Jordan identity in the formally real case. This cast 
Jordan algebras in a more natural light, deriving everything from the 
operations of raising x to powers xn (the product JC ° y is obtained by 
linearizing the square x2). 

Just recently, in 1975, Eric Alfsen, Frederic Schultz, and Erling Störmer in 
an important work [2] derived a Gelfand-Naimark Theorem for Jordan 
C*-algebras (Jordan algebra structures on Banach spaces satisfying \\a <> b\\ < 
IN 11*11» l|a2ll * ll*ll2> and a formal reality condition ||a2|| < \\a2 + b2\\) 
showing the basic building blocks for such algebras are either special 
(contained in ordinary C*-algebras) or 27-dimensional exceptional. Their 
idea, following the associative case, was to imbed the Jordan C*-algebra in its 
Arens double dual, which was a Jordan >F*-algebra with lots of idempotents. 
Speciality comes easily in the presence of idempotents; for example, any 
simple Jordan algebra with 4 orthogonal idempotents is special [24]. 

Thus any new exceptional Jordan algebra cannot admit many idempo-
tents-it must be poor in projections. TO THIS DATE NO ONE HAS EVER 
FOUND A SIMPLE EXCEPTIONAL JORDAN ALGEBRA WHICH IS 
NOT 27-DIMENSIONAL OVER ITS CENTER.2 

At this point the physicists largely abandoned Jordan algebras, and the 
algebraists took over: A. A. Albert, Nathan Jacobson, and others developed a 
complete theory of finite-dimensional Jordan algebras over arbitrary fields of 
characteristic ^ 2. 

It would be most unfair to picture lions finishing a kill and leaving the 
remains to the jackals. For one thing, physicists have not finished feeding on 
the carcass. Feza Gürsey [7] in 1974 proposed a role for the 27-dimensional 

2 A good place to look is the free algebra: the free Jordan algebras on 3 or more generators are 
exceptional, and if they behave like free associative algebras [5] they are domains imbeddable in 
Jordan division rings, and such division rings would be both simple and exceptional and 
infinite-dimensional over their center. [On the other hand, the free Jordan algebras may share the 
pathologies of free alternative rings, which are at the opposite extreme from domains: they 
contain nilpotent elements. It is not known which way free Jordan rings will go, whether they are 
domains or whether they contain zero divisors, perhaps even nilpotent elements-in fact it is not 
even known if a free Jordan algebra can have trivial elements z with UXJ = 0.] 
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exceptional Jordan algebra in elementary particle physics, to explain charmed 
and colored quarks and confinement of quarks. Also, physicists seeking 
supersymmetry looked for algebraic systems encompassing both bosons and 
fermions; such systems require a Lie-like part and a Jordan-like part. This led 
to the investigation of Lie and Jordan superalgebras, whose classification (in 
characteristic 0) was just completed in the summer of 1976 by Irving 
Kaplansky [16] and Victor Kac [15]. 

For another thing, these Jordan algebras (especially the 27-dimensional 
exceptional algebra) which arose in an unsuccessful attempt to find a new 
algebra suitable for quantum mechanics turned out to have unforscen appli­
cations to Lie groups and algebras, geometry, and analysis. 

II. Jordan algebras in modern times (1966-present). The modern theory of 
Jordan algebras may be said to date from the appearance in 1966 of N. 
Jacobson's paper, Structure theory for a class of Jordan algebras [12]. 
Fastening on the notion of quadratic (or inner) ideal which appeared inci­
dentally in the work of D. M. Topping [33] on Jordan algebras of selfadjoint 
operators, Jacobson showed how this concept played the role of one-sided 
ideals and could be used to develop a ring-theoretic treatment of Jordan 
algebras. Here the basic operation is Uj = xyx instead of x ° y = xy + yx9 

and the axioms (due to K. McCrimmon [23], [11]) are 

(Ql) Ux - Id, 
(Q2) UxVy>x=Vx,Ux, 

(Q3) UuMy=UxUyUx, (2.1) 

where Vxo,(z) * {xyz} « (Ux+2 - Ux - U2)y. Since the product Uj is 
quadratic in the variable x, the resulting systems are called quadratic Jordan 
algebras. For example, any associative algebra A determines a quadratic 
Jordan algebra A + with product Uj * xyx: 

\a\ « a9 x(yxa + axy)x * xy(xax) + (xax)yxf 

(xyx)a{xyx) * x(y(xax)y)x. 

