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Introduction. The notion of a generalized cohomology theory plays a 
central role in algebraic topology. Each such additive theory E* can be 
represented by a spectrum E. Here E consists of based spaces £, for / > 0 
such that Ei is homeomorphic to the loop space tiEi+l of based maps 
Sl -» Ei+,, and representability means that EnX = [X, En], the Abelian group 
of homotopy classes of based maps X -* En, for n > 0. The existence of the 
E{ for i > 0 implies the presence of considerable internal structure on E0, the 
least of which is a structure of homotopy commutative //-space. Infinite loop 
space theory is concerned with the study of such internal structure on spaces. 

This structure is of interest for several reasons. The homology of spaces so 
structured carries "homology operations" analogous to the Steenrod opera­
tions in the cohomology of general spaces. These operations are vital to the 
analysis of characteristic classes for spherical fibrations and for topological 
and PL bundles. More deeply, a space so structured determines a spectrum 
and thus a cohomology theory. In the applications, there is considerable 
interplay between descriptive analysis of the resulting new spectra and 
explicit calculations of homology groups. 

The discussion so far concerns spaces with one structure. In practice, many 
of the most interesting applications depend on analysis of the interrelation­
ship between two such structures on a space, one thought of as additive and 
the other as multiplicative. 

The purpose of this talk is to give my view of the present state of infinite 
loop space theory, with emphasis on the intuitions behind the main concepts. 
There will be no formal statements, no proofs, very few complete definitions, 
and a general disregard of technical niceties. The details are now all written 
down, largely in [20], [45], and [48]. As these references indicate, this is not a 
historical survey, and I shall have little to say about the alternative theoretical 
approaches applicable to various portions of the material presented.2 For the 
applications, it is sufficient, and necessary, to have a fully coherent frame­
work, and my primary concern is to explain how the classifying spaces of 
geometric topology, the spectra of algebraic and topological A -̂theory, and 
Thorn spectra appear and interact within one such framework and to show 
how the general abstract machinery is used to crank out explicit concrete 
calculations. 

This is an expanded version of an invited address given at the annual meeting of the Society in 
San Antonio, Texas, on January 25, 1976; received by the editors July 2, 1976. 
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To give proper credits without interrupting the exposition (and to indicate 
where in the references cited above the details may be found), I have ended 
most sections with brief historical notes. 

The following diagram depicts some of the main concepts and the functors 
relating them. The word "coherent" in the previous paragraph refers, in part, 
to analysis of the various commutativity relations in the diagram. We shall 
refer to this diagram as the schematic picture, and we shall orient our 
discussion of the general theory with respect to it. 

PERMUTATIVE 
CATEGORIES 

B 

BIPERMUTATIVE 
CATEGORIES 

B 

E„ RING SPACES 
t 
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CHAPTER I. ADDITIVE INFINITE LOOP SPACE THEORY 

1. Spectra, infinite loop spaces, and the functor Q^. We have defined a 
spectrum £ to be a sequence of spaces E( with Et homeomorphic to QEi+l. 
Maps of spectra are sequences/: Z), -» Ef such that ƒ agrees under the given 
homeomorphisms with Qfi+\. Spaces of the homotopy type of some E0 and 
maps in the homotopy class of some f0 are called infinite loop spaces and 
infinite loop maps. 

The suspension 2A" of a based space X is the smash product X /\S\ 
where X /\ Y is the quotient of X X Y by the wedge, or 1-point union, 
X V Y. The nth stable homotopy group irs

nX of X is the direct limit of the 
groups ir„+J2

JX. 
There is a stabilization functor Q from spaces to spaces specified by 

QX = ind lim 2J2JX; mnQX = irs
hX, and the natural map X -* QX induces 

the stabilization homomorphism upon passage to homotopy groups. Since 
ÇIQ2X s QX, there is a stabilization functor Q^ from spaces to spectra 
specified by 

(Q^X)* Q^X = ind lim Q>2'+/Y. 

The sphere spectrum Q^S0 an<^ its zeroth space QS° will be central to our 
discussion. The elements of QS° m a y be thought of as maps of an infinite 
sphere to itself. The groups irs

n = irnQS° are the stable homotopy groups of 
spheres, the determination of which is, of course, one of the hardest and most 
important of the unsolved problems in algebraic topology. 

NOTES. The notion of spectrum here is not the classical one. See [48, II] for 
a summary and [49] for the details of a treatment of stable homotopy theory 
based on this notion. The spaces QX seem to have been introduced by Dyer 
and Lashof [22]. 

2. Operads and their actions; 9H, 91, and 6n. We require a convenient 
language in which to describe the internal structure on an infinite loop space 
E0 given by the existence of the spaces £,. Since E0 ^ fi£,, composition of 
loops gives a product E0 X E0 -» £0; that is, given two loops Sl -» £,, we can 
use one on the first half of S] and the other on the second half to obtain a 
new loop. Consideration of the associativity of this operation reveals that the 
use of \ here is an arbitrary choice. We could just as well have used one loop 
on the first \ of Sl and the other on the last | for example. Moreover, 
EQ S ®>nEn, and this gives n different coordinates which can be used to define 
a product, all of these products being homotopic. We are led to introduce a 
space of products, a space of 3-fold products E0 X E0 X E0 -» £0, and so on. 
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These spaces of operations will encode the internal structure on E0 coming 
from the Er 

An appropriate formalism is given by the notion of an operad. An operad 
G consists of spaces G(j) for j > 0, to be thought of as spaces of y-ary 
operations. C(0) is a point, 0(1) contains a unit element 1, there is a right 
action of the symmetric group 2y. on S(y), and there are maps 

y: e{k) x eo\) x ••• x eak) -» eux + • • • +jk). 
These data are subject to a number of axioms, which will be omitted in favor 
of a conceptual reformulation to be given shortly. 

An action 8 of G on a space X consists of 2,-equivariant maps 9f. 
G(j) X Xj -> X (where 2y. acts diagonally on the left and trivially on the 
right) subject to certain axioms. 0O is to be interpreted as the inclusion of the 
basepoint or identity element * in X. The unit 1 E (£(1) determines the 
identity map of X, the equivariance of the 0, keeps track of permutations of 
variables, and the maps y are so related to composition as to keep track of 
iterated products. 

These notions are not unfamiliar. There is an operad ?H with ^HO') = 2.. 
An 9lt-space is just a monoid (that is, an associative //-space with unit). The 
elements of 2. simply record the j \ ways of writing words with j distinct 
letters. Again, there is an operad % with each ?fi(j) & single point. An 
9L-space is just a commutative monoid. 

An operad G is said to be an E^ operad if each G(j) is a contractible space 
with a free 2^-action. The orbit space S(y)/2/ is then an Eilenberg-Mac Lane 
space #(2^, 1). An E^ space is a G -space where G is any E^ operad. It 
would be most inconvenient to restrict attention to any particular example of 
an E^ operad: we shall have three very different ones on hand before we are 
through. 

Returning to our motivating example, we must construct an E^ operad 
which acts naturally on infinite loop spaces. Let Gn(j) be the space ofy-tuples 
of little «-cubes with disjoint interiors. Here by a "little «-cube" we mean a 
linear embedding I" -> In (with parallel axes). With the appropriate data, Gn 

is an operad. Via little cubes with last coordinate the identity map, Gn is a 
suboperad of Gn + {, and there results a direct limit operad G^. Gn(j) is 
2/.-equivariantly equivalent to the configuration space of y-tuples of distinct 
points of R" and is (n - 2)-connected; G^ is an E^ operad. 

Gn acts naturally on «-fold loop spaces. The requisite maps 0nJ: Gn(j) X 
(ti"Xy -» QnX can be described pictorially as follows (withy = 3): 

In the first map, we collapse all points of In not in the image of three given 
little «-cubes to a single basepoint. The second space is then the wedge of 
three «-spheres, and we can use three given maps Sn -» X to map this space 
to the wedge of three copies of X. Finally, we apply the folding map, the 
identity on each copy of X. 
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For a spectrum E, the actions 9n of Qn on EQ ^ tinEn together specify an 
action of Q^ on E0. Thus an infinite loop space is an E^ space. This gives the 
dotted arrow from spectra to E^ spaces in our schematic picture. 

