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This is an aptly titled effort to supplement probability theory as developed 
for chance/aleatory devices by a parallel, but distinct, epistemically oriented 
quantitative theory of evidence for, and evidential support of, our opinions, 
judgements of facts, and beliefs. That probability takes its meaning from and 
is used to describe such diverse phenomena as propensities for physical 
behavior, propositional attitudes of belief, logical relations of inductive 
support, and experimental outcomes under prescribed conditions of unlinked 
repetitions, has long been the source of much of the controversy and vitality 
in the development and application of probability theory and its associated 
concepts. Ian Hacking in his recent book The emergence of probability [1] 
attempted to trace and explain this intertwining of belief/knowledge and 
physical (objective) behavior in terms of a conceptual transformation of the 
categories of knowledge and opinion that was mainly completed by the early 
18th century. Hacking's historical/philosophical analysis aims to explain what 
he holds to be our present dualistic conception of probability as being jointly 
epistemic (oriented towards assessment of knowledge/belief) and aleatory 
(oriented towards the objective description of the outcomes of 'random' 
experiments) with most of the present-day emphasis on the latter. Historically, 
however, the epistemic component was initially dominant in conceptions of 
probability. 

Probability through the Renaissance applied only to opinions/beliefs and 
was based upon authoritative testimony in support of these opinions/beliefs. 
The 19 year-old Leibniz writing in 1665 wished to formalize the evidential 
support for beliefs by a numerical assignment on a scale of [0, 1] of what he 
referred to as 'degrees of proof'. The object of this exercise was to be a 
rationalized jurisprudence. Key to such assignments was an analysis into 
equally possible (likely) cases. 

The growth of an aleatory notion of probability concerning inductive 
relations between physical signs and physical phenomena starts in the 
Renaissance. The extent to which the aleatory notion was dependent upon the 
epistemic notion (there was also a strong converse dependence) is apparent in 
the posthumously published (1713) A rs conjectandi of J. Bernoulli. In Part IV 
of the Ars [2] we find the first statement and proof of a law of large numbers, 
the first firm step on the road to the frequentist/aleatory concepts dominant 
today. Significantly though, J. Bernoulli was not a frequentist. For Bernoulli, 
frequency of occurrence was only a clue to the enumeration of the equally 
possible cases that was the basis of quantitative epistemic probability. Much 
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of Part IV is given over to discussions of evidence and evidential support and 
how to deal with pure and with mixed evidence; pure evidence either 
confirmed or discontinued the hypothesis. Bernoulli's analysis of this situation 
led him to be willing to assign probabilities P(A) to hypothesis A and P(AC) 
to false A that violated the usual assumption of P(A) + P(AC) = 1, although 
Bernoulli, as Leibniz, accepted 0 < P(A) < 1. 

While there have been sporadic efforts to deal with the problems of evidence 
and evidential support since J. Bernoulli, these efforts have generated little 
momentum. The explanation for the slight impact of these attempts to 
advance probabilistic reasoning seems to lie in the sociology/psychology of 
mathematics and philosophy and lacks any substantial intellectual basis. 
Shafer's book is a welcome contribution to the effort to continue the 
Leibnizian-Bernoullian line, and redress the intellectual imbalance that has 
developed over the last 200 years by reintroducing issues of practical and 
intellectual importance for inductive inference. Shafer's approach to the 
characterization and quantification of evidential reasoning follows suggestions 
advanced by Dempster [3] and should appeal to the mathematical community 
as it is a self-contained mathematical theory of evidence, related to Choquet's 
study of alternating and monotone capacities, that can be viewed as a 
generalization of probability theory. A relation of this theory to parameter 
estimation is sketched in Chapter II. 

Several of the terms basic to Shafer's discussion of evidence are the 
following. 

(a) Frame of discernment 0-counterpart to a sample space. List of 
possibilities relative to our knowledge with distinctions based on our interests. 
Not a logically exhaustive list descriptive of our best resolving power 
concerning possibilities. In regard to expanding 0, Shafer (p. 276) notes "it is 
always possible to enlarge a frame so as to reduce one's evidence to a 
collection of nullities". © is taken to be finite throughout the discussions. 

(b) Basic probability function m: 2 e -» [0,1], subject to m(<t>) = 0, 
2,4 ce m(A) ^ *• mC^) ^fleets the degree of belief exactly committed to A. 

(c) The degree of belief or support function Bel: 2 e -» [0,1] and satisfies: 

Bel(0) - 1; Bel(<|>) = 0; (Vn)(\/Av... %An C 0) Bel( Û A \ 

Bel is a set function that is monotone of order infinity. Bel relatés to m through 
BelOi) = ZBCA «(*)• 

(d) Bayesian belief function is one for which m is positive only on singleton 
sets and thus probability measure. 