Any subspace of A containing 1 and closed under xyx will form a Jordan 
algebra. For example, if A has an involution*, the set H (A,*) of symmetric 
elements x* « x forms an archetypal Jordan algebra. 

The theories of linear and quadratic Jordan algebra are categorically 
equivalent when there is a scalar \. Whereas the linear theory breaks down in 
characteristic 2 or whenever there is no £, the quadratic theory works in all 
characteristics and, more importantly (since most people arc quite willing to 
toss characteristic 2 to the lions), over an arbitrary ring of scalars. In 
particular, it is possible to carry out arithmetic investigations. 

The quadratic approach via the [/-operators reveals the essential algebraic 
properties of Jordan algebras much more clearly than the linear approach via 
the K-operators (K ŷ * x ° y): 

(2.2) x is invertiblc iff the operator Ux is invertible, in which case Ux-\ « 
U~l, but Vx need not be invertible, nor Vx-\ » F^-for example, in the 
division algebra of real quaternions we have VJ » i ° j « 0. 
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(2.3) If B, C are ideals in / then UBC is an ideal, but B ° C need not be. 
Thus the correct notion of solvability depends on the quadratic composition. 

(2.4) The generic norm (an analogue of the reduced norm of associative 
theory, generalizing the determinant) admits composition with U but not with 
V: N(Uxa) = N(x)N(y)N(x), but N(x °y) = nothing (e.g. detxyjc-
(det xXdetj'Xdet *), but det(jçy + yx) =?). 

(2.5) A left ideal in the associative ring A is a subspace B closed under left 
multiplication by the ambient ring A. The product U^ = xyx in a Jordan 
ring / has no left or right, only an outside and an inside. An inner ideal is a 
subspace B closed under inner multiplication by J, UBJ c B. Thus the 
concept of an inner ideal arises naturally in the quadratic theory and plays 
the role of 1-sided ideals, whereas the commutative product x °y admits no 
1-sided ideals. 

For these quadratic rings, there is an analogue of the Artin-Wedderburn 
structure theory for associative rings with dec on left ideals (compare (1.2)). 

(2.6) STRUCTURE THEOREM [11], [23]. A nondegenerate quadratic Jordan ring 
with descending chain condition on inner ideals is a direct sum of a finite number 
of simple ideals. These ideals are (up to isotopy) essentially of the form: 

(0) Jordan division rings, 
(1) Hn(&)for some associative division ring A with involution, 
(2) //„(A © Aop) = M„(A)+ for some associative division ring A, 
(3) Hn(Q)for some split quaternion algebra Q, 
(4) H3(0)for some octonion (Cayley) algebra O, 
(5) a Jordan algebra J(Q,c) determined by a quadratic form Q. 
Here (1), (2), (3) are precisely all H (A, *)for *simple associative artinian 

rings with involution. 

We must stress that quadratic Jordan algebras should be thought of as 
axiomatic characterizations of the product xyx in the space of Hermitian 
matrices (or, more generally, H (A, *)). IT IS NOT A QUESTION OF A 
BILINEAR PRODUCT x<>y WHICH IS NONASSOCIATIVE, BUT 
RATHER A QUADRATIC PRODUCT Vj WHICH IS AS ASSOCIA­
TIVE AS SUCH A PRODUCT CAN BE (i.e. (2.1)). It is misleading to think 
of Jordan algebras as based on the product xy + yx in the way that Lie 
algebras are based on the product xy — yx; Jordan algebras are closed under 
the additional product xyx, for which no Lie analogue exists, and it is this 
extra product which makes Jordan theory work smoothly in all characteristics 
(whereas Lie theory works well only in characteristic 0). 