NOTES. See [45, §§1, 3-5] for details. The notion of an operad was obtained 
by deletion of extraneous structure from that of a PROP. The latter notion 
was introduced by Adams and Mac Lane [37] but was first topologized by 
Boardman and Vogt [13], [14]; this deceptively simple sounding change of 
point of view was the essential starting point of this area of topology. The 
invention of the little cubes operads and the definition of their actions on 
iterated loop spaces are also due to Boardman and Vogt. 

3. Monads and their actions; M, N, and Cn. While the notion of an operad is 
naturally dictated by the geometry, exploitation of this concept requires a 
simpler notion for which an action is not a sequence of maps but a single 
map. The basic idea is the description of algebraic structure by means of 
maps from free objects to objects. For example, an action of a monoid G on a 
space A" is a map G X X -» X such that the appropriate associativity and 
unity diagrams commute. 

A monad (C, /x, -q) in a category ?T is a functor C: 9" -» 9" together with 
natural transformations JU: CC -> C and TJ: 1 -» C such that the following 
diagrams commute for all X G ?T: 

CCCX K—>CCX and CX—^—• CCX <—^—CX 

An action of a monad C on an object A" is a map 0: CX -» X such that the 
following diagrams commute: 

CCX—Ë—• 

ce\ 

e 
CX >X X 

In the present additive theory, the ground category ?f will just be the 
category of (suitably nice) based spaces. 

We claim that an operad G determines a monad C in such a way that the 
notions of G-space and of C-space are equivalent. Indeed, for a space X9 the 
free S-space CX is specified by 

cx= II eu)xs *>/(«), 

where II denotes disjoint union and the equivalence is given by appropriate 
basepoint identifications (of the form (o{c9 y) « (c, sty) for certain maps o(: 
Q(j) —» Q(j — 1), where s{: X

J~[ -» XJ inserts the basepoint in the /th posi­
tion). The maps JU,: CCX -» CX and 17: X -» CX are obtained by use of the 
structural maps y and the unit 1 E S(l) of the operad. The missing axioms in 
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the definition of an operad are precisely the conditions necessary to ensure 
that (C, jut, ?0 is in fact a well-defined monad in ?T. The maps 0j of an action 
of G on X together determine a map 0: CX -» X, and the missing axioms in 
the definition of an action by an operad are precisely the conditions neces-
sary to ensure that 0 is an action of C on X. 

The monads M and N associated to <Dlt and ^l are familiar old construc­
tions in algebraic topology. MX is the James reduced product construction, or 
free monoid, on X and is equivalent to fiSA' if X is connected. NX is the 
infinite symmetric product, or free commutative monoid, on X and is equiv­
alent to Xn>{K(HnX, n) if X is connected. 

For any operad fi, CS° = IIS (y)/2,-. T h u s > i f & i s a n E<x> operad, CS° is a 
disjoint union of KÇ2j9 l)'s. We shall later need a structured way of compar­
ing two E^ operads and their associated monads. This is obtained simply by 
observing that if G and (?' are operads, then there is a product operad 
G X G' withyth space G (J) X G'(j). We write C X C' for the associated 
monad. When (2 and 6 ' are E^ operads, the projections from (C X C')(X) 
to CX and to C'X are equivalences. 

The monads CnX are of particular interest. Note that fi"2w is a monad with 
/üt: ün^PÜn^nX -» EPS"* being the /ith loop of the evaluation map and TJ: 
#-»Sw2wX being the natural inclusion. Define an: CnX^QTlPX to be the 
composite 

CnX
CS Cniï"2nX % tin2nX. 

It is a pleasant formal fact that an: Cn -» £2n2w is then a morphism of monads. 
NOTES. See [45, §§2, 3, 5] for details. The utility of monads in infinite loop 

space theory was first recognized by Beck [12]. 

4. The approximation theorem. There is a far more substantial topological 
reason for interest in the maps an. Q

nn2nX is a huge and unwieldy space, not 
amenable to direct homotopical analysis. The spaces C„X are much more 
tractable. Indeed, CnX is filtered by successive cofibrations, with FkCnX 
being the image of Uj=0Gn(j) X XJ. The successive quotients 
FkCnX/Fk„lCnX are the "equivariant half-smash products" 

en
kx = en(k) x Xk x[k] = en(k) x 2 t x[*]/e„(k) x2k * 

where X[k] is the fc-fold smash product of X with itself. The approximation 
theorem asserts that the map an: CnX -*QnlLnX is an equivalence if X is 
connected and that an is a "group completion" in general. 

Here by a group completion of an //-space Y we understand an //-map g: 
Y-+Z such that TT0Z is a group and g^: H^(Y; k)^H^(Z; k) is a 
localization of the Pontryagin ring H+(Y; k) at its multiplicative submonoid 
VQX for any commutative coefficient ring k. Intuitively then, Z is obtained 
from Y by adjoining inverses to components. If TT0Y is itself a group, then g is 
necessarily an equivalence. 

Homotopical exploitation of the approximation theorem has barely begun. 
We digress to cite two applications. First, we have a generalized EHP~ 
sequence. Let X be (q — l)-connected, q > 2. Then e*X is (kq ~ 1)-
connected and the inclusion of F2CnX in CnX induces an isomorphism on 
homotopy groups in dimensions i < 3q — 1. Since (F2C„X9 X) is (2q ~ 1)-
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connected, the projection (F2CnX, X) -* (e%X, * ) induces an isomorphism 
on homotopy groups in dimensions / < 3q - 2 (this being a standard con­
sequence of the homotopy excision theorem). Thus, in this range, the homo­
topy exact sequence of the pair (F2CnX9 X) yields an exact sequence of the 
form 

Since n is arbitrary, this relates the "metastable" homotopy group ^X to the 
stable homotopy group TT-X. Since Gn(2) is S2-equivariantly equivalent to 
Sn~ \ e*X is equivalent to the quadratic construction Sn~! tXv2 (X A X). The 
latter space is homeomorphic to I,r(RPn+r~1/RPr~l) when X = S", and the 
classical EHP-seqxxence is obtained by setting n = 1. 

The second application is a decomposition of the spectrum Qo0CnX into 
the wedge over y > 1 of the spectra Q^e{X when X is connected. 

We allow n = oo in the approximation theorem, in which case fl00^00^ is to 
be interpreted as QX. In particular, we have a group completion 

We shall obtain successive elaborations of this homological comparison 
between symmetric groups and the stable homotopy groups of spheres. 

NOTES. For connected spaces, the approximation theorem was proven in 
[45, §§6, 7]. The general case was later proven geometrically by Segal [66] and 
by explicit computation of the relevant Pontryagin rings by Cohen [20]. The 
case n = oo is much simpler than the case n < oo ; it was implicit in Dyer and 
Lashof [22] and was explicit in the unpublished preprint version of their 
paper. The present form of the EHP sequence was derived by Milgram [52] 
from his earlier combinatorial cellular models for QnTLnX [50]. The splitting of 
Q^CnX is due to Snaith [69], the splitting in the case n = oo having been 
obtained earlier by Kahn [32]. 

5. The recognition principle. The black box in our schematic picture is a 
machine for the construction of spectra from E^ spaces. In other words we 
can recognize spectra in the guise of spaces equipped with appropriate 
internal structure. Stripped to basics, the assertion is that if X is an E^ space, 
then there is a spectrum BX = {# ;^} and an E^ map t: X -» B0X which is a 
group completion. We shall write B0X = TX as a reminder of the group 
completion property. Since n0X need not be a group, inverses not having 
been built into operad actions, we cannot expect X to be equivalent to TX in 
general. 

While we do not wish to go into detail, a little discussion of the black box 
may be illuminating, especially as the assertion that i: X —> TX is an E^ map 
has no obvious meaning: we have insisted that an E^ space X can be a 
S'-space for any E^ operad G\ whereas TX, as an infinite loop space, is 
naturally a G^-space. We set (2 = S^ x Q' and observe that, by pullback 
along the projections, both X and TX are G -spaces. (More generally, we can 
start over with X assumed given as a G -space.) When a monad C acts (from 
the right) on a functor F and acts on a space X, there is a very natural 
resulting space, the two-sided bar construction B(F, C, X). The maps an: 
CnX -+ tin^nX give maps 2nCnX -» IPX by adjunction, and the latter maps 
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specify an action of Cn on 2". Therefore Cn x C' also acts on 2" (again, via 
the projection). The /th space of the spectrum BA" is specified by 

BtX = ind lim tijB(2/+y, C/+y X C', X). 