(e) Degree of plausibility or upper probability P*(A) = 1 - Be\(Ac). 
In the case of infinite 0, discussed in Shafer [4], the function m is of less 
importance and the argument is based on a representation theorem for 
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monotone set functions showing that they are a composition of a probability 
measure and an intersection homomorphism. 

This framework enables Shafer to reasonably formalize a total absence of 
relevant evidence bearing on a frame of discernment © through the belief 
function 

-UA. CO iîA^e, 
B e i w = ( i i M - e . 

This characterization of ignorance is preferable to any that has been attempt­
ed in the usual setup of probability theory. In a probability setup the only 
alternatives seem to be to either take no position (e.g., invoke an unknown, as 
distinct from random, parameter), or to assign a uniform distribution to the 
elements of ©, a device with well-known problems. 

Central to the theory Shafer develops is a rule of combination of belief 
functions that appeared in Dempster and a special case of which is credited to 
J. H. Lambert (1764). From two belief functions Belj, Bel2 on a frame 0, with 
associated basic probability functions mv m2 we can form the combined belief 
function Bel12 on 0 with basic probability function m12 through 

2 wM^iB.) 2 ^i(Ai)m2(B:) 

Bdl2(A) = 2 mn(B). 
BaA 

This rule of combination is applicable when the component belief functions 
are (p. 57) "based on entirely distinct bodies of evidence" and "the frame of 
discernment discerns the relevant interaction of the bodies of evidence". Much 
of the text concerns the mathematical implications of this definition of 
combination. In terms of it Shafer defines conditional belief functions 
Bel(̂ 4|jB) and assessments of evidence w(A). 

A conditional belief function Bel(v4|i?) is viewed as the combination of a 
belief function Bel(̂ 4) and the degenerate belief function 

if ,4 D B, 
0 if other. 

Equivalent^, if P*(A\B) = 1 - Bel(^lc|J5) then 

p+(A\n\-p*(A nB) 

P (A\B) - p * ( 5 ) . 
Dempster in [3] presents several different definitions of what amounts to 
Bel(^4|5), his preferred one being the one Shafer adopts. 

The assessment of evidence function w: 2 0 -» [0, oo] is meant to measure 
the weight of evidence pointing to any subset of the fraane ©. An elementary 
belief function SB, called a simple support function, is defined by 
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1 if ^ = O, 

SB(A) = ! s if A D B,A # 0, 
0 if 4̂ other, 

where set B is called its focus and 0 < s < 1. The corresponding weight of 
evidence function ws is then argued to be given by: 

I oo if A = 0 , 

- log(l - s) if A D B, A ^ 0 , 

0 if A other. 
Curiously, the Bayesian belief functions then turn out to be pathological in 
that they can be viewed as arising in the limiting case of infinite contradictory 
weights of evidence pointing to the atoms of 0 . 

While Shafer provides a number of homely examples illustrative of the 
definitions and their consequences, and some philosophical/interpretive dis­
cussion concerning the nature and typology of evidence collections, none of it 
elaborates how we are to transfer from an evidence collection to the numerical 
assessments of support, weight of evidence, or degree of belief. Perhaps the 
absence of elaboration is purposeful, for as Shafer remarks at the close (p. 
285), "The construction of a frame of discernment is a creative a c t . . . The 
translation of our vague and amorphous knowledge and experience into 
degrees of support within our frame of discernment can be challenge to the 
reason and judgement of our astutest minds." The title of this work accurately 
reflects its mathematical emphasis and its concern with explicating the formal 
structure of numerical measures of evidential support, albeit Shafer also 
believes, and I agree, that numerical measures are an idealization. However, a 
purely mathematical treatment of this subject may be premature if it precedes 
a sound intuitive grasp of this complex and significant problem. I do not hold 
with confirmed personalists who might maintain that the relation between a 
quantitative measure of belief and the basis for this belief is intuitive, 
primitive, and a priori. 