III. Isotopes and structure groups. Next we consider two more aspects of 
Jordan theory which stand out more clearly in the quadratic approach, and 
are important in applications. 

Given an invertible element u in an associative algebra A, we can form a 
new algebra, the u-isotope A[u\ having the same linear structure but new 
twisted product 

x.My * xu~ly. (3.1) 

If you stick a w"1 in the middle of an associative product it keeps right on 



JORDAN ALGEBRAS 617 

associating, so we have a new associative algebra. The unit element and 
inverse are easily computed in this new structure: 

1̂ 1 = Uy x~l[u] = ux~\ (3.2) 

since u.ux = uu~lx = x = xu~xu = x.uu shows u is a right and left unit, 
and when x is invertible in the original algebra we have ux~lu.ux=* 
ux~luu~lx = u = 1[M] and, similarly, x.u ux~lu = 1M. 

The isotope A[u] is really just the algebra A in disguise, for x -* xu is an 
isomorphism A -+A[u\ Thus in the associative case, isotopy, which basically 
is just changing the unit element, does not lead to new structures. Neverthe­
less, it can still be useful. For example, the concept of isotopy plus a little 
third grade arithmetic allows us to establish the Hua identity, 

(a + ab-la)~l+ (a + b)~x= a'\ (3.3) 

which arose in projective geometry [9] and is delicate to verify directly. Now 
the weak Hua identity, 

(l + b-l)~l+(\ + byl=l9 (3.4) 

where a = 1 is verifiable by third graders: 

1 1 b 1 1 = b 1 = 1 + b = 1 

l + b~l l + b h + i " 1 1 + i 6 + 1 1 + 6 1 + 6 

The case for general a is not so elementary, as noncommutative algebra is not 
usually taught in the third grade. Fortunately, every Jordan algebraist is 
equipped with a magic wand which can convert any element to 1 upon 
uttering the magic word "isotope". That is, we introduce an isotopic algebra 
A[a] in which a becomes the rightful unit. By our third grade methods we 
know the weak Hua identity (3.4) holds in A[a\ and in view of the formulas 
(3.2) this means 

a{a + ab~la) a + a(a + b)~la = a = aa~la. 

Cancelling a's fore and aft, we get the general Hua identity (3.3). Thus the 
general Hua identity (3.3) is just the validity of the weak Hua identity (3.4) in 
all isotopes. 

In Jordan algebras we have an entirely analogous notion of isotopy. In an 
associative isotope A[u] the Jordan product is given by x.uy.ux*= 
xu~lyu~lx; in general, we define the u-isotope J[u] to have quadratic product. 

ux
[u]y= uxu-y (3.5) 

This new Jordan structure has unit element 1M = w, so once more isotopy 
amounts to shifting the unit. However, in the Jordan case this can produce an 
essentially different algebra: J[u] need not be isomorphic to / . For example, 
the algebra J = Hn(R) of real n X n symmetric matrices is "formally real", in 
particular, has no nonzero nilpotent elements (each symmetric x being 
diagonalizable, where a power of a diagonal matrix vanishes only when each 
diagonal entry vanishes), whereas the isotope J[u] for 
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U = 

0 1 
1 0 

has nontrivial nilpotent element 

e = 

1 0 
0 0 

OJ 

e2lu] = eu-le = 0. 

The concept of two Jordan algebras being isotopic (each being isomorphic 
to an isotope of the other) is thus more general than being isomorphic. Many 
important properties of Jordan algebras are unaffected by isotopy, and the 
attempt to describe a Jordan algebra plus all of its isotopes in a single 
algebraic structure has led to the concept of a Jordan pair (which we will 
meet again). 

Isotopy is intimately connected with our second concept, the structure 
group Str(/) of a Jordan algebra. This was introduced by M. Koecher [17] as 
the set of all invertible linear transformations T on J for which there is an 
invertible T* (= T~lUTl) such that 

UTx = TUXT* for all JC E / (Te Str(/)). (3.6) 

By its definition, this is an algebraic group. Jacobson had studied it earlier as 
the set of norm similarities, since for a semisimple finite-dimensional algebra 
over a field, (3.6) is equivalent to 

N(Tx) * TN(X) for all x G / (3.7) 

(N the generic norm of / , T * r{T) a scalar depending only on T). 
A more illuminating way to regard the structure group is as the group of 

autotopies of / (isomorphisms of / with its isotopes, J-+J[Tl\ or, equiva-
lently, of one isotope with another, J[u] -* J[Tu]). 