The full statement of the recognition principle asserts that there is a natural 
diagram of fi-maps 

X< ** B(Q C,X) >B(Q, C,X)-^—>BQX = rX, 
; t 

the first and third arrows of which are equivalences; that the middle arrow is 
a group completion is a consequence of the case n = oo of the approximation 
theorem. The map i is the displayed composite of C-maps and a homotopy 
inverse of a S-map which is an equivalence. It is in this sense that i is an E^ 
map. In effect then, our topological constructions have naturally converted 
the given Q' geometry on X to the canonical little cubes geometry on TX. 

Looking back at our schematic picture, we see that there are several 
obvious consistency questions to ask. If we start with a spectrum £, regard its 
zeroth space as a Q^ -space (and thus a C^ X G '-space for any C), and apply 
the black box, we obtain a new spectrum BE0. We expect some relationship 
between E and BE0, and in fact the interior of the black box gives a natural 
map co: BE0 -*> E of spectra whose zeroth map TE0 -» E0 is an equivalence. 

Again, given a space X, the interior of the black box quite formally gives a 
natural equivalence of spectra BCX -» Q^X. In particular, with X = 5°, we 
have 

B ( H * ( 2 > 1 ) ) - B C S ° ~ Q„S°. 
In other words, the sphere spectrum can be constructed out of symmetric 
groups. This statement is less well understood than its homological counter­
part of the previous section. For example, we have little idea as to how it 
might be used to obtain information about the stable homotopy groups of 
spheres. 

NOTES. See [45, §14] and [46, §2] or [48, VII] for details. There are many 
other black boxes. The first was constructed by Boardman and Vogt [13], [14], 
and their work was the essential starting point for all that followed. The 
second was constructed by Segal [67], and he was the first to consider 
applications to the classifying spaces of categories with appropriate internal 
structure (see §8). Others were constructed by Anderson [4] and by Barratt 
and Eccles [11]. At the present time it is not known whether or not the spectra 
produced by different black boxes from the same input are equivalent, and 
much of the material below will depend on special features of our particular 
black box. The equivalence between T(B.K(2J9 1)) and QS° is known as the 
Barratt-Quillen theorem since versions of this result were proven by Barratt 
[10], [11] and Quillen [unpublished, 67] independently. 

6. Homotopy invariance of the recognition principle. We allowed ourselves 
to think of a homotopy inverse of an E^ map which was an equivalence as an 
E^ map in the previous section. Clearly there ought to be a more general 
notion of C-map between 6-spaces which accepts such homotopy inverses. 
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Again, there clearly ought to be a generalized notion of (2-space which is 
invariant under homotopy equivalence. Lada [20] has developed an ap­
propriate theory, and we give a quick sketch of it here. 

An action 0: CX -» X of a monad on a space is analogous to an action 
G X l - ^ I o f a monoid on a space. It is well understood how to study the 
latter type of action up to homotopy, or rather up to all higher associativity 
homotopies, this being only a slight generalization of Stashef f s theory of A ^ 
spaces [71]. One begins with a map G X X -+ X such that the operations 
gi(g2x) and (gig2)x are homotopic. This yields two homotopies between the 
operations (gi(g2(#3*))) and (giftft)*» and one wants these homotopies to 
be homotopic, and so on. Generalizing this idea to monad actions, one arrives 
at the notion of an sh C-space (sh = strong homotopy). 

Using a variant of the bar construction B(C, C, X), one then constructs an 
actual C-space UX equivalent to any given sh C-space X and defines an "SH 
C-map" ƒ: X -» Y between sh C-spaces X and Y to be an actual C-map 
UX -» UY (to be thought of as the underlying map X » UX -» UY « Y 
with extra structure). With the obvious composition, there results a category 
of sh C-spaces and SH C-maps, and there is also an obvious homotopy 
category. The generalization of the recognition principle to this category is an 
immediate application of the recognition principle for actual 6-spaces 
already sketched. 

The basic homotopy invariance statements are as follows. 
(1) If F is an sh C-space and/: X-* Y is an equivalence, then X is an sh 

C-space and ƒ is an SH C-map. 
(2) If ƒ: X ~» Y is an SH C-map between sh C-spaces and g « ƒ, then g is 

an SH C-map and g « ƒ as SH C-maps. 
(3) If ƒ: X ~* Y is an SH C-map between sh C-spaces which is an 

equivalence with homotopy inverse g, then g is an SH C-map and f g » 1 and 
gf « 1 as SH C-maps. 

The basic idea of the proof is to define a notion of sh C-map X ~» F, using 
higher homotopies, when one of X and F is a C-space and the other is an sh 
C-space (this being much simpler technically than the case when both X and 
Y are sh C-spaces), to prove strong homotopy analogs of special cases of 
(l)-(3) by direct manipulation of higher homotopies, and to then deduce 
(1)~(3) by using properties of the construction UX to relate sh C-maps to SH 
C-maps. 

NOTES. The original black box of Boardman and Vogt [13], [14] was also 
homotopy invariant, this being one of its most celebrated features. Indeed, in 
their approach, analysis of homotopy invariance necessarily preceded the 
recognition principle. They made room for higher homotopies by blowing up 
the given operad rather than by blowing up the spaces on which the operad 
acts. 

7. 5* functors and classifying spaces; £. Consider the category 3 # of finite 
dimensional real inner product spaces and linear isometric isomorphisms. 
There are lots of functors G: 5 * -* *3 which admit commutative and associa­
tive natural sum operations <*>: GV X GW-+ G(V © W\ We refer to such G 
as # * functors. The most obvious example is given by the orthogonal groups 
OK. 
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We claim that 5* functors naturally give rise to E^ spaces. The relevant 
E^ operad is the linear isometries operad £. With R °° = ind lim Rn given its 
natural inner product, £(ƒ) is the space of linear isometries (R00}'-» /?°°, 
(R °°y being the direct sum of y copies of R °°. By passage to limits, it is easy 
to extend an $ * functor G to a functor G and natural sum co defined on finite 
or countably infinite dimensional real inner product spaces and their linear 
isometries. The Ê-space associated to G is GR °°; its Ê-action 9 is specified by 

W . S i . - . . . # ) - ( Ç f ) ( * i © ' - - ®8j) 

for ƒ E t(j) and g, G G#°°. By abuse, we shall abbreviate GR00 = G. 
The various classical groups and their homogeneous and classifying spaces 

occur in nature as ^ functors and thus determine £ -spaces and associated 
spectra. Certain of these spaces X also appear in the periodic spectra given by 
the Bott periodicity theorem, and in these cases BX is equivalent to the 
connective spectrum obtained from the relevant Bott spectrum by killing its 
homotopy groups in negative degrees. Indeed, the Bott maps all arise from 
maps of $* functors of the form H/Hl X H2^Q(G/G{ X G2), and the 
assertion follows from a consistency statement of the form ÜBX » B2X 
coming from the interior of our black box together with a general characteri­
zation of the connective spectrum associated to a periodic spectrum. 

Perhaps the most interesting 5 ^ functor is F, where FV is the function 
space F(tV, tV) of based maps from the one point compactification of K, 
denoted tV, to itself. The sum co is given by the smash product of maps via 
tV /\tW^t{V ® W). Write 

Ü°X=* F(tV9X) and 2°* = X /\'tV 

for the loop and suspension functors determined by the sphere tV and note 
that 

F = FR00 = ind lim U°tV a ind lim QV2V(S°) = QS°. 

Thus the £-space F is also the zeroth space of the sphere spectrum Q^S0, 
this being the starting point for the analysis of multiplicative structure on 
spectra. 

F contains the sub 5 * functors F, Top, and O of homotopy equivalences, 
homeomorphisms, and (compactifications of) orthogonal transformations; 
restriction to degree one maps yields the further sub i ^ functors SF, S Top, 
and SO. Each of these is in fact an 5 * monoid, in the sense that composition 
of maps GV X GF~> GV specifies a morphism of i ^ functors G X G -* G. 
It follows that application of the standard product-preserving classifying 
space functor B yields a new 5* functor BG, and of course the spaces BGV 
classify the appropriate types of bundles and fibrations. On the infinite loop 
space level, another consistency statement coming from the interior of our 
black box gives that BG and the machine-built delooping Bx G of G are 
equivalent in the sense that B(BG) and B(Z?,G) are equivalent spectra. In 
particular, BG and B{G are equivalent spaces, and both classify stable 
bundles and fibrations of the appropriate type. 