It is particularly important that the notion of distinct or separate bodies of 
evidence be clarified as it is the basis for the essential operation of combining 
belief functions. The situation here is analogous to that of stochastic inde­
pendence in probability theory. Stochastic independence is an essential notion 
of unlinkedness or the uninformativeness of one outcome about another. 
While it has been explicated mathematically, via the probability of a joint 
event formed from independent events being equal to the product of their 
individual probabilities, the adequacy of this explication of our intuitive 
concept has been questioned [5], and the importance of this issue has been 
noted by Kolmogorov [6] when he said " . . . one of the most important 
problems in the philosophy of the natural sciences is . . . to make precise the 
premises which would make it possible to regard any given real events as 
independent." Dempster's approach to the combination of bodies of evidence 
better illustrates this parallel between stochastic independence and distinct 
bodies of evidence. 
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This issue of the nature of separate bodies of evidence and the Dempster 
combination rule also impacts on Shafer's selection of a definition of 
conditional degree of belief. There is evidently a philosophical issue here as to 
whether in conditioning on a proposition B we need to think of the knowledge 
(possibly hypothetical or even counterfactual) that B is true as being based on 
a separate body of evidence from that which went into the belief function we 
are conditioning. At any rate this issue is glossed over in the usual probabilis­
tic approach to conditional probability. 

The significance and obscurity of the notion of distinct bodies of evidence 
is also brought out by the possibility of having two distinct bodies of evidence 
which individually give rise to the same belief function. Yet when we combine 
the bodies of evidence, they give rise to a different belief function; e.g. if the 
original basic probability function m was such that m(A) > 0, and m{B) = 0 
if B C A, then the new function rri may now be positive on subsets of A. The 
remarks in §8.2 bear on this issue. 

Furthermore the issue skirted by renormalizing the joint basic probability 
function ml2 to account for the seeming assignment of support to the 
impossible proposition (<f>) suggests a defect in the rule of combination. At first 
reflection an ideal combination rule would not attempt to provide support for 
<t> and then have to be adjusted to eliminate this possibility. Admittedly, from 
the perspective of P*(A\B) this problem seems less important. 

The matter of a decision-making role for belief functions is not addressed. 
Some discussion of inference, wherein likelihoods are converted to belief 
functions, is provided in Chapter 11. However, this discussion is flawed (e.g. 
11.3), suggesting that the author has not pursued the issue of the utilization of 
belief functions as closely as he has that of the mathematical characterization 
of belief functions. 

Nonetheless, Shafer's A mathematical theory of evidence is a lucid introduc­
tion to the unfortunately neglected study of epistemic probability and 
evidential reasoning. While it is clear that the relations between evidence and 
beliefs and the classification of types of evidence are more complex than yet 
accounted for by any formal theory, he at least treats these issues more 
carefully than is done in the standard probabilistic treatment of inference. 
Other recent attempts to deal with evidence and epistemic probability would 
include those centered around Carnap's logical probability [7], I. J. Good's 
many attempts to mathematicize reasoning [8], [9], and Kyburg's epistemolog* 
ical probability [10]. Hopefully, Shafer's worthy effort will stimulate mathe­
maticians and philosophers to expand their efforts until this subject is at least 
worthy of the attention of lawyers, as Leibniz hoped it would be 300 years 
ago! 
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Order and potential resolvent families of kernels, by Aurel Cornea and 
Gabriela Licea, Lecture Notes in Mathematics, no. 494, Springer-Verlag, 
Berlin, Heidelberg, New York, 1975, 154 pp., $7.40, 

The first title of this book is Order and potential If the nonspecialist reader 
opens it at any page, just looking for familiar words, he can be sure to see 
some mention of order, and has reasonable chances to find potentials, but 
may wonder whether the use of the latter word has anything to do with 
newtonian potential, harmonic functions and similar things. After all, the 
word potential has different connotations in different contexts (the military 
potential of the United States, the industrial potential of Europe) and the 
recurrent mention of a mysterious "domination principle" might lead to 
further political misinterpretations. So let me tell first what the subject of the 
book really is. 

We must come back to the early history of the subject. Between 1945 and 
1950, H. Cartan proved some fundamental results in classical potential 
theory, which were rapidly digested, generalized and improved by the French 
school of potential theory around M. Brelot, G. Choquet and J. Deny. The 
axiomatic trend had always been felt in potential theory (the use of the old 
word "principle" to mean "axiom" may be good evidence for it), and anyhow 
the years 1950 were those of the big axiomatic boom in mathematics. Hence 
it is entirely natural that the interest shifted from potential theory to potential 
theories defined by suitable axioms. Among the interesting features of classi­
cal potential theory, the so called complete maximum principle came to play a 
leading role. It can be easily stated and understood, as follows. Let u and v be 
two newtonian potentials of positive measures A and /x, and let a be a positive 
constant. Assume that 

(1) a + u > v on the closed support F on the measure fi corresponding to 
v. 

Then the same inequality takes place everywhere. This is almost obvious. 
In the open set Fc complement of F, the function a + u — v is super-