The automorphism group Aut(/) is just the set of autotopies fixing the unit 
element 1. More generally, two isotopes J[u\ J[v] are isomorphic iff there 
exists an element of the structure group sending u into v, so the isomorphism 
classes of isotopes are in 1-1 correspondence with the orbits of the structure 
group (acting on the invertible elements of / ) . 

The Hua identity is valid for Jordan algebras, 

(a + U(a)b~xyX+ (a + b)~l= a' (3.8) 

and again follows from the weak Hua identity via isotopy. This identity was 
used by T. A. Springer (following up earlier ideas of Koecher) in his 1973 
book, Jordan algebras and algebraic groups [29], to base the entire theory of 
finite-dimensional Jordan algebras upon the inverse. His axioms for a / • 
structure were: 

(i) the existence of a birational inversion^* (involutary of degree — 1); 
(ii) a unit e and the weak Hua identity 
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j(e+jx)+j(e + x) = e; (3.9) 

(iii) density of the orbit of e under the structure group (defined as the 
invertible T withy(Tx) = T*~lj(x)). 

There were snags in his theory in characteristic 2; the axioms he should 
have taken were those for an H-structure [25]: 

(i) existence of an inversion./; (3.10) 

(ii) existence of a unit e: j(e) = e and Ue = Id (for Ux defined as the 
negative inverse of the differential ofy, Ux = (dj\x)~

l); 
(iii) the validity of the weak Hua identity in all isotopes: 

jlu\e[u] +j[u\x)) + j[u\e[u] + JC) - e[u] 

for/"1 =>= Uu °j, e[u] — w, i.e. the general Hua identity./(w + UJ(x)) +j{u + 
x)=j(u). 

This axiomatically characterizes the inversion mapy(jc) = JC~! in quadratic 
Jordan algebras: //-structures are categorically equivalent to Jordan algebras. 

The Hua identity (3.8) is equivalent to the representability of the inversion 
by the geometric series, i.e. that 

j(e- fct)=2 *nxn (3.H) 
o 

be valid (as formal power series) in all isotopes. Thus in terms of their 
inverses, Jordan algebras are singled out as precisely those algebraic systems 
whose inverse is given by the geometric series. 

It is important that all algebraic information about a Jordan algebra is 
encoded in the inverse. Springer developed the entire theory of finite-dimen­
sional Jordan algebras in terms of inverses (including classification via the 
structure group), completely avoiding the nonassociative product x ° y or the 
quadratic product (/„y, making the entire theory more accessible to algebraic 
group theorists. It must be stressed that this approach is essentially limited to 
the finite-dimensional case, or other situations where a rich supply of inver­
tible elements exists. 

IV. Applications to projective geometry. Now we turn to applications, 
beginning with geometry. In 1933 Ruth Moufang [27] constructed a projective 
plane coordinatized by a Cayley division ring. Because the coordinates were 
not associative, the resulting plane was not Desarguian. However, it did have 
the Little Dcsargues Property and the Harmonic Point Property, and in fact 
any Little Desarguian plane is either Desarguian or one of these Moufang 
planes. The coordinatization by a Cayley algebra was insufficient for a 
description of the automorphisms (collineations) of the plane-a "fundamental 
theorem of geometry" was not obtained. 

In 1949 Jordan (and, independently, H. Freudenthal in 1951) coordinatized 
these planes by the exceptional Jordan algebra J = H3(0). Points and lines 
were rays Rz determined by the "rank 1" elements of J (those with UZJ = Rz 
of dimension 1; these were just primitive idempotents in suitable isotopes). 
Such a point x and line y were incident if t(x9y) — 0 in terms of the generic 
trace t. The elements of this geometry TT(J) lay in the exceptional algebra / , 
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and their geometric relations were described in Jordan algebra terms. 
Moreover, with this description the coUineation group could be easily 
characterized. 