PL-bundles do not fit readily into this picture, but the triangulation 
theorem obviates any need for an elaborate theory: B PL is the fibre of 
BTop -» K(Z2, 4) as an infinite loop space. 
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NOTES. See [48, I] for details. The invention of the linear isometries operad 
and the passage from 5* functors to E^ spaces are due to Boardman and 
Vogt [13], [14], this being the motivating example for their original theory. 

8. Symmetric monoidal and permutative categories; 6D. Categories with 
suitable internal structure provide another rich source of E^ spaces and thus 
of spectra. In particular, infinite loop spaces whose homotopy groups are the 
algebraic AT-groups of rings arise in this way from the direct sum on the 
categories of projective modules and their isomorphisms. 

A symmetric monoidal category (6E, D> * ) consists of a (small, topological) 
category (Î, a functor • : 6E X & --» 6P, an object * , and coherent natural 
isomorphisms 

a:An(BnC)*(AnB)nC> 

b:*{2A^A9 and c:AQB^B\JA. 

Here coherence means that all diagrams which can reasonably be expected to 
commute do in fact commute. (See Mac Lane [37, §15] for an intuitive 
discussion of this concept.) Such categories occur ubiquitously in nature, cf is 
said to be permutative if a and b (but emphatically not c) are identity maps. 
Such categories occur less commonly, but there is a natural way to replace 
symmetric monoidal categories by equivalent permutative categories. 

There is a standard product-preserving classifying space functor B from 
categories to spaces. (A category with a single object is a monoid, and here B 
coincides with the classifying space functor of the previous section.) We claim 
that B takes permutative categories to E^ spaces. The relevant E^ operad is 
called^. Let 2. denote the category whose objects are the elements of 2y. and 
whose morphisms are elements of 2, regarded as translations r: o -* or. °Ö(y) 
is defined to be £2y , and the structural maps y of ^ are obtained by applying 
B to appropriate functors y. If & is a permutative category, then c and • 
determine functors 2. X &r -> &. Application of B to these functors yields an 
action 0 of <$ on B&. 

A few words should be said about the functoriality of B. A map/: cp -» CP' 
of permutative categories is required to preserve Q * , and c; Bf: Btf —» 
B&' is then a map of ^D-spaces. One could weaken the conditions on ƒ so as 
to allow ƒ (A • B) to be coherently naturally isomorphic to f A OfB. Bf is 
then an SH D-map since the functoriality properties of the replacement of 
symmetric monoidal categories by permutative categories give that Bf is the 
composite of a D-map and a homotopy inverse of a D-map which is an 
equivalence. 

If A is a (topological, but perhaps discrete) ring, there is a permutative 
category § &A whose objects are the natural numbers and whose morphisms 
n ~» n are the elements of the general linear group GL(«, A). (There are no 
morphisms m -* n if m ^ n.) The product on § fcA is given by the direct sum 
of matrices. When A is discrete, it is a direct consequence of the group 
completion property that the component of the basepoint of YB§ £A has the 
same homotopy type as Quillen's plus construction on Z?GL(oo, A) [63], [64]. 
Indeed, the plus construction is the least structured and the black box the 
most structured way of obtaining this homotopy type. It follows that Quillen's 
algebraic AT-groups of A are given by 
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KtA » irtTBQ£A for/ > 0. 

Of course, the groups KtA have been most studied when A is commutative. 
Here one naturally expects the tensor product of matrices to yield a multi­
plicative structure suitably related to the additive structure on B$£A. We are 
inexorably led to consider spaces with two E^ structures. 

NOTES. See [46, §4] and [48, VI, §§3-5] for details and further examples. 
The first passage from categories to spectra was due to Segal [67], and the 
relevance of permutative categories was noted by Anderson [4]. The passage 
from symmetric monoidal to permutative categories was originally due to 
Isbell [28]. 

CHAPTER II. MULTIPLICATIVE INFINITE LOOP SPACE THEORY 

9. Operad pairs and their actions; (91, 91). We have finished drawing the 
additive left-hand side of our schematic picture. Its elaboration to a multi­
plicative picture amounts essentially to a change of ground categories from 
spaces to E^ spaces. We describe the notion of an E^ ring space here, the 
problem being to succinctly record all possible distributivity relations be­
tween an additive and a multiplicative E^ structure on a space. 

Fix an operad §. Actions by S are to be thought of as multiplicative, and 
we define a é>0-space, or § -space with zero, to be a S-space X with action | 
and basepoint 1 and with an element 0 such that £,(g, xv . . . , Xj) = 0 if any 
xt = 0. We think of the category S0[?T] of S0-spaces as our ground category. 

Now let G be another operad. An action of 6 on c? is a collection of maps 

x: §(k) x eau x • • • x e{jk) - isut • • • À ) 
subject to certain axioms. These axioms serve to ensure that (C, JU,, 77) restricts 
to a monad in the category S0[?T]. That is, if A' is a S0-space, then CX is again 
a S0-space and fi: CCX -* CX and 77: X -» CX are maps of 60-spaces. To 
make this a little less mysterious, we describe how the action £ of J? on X is to 
induce an action (again denoted £) of § on CX. In fact, the requisite maps £k: 
§(k) X (CXY —> CX result by passage to quotient spaces from the maps 

4: $(k) x eUi) x X* x • . . x e(jk) x x*-+<2(ji • • 'A) x Xjx'"jk 

specified by 

&U» ^i ' / i ' • • > ck9yk) = (A(g, c„ . . . , ck),Xj ^(g ,ƒ , ) ) , 

where I runs over the set of all sequences (/,, . . . , ik) with 1 < ir < j r 

ordered lexicographically, and where 

yj = (xUi, . . . , xkik) G Xk ityr - {xrV . . . , xrj) G XK 

When § acts on S, we refer to (C, §) as an operad pair. Define a (e\ 
<?)-space to be a C-space in the category S0{?T]. Thus a (c\ 6)-space (X, 9, £) 
is a S0-space (X, £) and a C-space (X, 9) such that 9: CX -* A' is a map of 
S -spaces (and thus of S0-spaces since 9 (0) = 0 follows). An ZT̂  ring space is 
a (C, <?)-space where both Q and S are iT^ operads. 

To clarify the definitions, we consider a simple special case. Recall the 
operad 9t with each 9l(y) a point. 91 acts on itself, the maps A being the 
only ones possible. An (91, 9l)-space is a commutative semiring, all of the 
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axioms for a commutative ring except the existence of additive inverses 
having been built in. Indeed, looking at the definition of the maps £A. above, 
we see that 9: NX —> X being a map of % -spaces implies the general 
distributivity law 

The nullity of zero was built in by the defintion of an f^-space. 
Of course, for an operad pair (S, Q), CX is the free ((?, S)-space generated 

by a S0-space X. There is an obvious structure of S0-space on S° = (0, 1} for 
any S, and 5,0-> X is a map of §0-spaces for any §0-space X. Thus any (C?, 
<?)-space X admits a unit e: CS0-* X which is a map of (C?, S)-spaces. 

NOTES. See [48, VI, §§1-2] for details. 

10. Symmetric bimonoidal and bipermutative categories; (6D, ^D). A symmet­
ric bimonoidal category (6E, ©, 0, ®, 1) is a pair of symmetric monoidal 
structures on a category & (with natural isomorphisms a, b, c for © and 5, 6, 
c for ®) and coherent natural isomorphisms 

d: {A ®B)® C=(A ® C ) © ( £ ® C) and « : 0 ® > 4 - 0 . 

(See Laplaza [34] for a thorough study of coherence in this context.) Such 
categories occur ubiquitously in nature. & is said to be bipermutative if a, b, 
a, b, d, and n (but not c and c) are identity maps. Such categories occur less 
commonly, but there is a natural way to replace symmetric bimonoidal cate­
gories by equivalent bipermutative categories. 

The E^ operad ty acts on itself, the requisite maps X being obtained by 
application of B to appropriate functors A. If 6E is a bipermutative category, 6 
is the action of <3) on i?(j derived from ©, and £ is the action of tf) on B(S 
derived from ®, then (B&,0, £) is a (<$>, ^-space. In our schematic picture, 
we now have the functor B from bipermutative categories to E^ ring spaces. 

If A is a commutative ring, then § &A and its subcategory ÇA of orthogo­
nal matrices are bipermutative categories. Another example is S, the category 
with objects the natural numbers and with morphisms 2W: n-+ n. 8 is to be 
thought of as (a skeleton of) the category of finite sets and their isomor­
phisms; disjoint union and Cartesian product give © and ®. B$ may be 
identified with DS°. For any bipermutative category &9 the unit e: DS°-> 
B& arises by application of B to a unit functor S -» &. When & = § tA, 
this functor sends a permutation to the corresponding permutation matrix. 

NOTES. See [48, VI, §§3-5] for details and further examples. 

11. E^ ring spectra; (%oo9 Ê). So far the passage from the additive to the 
multiplicative theory has been quite automatic. We now ask ourselves what 
sort of object the black box should spew out when fed in an E^ ring space, 
and find the answer not at all obvious. We have one example in front of us, 
namely Ôoo^0' a n d the Ê-space structure on its zeroth space surely ought to 
be part of its multiplicative structure. To see the full structure present it is 
convenient to modify our definition of a spectrum. Thus redefine a spectrum 
E to consist of a space EV for each finite dimensional subinner product space 
V of R°° such that EV is homeomorphic to iïwE(V + W) whenever W is 
orthogonal to V. Such a coordinate-free spectrum determines a sequential, or 
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coordinatized, spectrum {£,} by Et = ER1, and it is not much more difficult 
to construct a coordinate-free spectrum from a coordinatized one. 

Let S be any E^ operad which maps onto £, for example £ itself or 
£ X S' for any E^ operad §'. A §-spectrum is, roughly, a spectrum E 
together with an action of S on £ given by maps "£,•: $(J) X EJ -> £". More 
precisely, we require maps 

$ ( g ) : £ K , A ' - • AEVj-tEgiVi®--- 0 rç) 

for each g E S (y), where g is regarded as a linear isometry (R^y -* R°° via 
the map § (ƒ)-* £(7). The maps |,(g) are subject to a number of axioms. 
These imply, in particular, that E0 is a S0-space, and it should be admitted 
that we do not yet fully understand how to exploit the rest of the structure 
present. An E^ ring spectrum is a S -spectrum for any E^ operad <5 over £. 

The homotopy groups of the zeroth space E0 of a S-spectrum E form a 
commutative ring (in the graded sense: xy = (— l)degyóegxyx). They also admit 
various homotopy operations, the analysis of which has only just begun. For 
example, the map £2

: ^ ( 2 ) ^ s 2 ^ o A £ o " ^ ^ o allows the construction of 
U/-products in 7r*E0 which generalize the known operations in n^QS0 (Kahn 
[30], Milgram [53]). 

In line with our general proposition that the multiplicative theory results 
from the additive theory by a change of ground categories, Q^X is a 
§ -spectrum whenever X is a S0-space. Moreover, if E is a S -spectrum, a map 
X -> E0 of S0-spaces uniquely determines a map Q^X -» E of S -spectra. In 
particular, E has a unit e: Q^S0 -* £ which is a map of S -spectra. As we 
shall see, e plays a vital role in the applications. 

Looking at our schematic picture, we see that our description of E^ ring 
spectra appears to be incomplete. Their zeroth spaces ought to be E^ ring 
spaces in order to have the dotted arrow from E^ ring spectra to E^ ring 
spaces. Now both the infinite little cubes operad 6^ and S act on E0 if £ is a 
§ -spectrum, but there is clearly no way to make <? act on e?^: cubes are 
manifestly not invariant under orthogonal transformations. We require a new 
operad which behaves like (2^ in the additive theory but which is acted upon 
by £ and thus also by §. 

We are led to define the little convex bodies operad ftt, for a finite 
dimensional real inner product space V. The points of 9^0') arey'-tuples of 
little convex bodies with disjoint images. Here little convex bodies are 
appropriate embeddings V~* V. The precise definition need not concern us, 
but the essential fact is that if ƒ : V -* W is a linear isometric isomorphism 
and k: V -* V is a little convex body, then fkf~*l: W-+ W is a little convex 
body. %v acts naturally on tivX for any space X. By passage to limits over 
V c R°°, there results an E^ operad %O0 which acts naturally on infinite 
loop spaces. £ acts on %o0, and the zeroth space of a S-spectrum is» a OX^, 
§ )-space. We have the dotted arrow from £00 ring spectra to E^ ring spaces. 

NOTES. See [48, IV, §1 and VII, §§1, 2] for details. The invention of E^ ring 
spectra was joint work with Frank Quinn and Nigel Ray. The description of 
the %v here is not quite accurate, since they are not quite operads, but 
suppression of the relevant technical problems gives a clearer picture of the 
essentials of the theory. 
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12. The recognition principle. To complete the discussion of our schematic 
picture, we reconsider the black box in the context of E^ ring spaces. The 
basic assertion is that if X is an E^ ring space, then BX is an E^ ring 
spectrum and the natural group completion t: X -» TX is a map of E^ ring 
spaces. 

Again, a little discussion may prove illuminating. Given a pair (<S\ tf') of 
E^ operads, for example ( ^ D ) , we set ((?, <3) = ( ^ X c?\ Ê X £'). Given 
a (S, S)-space, for example a (S', Sr)-space, we construct the spectrum BX 
out of the additive E^ structure. Here we work in the coordinate-free setting, 
with little convex bodies, and set 

(BV)(X) = indjim n» B(^+\ Kv+W X C',X). 

The full multiplicative elaboration of the recognition principle asserts that all 
maps (including t) are § -maps in the diagram 

X < BiC, C, X) • B(Q, C, X) — — • B0X s FX 
I t 

In effect, since the middle arrow and thus i are group completions, we have 
group completed the additive E^ structure while carrying along the multi­
plicative E^ structure. 

If E is a § -spectrum, then the natural map co: B£0—> E0 is a map of 
S-spectra. If AT is a S0-space, then the natural equivalence BCX -» Q^X is a 
map of S-spectra. In particular, with X = 5°, 

B ( n * ( 2 , , l ) ) - B C S ° - Q„S° 

as an Z?̂  ring spectrum, this being the most structured version of the 
Barratt-Quillen theorem. It implies an equivalence of £-spaces between TCS° 
and F and therefore implies that the infinite loop structure on F, and thus 
also on the classifying space BF for stable spherical fibrations, can be 
constructed out of symmetric groups. 

With X = B § &A f or a commutative ring A, we have given the spectra of 
algebraic AT-theory an E^ ring structure. In particular, K^A is a commutative 
ring and the unit e: QS° -ÏTBSQA induces a map of rings 77̂  -> K+A. 
Much of the little that is presently known about K^Z comes out of analysis of 
this map. 

We have so far been discussing application of the one operad recognition 
principle to the additive E^ structure (X9 9) of a ((2, ö)-space (A', 0, | ) . It is 
natural to ask what can be said about application of the one operad 
recognition principle to the multiplicative E^ structure (AT, £). In fact, the 
resulting spectrum is trivial because of the presence of the zero component of 
X. However, suppose that 7r0X is the nonnegative integers (as holds when 
X = B S or X = B § £A f or example) and let M be a nontrivial multiplica­
tive submonoid of the positive integers. Let XM be the union of the corre­
sponding components of X. Then XM is a sub § -space of X. If TX(XM, £) and 
TX(X, 9) denote the 1-components of the zeroth spaces of the spectra 
associated to (XM9 £) and (X, 9)9 then there is a map TX(X9 9) -» TX(XM9 £) of 
multiplicative E^ spaces which is a localization at M. In other words, 
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although T{(X, 9) is constructed by use of the additive E^ structure, its 
localizations depend only on the multiplicative E^ structure. 

NOTES. See [48, VII, §§4, 5] for details. Versions of two special cases of the 
assertion about T{(XM, £).were proven by Tornehave [78], [79]. Homotopy 
invariance has not yet been studied in the E^ ring context. 

13. $ + prefunctors and Thorn spectra. The notion of an E^ ring spectrum 
may seem rather daunting. We indicate here how the various Thorn spectra 
occur in nature as E^ ring spectra, without recourse to the black box. 

Just as the familiar submonoids of FV give <f * functors, so their Thorn 
spaces give $ƒ„ prefunctors. Just as 5+ functors lead to £-spaces, so ^ 
prefunctors lead to £-spectra. We proceed to construct a diagram 

5 * prefunctors -» 5 # functors 

i Ï 
£-spectra -» £-spaces 

An § ^ prefunctor is a functor T: $ „, -» 5", an associative and commutative 
natural Whitney sum map co: TV /\ TW-> T(V © W), and a natural map e\ 
tV-> TV such that the adjoints TV-* QWT(V © W) of the maps <o ° (1 A e) 
are closed inclusions. An obvious example is T = /, the one-point compactifi-
cation functor on inner product spaces. 