4.1. FUNDAMENTAL THEOREM OF PROJECTIVE GEOMETRY FOR MOUFANG 
PLANES TT(J) (Springer [30]; Jacobson [10], 1960; Faulkner [6], 1970). The 
coUineation group of the Moufang plane ir(J) is the semilinear structure 
group (the semilinear autotopies, or norm semisimilarities), and the little 
projective group generated by relations is the linear structure group. Two 
planes TT(J), TT(/') are isomorphic iff the algebras / , J' are isotopic. 

Once more the concepts of isotopy and structure group play a crucial role. 

V. Applications to Lie algebras and algebraic groups. Jordan methods have 
proved useful in the study of other algebraic systems, such as associative rings 
with involution [26], right alternative rings [31] and noncommutative Jordan 
rings [22], but their most important application in nonassociative algebra is to 
Lie algebras. Indeed, much of the algebraists' interest in Jordan algebras 
(especially the exceptional ones) during the 30's and 40's was due to their 
close connections with the exceptional Lie algebras. Although these Lie 
algebras could be constructed directly from their Cartan matrices, this was 
not illuminating; one needed a workable model. Exceptional Jordan algebras 
provided such a model. We can relate the 5 exceptional types of simple Lie 
algebras to the Cayley algebra O and exceptional Jordan algebra H3(0) as 
follows. 

5.1. TABLE OF EXCEPTIONAL LIE ALGEBRAS [13] 

Type Lie Algebra Lie (or algebraic) group Dimension 

G2 Derivations of O Automorphisms of O 14 
F4 Derivations of H3 (O) Automorphisms of H3 (O) 52 
E6 Reduced structure Reduced structure group 52 + (27 - 1) = 78 

algebra Strl0(/ ) = Der / + VJQ Str(/ )/R Id of H3 (O) 

£7 Superstructure algebra Superstructure group of H3 (O) 27 + 79 + 27 = 133 

J 0 S t r l ( / ) e 7 o f # 3 ( 0 ) 
£8 ? ? 248 

Here J0 denotes the elements of J having (generic) trace 0. To obtain E% as 
well, one needs a striking general recipe due to Tits in 1966 [32], [13]. 

5.2 FREUDENTHAL-TITS MAGIC SQUARE 
Ingredients: a composition algebra A, a Jordan algebra / of degree 3 
Recipe: L = Der(^l) © (A0 ® J0) © Der(/), with Lie products 

[D9 a®x] = D(a)®x, [E9 a ® x] = a ® E(x)9 

[a®x9b ®y] - \t{x9y)Daj + (a*b) ® {x*y) - t(a, b)Dx%y = ugh! 

Resulting type of algebra: 
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J 
A 

R 
C 
H 
O 

R 

0 
0 

Ax 

G2 

# 3(R) 

At 
A2 

C3 

FA 

H,(C) 

A2 

A2@A2 

As 
E6 

# 3 (H) 

c3 

A5 

A6 

E7 

H,(0) 

F4 

E6 

E7 

E9 

For example, in the bottom corner when A = O, / = H3(0), the Lie algebra 
Der A © (A0 ® J0) © Der J will have dimension 14 + (7 X 26) + 52 = 248. 

Both I. L. Kantor and Koecher discovered methods of "imbedding" a 
Jordan algebra in a Lie algebra. 

5.3 TITS-KOECHER CONSTRUCTION OF SUPERSTRUCTURE ALGEBRA 

# ( / ) = / © S t r l ( / ) © / , 

[W,x] = W(x\ [W,x] = W%x), [x,y] = Vxr 

This correspondence is functorial, so important information about / can be 
read off from the Lie algebra K(J) (e.g. / is simple or semisimple iff K(J) is). 
Isotopic Jordan algebras produced isomorphic Lie algebras, and the structure 
group of J induces a group of automorphisms of K(J). In view of this Kantor 
has said "There are no Jordan algebras, there are only Lie algebras". 

Besides these methods of building Lie algebras starting from a Jordan 
algebra, we can start from a suitable Lie algebra and derive a Jordan algebra 
from it. Acutally, what we get is slightly more general than a Jordan algebra. 
We will now say a few words about these systems (though the reader should 
not get bogged down in the identities). 

A Jordan triple system is just a Jordan algebra with the unit thrown away. 
For example, the rectangular p X q matrices Mp q(R) form a triple system 
under the product xy 'x. Axiomatically: 

(JTl) VX0,Ux=UxVytX, 

(JT2) VuWyj = Vx,V(y)x> 
(JT3) UuMy-UxU,Ux. (5.4) 

In such systems there is no bilinear product x ° y or square x2. The term 
"triple system" is due to the fact that when one can divide by 2 and 3, the 
system is completely described by the trilinear product {xyz} = Vxo,z, and 
the triple system axioms can be simplified to 

A Jordan pair V = (F+, VJ) is just a pair of spaces acting on each other 
like Jordan triple systems. For example, we can take F+ as p X q matrices 
Mpq{R) and K_ as q Xp matrices Mqp(R) under the action U^ = xyx. 
Axiomatically, we have two quadratic products UXey„tE: Vt (e * ±1) 
satisfying 
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(JPi) r^u^ = u^v,_^ 
(JP2) ^ W J . . ^ . , = Vx,My~ù*.> 
(JP3) l ^ , . . - ^ . , ^ . (5.6) 

One way to get a Jordan pair V is to pair a Jordan triple system or Jordan 
algebra J with itself, V+ = K_ = / and £̂ >>_€ = t/̂ y. In the first case the 
resulting pair has an involution K_ -» F+, and in the second the pair 
contains invertible elements (t/1+ is a bijection F_ -» K+). Conversely, every 
Jordan pair with involution or invertible elements results by doubling a 
Jordan triple system or algebra: 

Jordan triple systems * Jordan pairs with involution, 
Jordan algebras up to isotopy * Jordan pairs with 
invertible elements. 

Any Lie algebra with a 3-grading L = Lx © LQ © L_, ([£,., Lj] c £,+,) is 
obtained by generalizing the Tits-Koecher Construction 5.3. 

(5.7) THEOREM. There is a 1-1 correspondence between 3-graded Lie algebras 
L = Lj © LQ © L_, (having no ideal in LQ) and Jordan pairs V « (K+ VJ) 
(plus choice of subalgebra LQ in between Der V and Inder K). 77rc Jordan pair 
V(L) associated with L is given by V+ = Lt9 F_ = L_i, wrtA product 
{**?-•*«} ^ [[*»V-J» *«]• ^fo ^ e algebra L(V) associated with V is V+(B LQ 
© K_ wi/A Lie products [x+, y„] - K onrf [Z>o, x+] - Z>o(x)+, [DQ, ƒ J 

The Jordan pair V(L) is obtained by doubling a Jordan triple system ƒ iff 
L is symmetric (i.e. has an involution switching Lx and L_i). K(L) is 
obtained by doubling a Jordan algebra with unit e iff the grading of L is 
induced by a subalgebra sl(2) « {*>,ƒ, A} (e - e © 0 © 0 , ƒ « 0 © 0 © e, 
h « 0 © Id © 0). 

It is easy to see why Jordan pairs are spontaneously generated by such Lie 
algebras: from {xy z) » [[xy]z] in (5.7) we have Vx^ » ad[xy], so the triple 
axiom (5.5) for V(L) becomes 

[ad[xy],ad[zw]] = ad[[[xy],z] , w] - ad[z, [ [ ƒ * ] , * ] ] 

and therefore falls right out of the Jacobi identity for L. 
Thus the study of graded Lie algebras leads naturally to Jordan pairs 

(including triple systems and algebras). From several points of view, Jordan 
pairs are the most natural Jordan systems; a complete theory has been 
developed by Ottmar Loos in his book, Jordan pairs [20]. 