An y* prefunctor T determines an <f „ functor FT with (FT)(V) = QVTV. 
For example, Ft is the § „, functor F considered in §7. An 3 * prefunctor T 
determines an £-spectrum MT by (MT)(V) = ind lim QWT(V + W). The 
requisite maps £, result from the maps Tf (for an isometry ƒ) and the Whitney 
sum by passage to limits. For example, Mt is Q^S0. The zeroth space of MT 
is precisely the £-space associated to the $ ^ functor FT. 

Now let G be an 5* functor, or rather a n ^ monoid, which maps to F,y: 
G-» F. BGV classifies "GF-bundles with fibre tV and a canonical section". 
(By abuse, we refer to GF-bundles even when G = F, when they are only 
spherical fibrations.) The Thorn space T | of such a bundle | is the quotient of 
the total space by the base-space. In the case of vector bundles, we are 
applying one-point compactification fibrewise and then identifying all the 
points at infinity. There is a canonical universal GK-bundle/?: EGV -» BGV 
with Thorn space TGV = EGV/BGV. The inclusion of the fibre over the 
basepoint of BGV gives e: tV-> TGV and the bundle map over the natural 
map BGV X BGW->BG(V © W) gives co: TGV A TGW-* TG(V © W). 
With these maps, TG is an 5 # prefunctor. MG = MTG is the Thorn spectrum 
of G. 

NOTES. See [48, IV, §2] for details. This material was joint work with Frank 
Quinn and Nigel Ray. 

14. Orientation theory and B(G; E). Orientations of bundles with respect to 
cohomology theories play a central role in topology. In particular, they are 
vital to Adams' analysis of vector bundles [1] and to Sullivan's analysis of 
topological bundles [74]. 

As in the previous section, let G be an 3* monoid with a map j : G -» F. 
Let E be a ring spectrum. An is-orientation of a GK-bundle £: y~» X, dim 
V = n, is a class JU, E EnT£ (i.e., a homotopy class r£-> £*K), such that /*pt 



472 J. P. MAY 

generates E*(i-~lx) as a Tr^is-module for each x E X, where i: £~[x -> 7 is 
the inclusion. At least if A" is a finite dimensional CW-complex, the cup 
product with a then yields a Thorn isomorphism E*{X+)-^> E*(Ti;). (A 
disjoint basepoint is added to X since reduced theories are understood.) If /A' 
is a second orientation of £, then JU/ = PU for some unit P in the ring £,°(Ar +) . 

Since E is a ring spectrum, TT0E0 is a ring. Let FE denote the union of the 
unit components of E0 and let $FE denote the component of the identity. FE 
classifies the units in E°(X+). In particular, FQ^S0 = F and SFQ^S0 = 
SF, and the unit e: Q^S0 -> E of E restricts to a map e: F-* FE. 

There is a canonical classifying space B(GV; E) for is-oriented GF-bun-
dles. Indeed, by virtue of our definition of spectra, the monoids FV and thus 
also GV act from the right on FE, and B(GV; E) is the two-sided bar 
construction B(FE, GV, * ). There is a fibration sequence (with ej the 
composite GV-> FV C F-» ££) 

GVZ>FE-^B(GV; E) ^BGV. 

Here # corresponds to the forgetful functor from ZT-oriented GF-bundles to 
GF-bundles and r corresponds to the functor which sends a unit to the trivial 
bundle oriented by the product of the unit and a certain canonical orientation 
of the trivial bundle. 

By passage to limits over V c R °°, there results a classifying space 
B(G; E) for £-oriented stable G-bundles and a fibration sequence 

(*) GZ>FE^>B(G; E) 1+BG. 

Now let E be an E^ ring spectrum, say a § -spectrum. Then the results and 
definitions of §§7 and 11 combine to give that B(G; E) is a S-space and (*) 
is a sequence of S-spaces and ê-maps. It follows that B(G; E) is an infinite 
loop space and, as such, is equivalent to the fibre of B{(ej): BG » BXG -> 
B{FE. Thus B{(ej) is the universal obstruction to the JE'-orientability of stable 
G-bundles. There is also an integrally oriented version: B(SG; E) is equiv­
alent to the fibre of Bx(ej): BXSG -» B{SFE. 

We need one more bit of theory before we can turn to special cases. If \[/i 
E -» E is a map of ring spectra and u is an ^-orientation of a GF-bundle £, 
then \pa is another orientation of £ (where ^ is thought of as a cohomology 
operation). Therefore /̂x = p\x for a unit p E E°(X+). On the classifying 
space level, there is a canonical map c(\p): B(G; E) -» FE which corresponds 
to the functor which sends (£, a) to p. The map c(\p) is called the universal 
"cannibalistic class" determined by \p. (The justification-such as it is~for the 
name will appear in §18.) When £ is a § -spectrum and \p is a map of 
S-spectra, c(\p) is an infinite loop map (because it is the "quotient" B\p/l of 
two <3-maps). 

The most important example is G = F and E = kO, where kO is the £,
00 

ring spectrum obtained by application of the black box to the classifying 
space of the bipermutative category 0 of real orthogonal groups. The zeroth 
space of kO is equivalent to BO X Z, and SFkO « BO X {1} is usually 
written BO®. The map B{e\ BSF » B{SF~* BxBO® is the universal ob­
struction to the &0-orientability of integrally oriented stable spherical fibra-
tions. By virtue of a general characterization of the connective ring spectrum 
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associated to a periodic ring spectrum, kO is equivalent as a ring spectrum to 
the spectrum obtained from the real Bott spectrum by killing its homotopy 
groups in negative degrees. The Adams operations rpr: kO -» kO are maps of 
ring (but not of E^ ring) spectra, where we have localized away from r, and 
bundle theoretical generalizations of the d and e invariants used by Adams [1] 
in his analysis of the groups JSO(X) (the image of [X, BSO] in [X, BSF]) 
can be defined in terms of the obstruction Bxe and the universal cannibalistic 
classes c(\pr)> 

Sullivan [74] characterized BSTop as B(SF; kO), both localized away 
from 2, and here Bxe\ BSF-±BxBO% is the universal obstruction to the 
reduction of a stable spherical fibration to a topological bundle. It is a 
standard consequence of surgery theory (Browder [17]) that a simply con­
nected Poincaré duality space of dimension at least 5 is equivalent to a 
topological manifold if and only if its Spivak normal fibration £ has a 
reduction to a topological bundle. Away from 2, the composite of B{ e and the 
classifying map X ~+ BSF of £ is the only obstruction. 

We are led to further questions. What does BxBO® really look like? Is 
c{q>r)\ B(SF\ kO)->BO® an infinite loop map? Are BTop and B(SF; kO) 
equivalent away from 2 as infinite loop spaces or just as spaces? 

NOTES. See [48, II, IV, §3, and V] for details and related results. Some of 
this material is also joint work with Quinn and Ray. The classification theory 
on which it is based is given in [47]. Speculative discussions of the obstruction 
to /cO-orientability were given by Adams [1, III, §7] and Sullivan [74]. The 
2-primary obstruction to reducing a spherical fibration to a topological 
bundle has been analyzed in terms of transversality by Levitt and Morgan 
[35], Quinn [65, unpublished], Jones [29], and others and by homological 
study of the first delooping of F/Top by Madsen and Milgram [41]. 

CHAPTER III. DESCRIPTIVE ANALYSIS OF INFINITE LOOP SPACES 

15. General remarks on methodology. We have completed the development 
of the general machinery, and we are confronted with the problem of 
analyzing particular examples of its end products. For example, we want to 
decompose such infinite loop spaces as F, Top, and B(SF; kO) into products 
of simpler infinite loop spaces in so far as this is possible, one purpose being 
to reduce analysis of invariants of the infinite loop structure, such as homol* 
ogy operations, to their analysis on the relevant factors. In particular, we shall 
find that analysis of odd primary characteristic classes for topological bundles 
reduces to homological analysis of certain homomorphisms of finite groups. 