We are saying that if you open up a Lie algebra and look inside, 9 times 
out of 10 there is a Jordan algebra (or pair) which makes it tick. 

VI. Applications to analysis. To appreciate the analytic applications, it is not 
necessary to be familiar with the concepts involved; it is enough to believe the 
Halmosian dictum: "important mathematics being spoken here". 

The discovery and development of the analytic applications is due 
primarily to Max Koecher and his students, with important contributions by 
Kantor, Resnikoff, Rothaus, Vinberg, and others. It has profoundly affected 
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the course of Jordan theory (even in its purely algebraic aspects). 
REAL ANALYSIS. A geometrically important species of space is a 

Riemannian symmetric space, which is an analytic Riemannian manifold, each 
point of which is an (isolated) fixed point of an involutive isometry (the 
so-called geodesic symmetry about that point). As with any Riemannian 
manifold M, such a space has an affine connection determined by Christoffel 
symbols r£, and at each point/? G M there is an exponential map expp of the 
tangent space Tp(M) to the manifold at/? down into the manifold itself, such 
that 0 projects onto/? and x -* — x projects onto the geodesic symmetry. 

The self-dual homogeneous cones are an important example of symmetric 
spaces, and there is a 1-1 correspondence between them and formally real 
Jordan algebras (real algebras where a sum of squares of elements vanishes 
only when each of the elements vanishes). 

(6.1) EXAMPLE [36], [18]. Let / be a formally real Jordan algebra, and C(J) 
the positive cone of / (the identity component of the set of invertible 
elements-equivalently, the set of all exponentials ex = '2o>xn/n\). Then C(J) 
is an open subset of R" and becomes a Riemannian symmetric space. At 
p * 1 the geodesic symmetry is simply the inversion J C - * * ^ , and the 
exponential map is the ordinary algebraic exponential exp^x) = e*. Any 
other point p can be considered as the unit element in its own algebraic 
system, the isotope J[p\ so has geodesic symmetry x-*x~l[p] and 
exponential map expp(x) = ex[p\ The affine connection T^ coincides with 
the structure constants Cy of the Jordan algebra J. 

COMPLEX ANALYSIS. The complex analogue of a Riemannian symmetric 
space is a Hermitian symmetric space, a real symmetric space with a complex 
structure invariant under geodesic symmetry. (Such a space is a complex 
analytic manifold such that in each tangent space there lives a Hermitian 
inner product.) These are abstract complex manifolds. In contrast, a bounded 
symmetric domain is a bounded domain in C such that every point is an 
(isolated) fixed point of an involutive automorphism of the domain. Initially 
such a domain has no metric, but there is a natural way to introduce one. 

6.2 THEOREM [8]. Every bounded symmetric domain naturally carries the 
structure of a Hermitian symmetric space [of noncompact type] via the Bergman 
metric derived from the Bergman kernel; all automorphisms of the domain 
become isometries of this Hermitian structure. Conversely, every Hermitian 
symmetric space [of noncompact type] is isomorphic to a bounded symmetric 
domain in C . 

This reduces the study of certain abstract Hermitian symmetric spaces to 
the study of more tangible domains in C1. At this point we make a further 
reduction to an even nicer sort of domain. A bounded homogeneous circled 
domain is a bounded domain in C containing the origin, such that the 
circling maps x -» eux are automorphisms of the domain for all real t, and 
such that the group of all automorphisms acts transitively on the domain. 

These circled domains are actually symmetric domains: at the origin the 
symmetry is the automorphism e™ = -Id, and exists at all other points by 
homogeneity. Conversely, all bounded symmetric domains are isomorphic to 
circled domains: 
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6.3 THEOREM [19], [36], [8]. Every bounded symmetric domain is 
biholomorphically equivalent to a bounded homogeneous circled domain (its 
Harish-Chandra realization). A bounded homogeneous circled domain is its own 
Harish-Chandra realization. 

Thus the study of Hermitian symmetric spaces M is reduced to the study of 
certain round open domains D in Cn. We give some examples of such 
realizations p. 

6.4 EXAMPLE (Upper half plane). 

M = the upper half plane of all x + />, y > 0 (x,y E R), 

D = unit disc l - z z > 0 ( z G C ) , 
p = Cayley transform z -» (1 + iz)/ (1 — iz). 

6.5 EXAMPLE (Siegel's generalized upper half plane). 

M = all X + iT, 7 positive definite (X, Y E Mn (R)), 

Z> = generalized unit disc of Z G Mn (C) with Id - ZZ 
positive definite, 

p = Cayley transform Z -> (Id + /Z)(Id - iZ)"1. 

6.6 EXAMPLES (Koecher's halfspace of a formally real Jordan algebra / ) 
[18]. 

M = H (J) = all X + iT, y in the positive cone C ( / ) 

(X, Y E J) (so # ( / ) = / + iC(J) is an open subset of 

the complexification Jc of the Jordan algebra), 
D = all elements z in Jc for which the operator 

2 Id - V(z, z) is positive definite, 

p « Cayley transform Z -> (1 + /Z)(l - iZ)~ !. 

Here the geometry of H(J) is nicely described in Jordan terms: the group 
Aut H (J) of automorphisms consists of the linear fractional transformations, 
generated by inversion z -> — z~l

9 translations z -» z + a (a E / ) , and z -» 
Tz for those T in the structure group of / which map C(J) onto itself. 

Finally, the bounded homogeneous circled domains are categorically 
equivalent to certain Jordan triple systems. A Hermitian Jordan triple system 
is a real Jordan triple with complex structure such that the triple product 
{xy z) is C-linear in x and z but C-antilinear in the middle variable y, and 
where the bilinear form (x9y)= trace VXJ, is a positive definite Hermitian 
scalar product. 

6.7 THEOREM [19], [36], [21]. There is a natural 1-1 correspondence between 
bounded homogeneous circled domains and Hermitian Jordan triple systems. If 
D is a domain with Bergman kernel K the Jordan triple structure is given by 
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z-0 

<«, c> = dudë log K(z, 2)|z=0, 

34log K{z,z) 
{uvw}= 2 ^ ^ forC(MJ = a z a - 9 ^ 9 . 

Conversely, given a triple system J the domain is obtained as 

D = {* |2Id- V(x,x)>0}. 

The geometry and algebra are related by results such as: 

The Bergman kernel is K(z, w) = (1//A(Z))) det~lff(z, w). 
The Bergman metric at OJs (u, v)= trace VUyV. 
The Shilov boundary of D = the set of maximal idempotents 

of/. 
The affine and holomorphic boundary components of D are 

the faces e + D n Fo(e) for all idempotents e of / . 
D = Z>, X • • • XD, decomposes into irreducible domains 

iff / = / , © • • © Jr decomposes into simple triple 
systems. 

The automorphisms of the domain fixing 0 are just the 
automorphisms of the triple system Aut^D) = Aut(/). 

All geometric information about D is encoded in the algebraic structure of 
the Jordan triple system / . This yields a simple direct treatment of such 
domains which avoids the elaborate machinery of Lie theory (the usual 
method of analyzing them). For example, the simple Hermitian Jordan triple 
systems are 

(ii) Hn{C) > Classical product xy'x 

(iii) Skew„(C) ) 

(iv) C1 

(v) O2 (dimension 16) ) 
> exceptional 

(vi) H3 (O) (dimension 27) J (g g) 

and these correspond to the irreducible domains. The Jordan approach has 
been generalized by L. Harris [34] and W. Kaup [35] to the infinite-dimen­
sional case. Indeed, Jordan triple systems can answer any question you care 
to ask about bounded homogeneous circled domains. 

VII. Conclusion. Jordan algebras arose as an attempt to capture the 
algebraic essence of Hermitian matrices (or symmetric elements of an asso­
ciative algebra with involution). They are close enough to associative algebras 
to remain tractable, yet they let in just enough generality to include l/3(0), 
thereby yielding connections with exceptional structures in many branches of 
mathematics. As a result, Jordan methods have proved useful tools in a 
variety of settings. 
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