We pause to discuss the techniques available. The theory of the preceding 
chapters is geared towards generic applications. All spaces with appropriate 
internal structure are infinite loop spaces, all maps which preserve this 
structure are infinite loop maps, all diagrams which commute up to 
structure-preserving homotopy commute on the infinite loop level. On the 
space level, the theory is wholly adequate: the machine succeeds in showing 
that all spaces which arise in the applications and which might reasonably be 
expected to be infinite loop spaces are in fact infinite loop spaces. On the 
map and diagram level, the machine is less successful. This is so because 
many of the maps which appear in the applications arise from particular 
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representation theoretical or homotopical constructions rather than from 
generic constructions acceptable to the machine. In practice, this seems to 
remain true even with the generalized notion of "generic construction accept­
able to the machine" given by §6. 

The appropriate point of view is to cheerfully accept the limitations of the 
general machinery and to attack the new problems to which it gives rise 
armed with the old familiar tools of representation theory and homotopy 
theory. It should be noted that, with the possible exception of §6, the material 
of the previous chapters did not really lie in the domain of homotopy theory. 
It concerned very precise algebraic structures on spaces and spectra, the 
details of which become invisible upon passage to homotopy categories. The 
problems of infinite loop space theory look very different when seen through 
the eyes of homotopy theory, and some general discussion may clarify the 
later material. 

Let D and E be (coordinatized) spectra. Restriction of maps of spectra 
D -» E to /th spaces yields an epimorphism [Z), E] -» proj lim[Z),, £,], where 
the brackets denote spectra homotopy classes on the left and space homotopy 
classes on the right. In general, there is a kernel which is a proj lim1 term. In 
the cases to be discussed here, the relevant proj lim' terms vanish either by 
finiteness arguments or by results of Anderson [5]. Thus [D, E] and its 
relationship to [D0, E0] can be studied by purely space level techniques. 

It is advantageous to work one prime at a time, with all spaces and spectra 
localized or even completed at p. It is a pleasant fact that a map D0-* E0 is 
an infinite loop map if and only if its completion at each prime/? is an infinite 
loop map. It is even more pleasant that [£),£]-* [Z)0, E0] is a monomorphism 
if and only if this is so after completion at each /?. This monomorphism 
condition means that a map D0 —» E0 can be infinitely delooped in at most 
one way. When it holds, a diagram of infinite loop maps which begins at D0 

and ends at E0 will commute on the infinite loop level if it commutes on the 
space level. 

NOTES. See Sullivan [75] or Bousfield and Kan [15] for localizations and 
completions of spaces. These topics, for spaces and spectra, are also covered 
in [49], where the assertions of the last paragraph are proven (precise 
statements are in [48, II, §3]). 

16. Transfer and results about BSO. We illustrate the general point of view 
by considering the transfer and its relationship with infinite loop maps. Let 
(X, 9) be a (2-space, where G is an E^ operad, and let v\ E-> B be a 
principal 7r-bundle (or /?-fold cover), where 77 is the cyclic group of order p 
with generator a. Let JU,: B ~» BTT « G(p)/*n classify v, let /ï: E —> G(p) cover 
/i, and define v: B —> G(p) Xw Ep by v(b) = ([le, ae, . . . , ape) for any 
e E v~\b). For a homotopy class g: E -» X, the transfer of g, denoted r(g), 
is the composite homotopy class 

B-*e{p)xmE*> -* e(p)x9x>-+x. 

If (X\ 6') is another G -space, an H-map j': X-*X' is said to commute 
with transfer if rf^(g) = f*(rg). This is equivalent to homotopy commutativ-
ity of the diagram 
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e(p) x„ x* l xfP » e(p) x„ (x ' f . 

e 
_£ 

e' 

x l >x' 
Obviously a S-map, or an infinite loop map, commutes with transfer. 
Generically, it is clear that a transfer commuting map between infinite loop 
spaces cannot reasonably be expected to be an infinite loop map since the 
transfer sees only a fraction of the entire E^ structure. 

Henceforward, complete all spaces at/? and consider the case of BSO. Here 
we have complete information on [BSO, BSO}. An //-map/: BSO -» BSO is 
essentially just a linear combination of Adams operations \(/r. A representa­
tion theoretical calculation due to Madsen, Snaith, and Tornehave [42] 
demonstrates that ƒ commutes with transfer only if/ is a linear combination 
of the \pr with r prime to/?. But such maps ƒ are infinite loop maps by Bott 
periodicity. Thus, in this special case, an //-map which commutes with 
transfer is necessarily an infinite loop map. 

This criterion for a map BSO —> BSO to be an infinite loop map is 
attractive, but not useful as it stands. The maps one really wants to study 
involve spaces of the same homotopy type as BSO but with a (seemingly) 
different infinite loop space structure, such as BSO® and, if p > 2, F/Top. 
Adams and Priddy [3] have proven that any such X is in fact equivalent to 
BSO as an infinite loop space. We outline their proof. Let bso be the 
1-connected cover of kO, with zeroth space BSO, and let X =* BSO be the 
zeroth space of a 1-connected spectrum E. By examination of the spectral 
sequence for computing the mod p cohomology of E derived from its 
Postnikov tower, one finds that H*E is isomorphic to H*bso, a known 
module over the Steenrod algebra A. The isomorphism may be thought of as 
an element of Ext°4°(H*bso, H*E), and a good deal of purely homological 
calculation demonstrates that Ext^(H*bso, / /*£) = 0 if s > 0 and t - s = 
— 1. Thus the isomorphism is a permanent cycle in the relevant Adams 
spectral sequence. While that spectral sequence presumably need not 
coverage to [E, bso], E is the completion at p of a CW-spectrum with finite 
skeleta, and restriction to these skeleta leads to construction of the required 
equivalence E —» bso. 

Now given X and Y, two infinite loop spaces with underlying spaces of the 
homotopy type of BSO, we are entitled to conclude that any transfer 
commuting //-map X -» Y is an infinite loop map. 

We note another consequence. For/? odd, where BO =* BSO, we conclude 
that B{BO® is equivalent to {bso)x * SU/SO, the Bott delooping of BO. 
Thus the /?-primary obstruction to the reduction of a spherical fibration over 
X to a topological bundle is an element of [X, SU/SO], and the reservoir of 
existing information and techniques in A -̂theory can be brought to bear on 
the analysis of the obstruction. 

NOTES. See Kahn and Priddy [32] for details and greater generality on 
transfer. The papers of Adams and Priddy [3] and Madsen, Snaith, and 
Tornehave [42] contain many further related results (some of which will be 
discussed in the following sections). 
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17. The uniqueness of deloopings. Again, all spaces and spectra are to be 
completed at/?. To chase diagrams on the infinite loop level, we need to know 
the unique deloopability of maps between certain infinite loop spaces. 

Madsen, Snaith, and Tornehave [42] proved this for maps BSO -* BSO 
and, Up > 2, SO ->BSO. The latter result asserts that, if p > 2, there are no 
nontrivial maps of spectra so —» bso (where so = Übso). Ligaard [36] later 
proved that there are no nontrivial maps so -» bso and spin -» bso when p = 2 
(where spin is the 1-connected cover of so). The proofs go by inductive 
analysis of Postnikov towers and are based on results of Anderson and 
Hodgkin [6] which give KO*(K(IT, n)) = 0 if it is finite and n > 2 or if 
m = Zp and n > 3. 

To proceed further, we must introduce additional spaces. With BO, BO®, 
and cognate spaces, these will be the basic building blocks out of which many 
of the classifying spaces of geometric topology are built. Let r = 3 if p = 2 
and let r reduce mod p2 to a generator of the group of units of Zpi if p > 2; 
for later use, pick r to be a power of an odd prime q. Define J and J® to be 
the fibres of ^ r — 1: BO -* BSpin and ipr/l: BO® ~» tfSpin® and define BC 
to be the fibre of c(\pr): B(SF; kO)-*BSpin®. Here tfSpin® is the 2-con-
nected cover of BO® as an infinite loop space (and the required lifts to /?Spin 
and /JSpin^ exist and are unique). Define C = tiBC. J is short for "Image «/" 
and C is short for "Cokernel ƒ", the names coming from the relationship 
between the homotopy groups of these spaces and the classical 'V-homomor-
phism" TT^SO -»7r*SF. 

Clearly \pr — 1 is an infinite loop map and / is an infinite loop space. It is 
an easy consequence of the Adams-Priddy result on the unique deloopability 
of BSO that \pr/l is also an infinite loop map and thus that J® is an infinite 
loop space. We shall later see that c(\pr) is an infinite loop map and thus that 
BC and C are infinite loop spaces. 

For the diagrams we wish to chase, the crucial fact is the unique deloopa­
bility of maps SF-* BO® or, equivalently since BO® » RP°° X BSO® and 
BSO ss BSO® as infinite loop spaces, SF~->BSO. Madsen, Snaith, and 
Tornehave [42] and Ligaard [36] used their results cited above and the 
fibration defining J® to show the unique deloopability of maps J® -» BSO. 
This implies the conclusion for SF via the results of the following two 
paragraphs. 

We have a composite infinite loop map i: C ~* SF (namely C ~*tiB(SF; 
kO) -» SIBSF s* SF), and the Adams conjecture (Quillen [61], Sullivan [75]) 
gives a map a: J -» SF; a is not even a map of //-spaces when/? * 2 [39], [20, 
II, §12], but it is conjectured that a is an infinite loop map when/? > 2. The 
composite of a X i and the product SF X SF~* SF is an equivalence J X C 
~» SF, this being an interpretation due to Sullivan of work of Adams [1], 
More precisely, there is an infinite loop map e: SF~-*J®, to be discussed in 
§ 19, which has fibre C and whose composite with a is an equivalence J ~->J®, 
On homotopy groups, e induces a version of Adams' ^-invariant. (See [48, V, 
§§3-5] for details.) 

It is a basic result of Hodgkin and Snaith [27], [70] that there are no 
nontrivial maps C -+ BSO on either the space or the spectrum level. We 
sketch a proof. It is an immediate consequence of the fact that QS° is a group 
completion of II f? 2^ that there is a map from # 2 ^ to the zero component 
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Q0S° of QS° which induces an isomorphism on integral homology and 
therefore on cohomology with arbitrary coefficients. This reduces the calcula­
tion of K*(Q0S°) to representation theory; see Hodgkin [26]. It turns out that 
the unit e: QS° -» BO X Z of kO induces an epimorphism K*(BO)-+ 
K*(Q0S°). By translation to 1-components, this also holds for e: SF-* BO®. 
However, this map e factors through e: SF-+J®, which must therefore also 
induce an epimorphism on AT*. By the splitting of SF, this implies K*(C) = 0. 
Standard arguments then give that KO*(C) = 0 on both the space and the 
spectrum level. 

18. The kO orientations of Spin and S Top bundles. We return to the 
context of §14 armed with the results of the previous sections. 

Atiyah, Bott, and Shapiro [9] constructed a canonical /cO-orientation of 
Spin bundles, and there results an //-map g: 2?Spin-> B(SF; kO). (There 
also results a map M Spin-* kO of ring spectra, via the orientations of the 
universal bundles, but this point of view will not concern us here.) The 
composite of g and c(\pr): B(SF; kO)-*BSpin® (away from r) is called pr. 
By Adams [1, II], it is the cover of a map p r: BSO -> BSO®. One thinks of pr 

as resulting from kO feeding on its own cohomology operation t//, hence the 
term cannibalistic class for such operations. Madsen, Snaith, and Tornehàve 
[42] noted that p r is transfer commuting (at any p prime to r) and is therefore 
an infinite loop map. 

The space SF/Spin classifies Spin bundles with a triviahzation of their 
underlying spherical fibrations. There is a canonical map/: SF/Spin —> BO® 
which corresponds on the bundle level to the unit by which the Atiyah-Bott-
Shapiro orientation differs from the pullback along the triviahzation of the 
canonical orientation of the trivial bundle. The following diagram is homo-
topy commutative: 

SF • SF/Spin • £Spin • BSF 

-1 

SF — - • BO® - 1 —* B(SF; W) -^BSF 

By diagram chases from the results of the previous sections [42] or [48, V, §7], 
one can deduce that ƒ is an infinite loop map at each prime p and therefore 
globally. By use of the uniqueness of deloopings of maps SF-> BO®, it 
follows easily that the diagram is commutative on the infinite loop space 
level. 

At/? = 2, the following composite is an equivalence of infinite loop spaces: 

BC X BSpin^B(SF; kO) X B(SF\ kO) ^B(SF; kO), 

where i is the natural map and <f> is the product. At p > 2, BO, or any 
equivalent infinite loop space, splits as the product of two infinite loop spaces 
W and W±, where W carries the homotopy groups in degrees 2i(p - 1) and 
W L carries the remaining homotopy groups (Adams [2], Peterson [59]). Here 
the following composite is an equivalence of infinite loop spaces: 

BC X W X W± -> BC X BO X BO®lX^TB(SF; kOf -tB(SF; kO). 

f 
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On the space level, this is essentially an interpretation due to Sullivan [74] of 
results of Adams [1]; details are in [48, V]. 

Sullivan [74] constructed a canonical kO [ {]-orientation of STop bundles. 
Localizing all spaces away from 2, there results a map g: BSTop-* 
B(SF; kO). The following composite (away from 2 and r) is called 9r: 

BSO->BSTop->B(SF;kO) -^ BSO®. 
By comparison of pr and 0r on 2-plane bundles, Sullivan [74] showed that 
6r =x pr(2\p2 + \pr). Therefore 6r is an infinite loop map. 

Again, the unit by which the two obvious /cO[|]-orientations of a STop 
bundle with a trivialization as a spherical fibration differ corresponds to a 
map ƒ: F/Top -+ BO® (away from 2). Sullivan [73], [74] proved that ƒ is an 
equivalence. The following diagram is homotopy commutative, and therefore 
g is also an equivalence: 

SF • F/Top • BSTop • BSF 

-1 ƒ g 

SF - £ — • BO0
 J L > B{SF\ kO) —2—>BSF 

By diagram chases from the results of the previous sections [42] or [48, V, §7], 
one can deduce that ƒ is an infinite loop map at each prime p > 2 and 
therefore globally (i.e., away from 2). By the uniqueness of delooping of maps 
SF -» BO®, it follows easily that the diagram is commutative on the infinite 
loop space level. In particular, g is an equivalence of infinite loop spaces. 

Thus to study invariants of the infinite loop space BSTop away from 2 it 
suffices to study B(SF; kO), and, at each odd prime /?, this study in turn 
reduces to the study of BC X W X W1- and thus of BC (since W and W1-
are well understood). We must still find out why BC is an infinite loop space 
and how to study its invariants. 

NOTES. There does not yet exist a descriptive analysis of BTop as an 
infinite loop space at p = 2. Madsen and Milgram [41] have shown that 
Z?2(F/Top) at p = 2 is the appropriate product of Eilenberg-Mac Lane 
spaces, whereas Madsen [38] showed that i?3(F/Top) does not so split. 

19. Brauer lift, Frobenius, and finite fields. Quillen [61], [62], in his proof of 
the Adams conjecture and his computation of the algebraic /v-groups of finite 
fields, established certain basic equivalences between spaces associated to 
finite fields and their algebraic closures and the classifying spaces of topologi­
cal Â-theory. Generalizations of his results to the infinite loop space level 
(and from the general linear to the orthogonal groups of finite fields) lead to 
the desired infinite loop space structure on BC and to reduction of the 
analysis of its homology to computations of the homology of appropriate 
finite groups. It also leads to a splitting SF = / X C of infinite loop spaces at 
each odd prime and to an infinite loop fibration C -» SF-+J® at p = 2. 

Fix a prime/? and complete all spaces at/?. Let r = qa for an odd prime 
q 7̂= p be as in §17 (r = 3 if/? = 2). Let kr be a field with r elements and letjc^ 
be an algebraic closure of the field with q elements. Define kO8 = B(B£kq), 
the completion at /? of the E^ ring spectrum produced by application of the 
black box to the classifying space of the bipermutative category of orthogonal 
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groups of kq. Here and below, the superscript 5 is to be read "discrete model 
for". 

By use of Brauer lifting of appropriate representations, one can construct a 
map X of ring spaces from the zeroth space of kO8 to the zeroth space of kO. 
Quillen's calculations [61] imply that À induces an isomorphism on mod p 
cohomology and is therefore an equivalence (because we have completed and 
not just localized at p). By virtue of a general characterization of the 
connective ring spectrum associated to the periodic ring spectrum determined 
by a periodic ring space, it follows immediately that X extends uniquely to an 
equivalence of ring spectra À: kO8 -» kO. As was first proven by Tornehaye 
[77], there is_an analogous equivalence kU8 -» kU, where kU8 = B(B§ £kq). 

Let <f>r: &kq -» 6kq be the Frobenius automorphism (which maps x to xr on 
matrix entries). Then the following diagram of spectra homotopy commutes 
by the general characterization cited above and the fact that X<t>r » \prX on 
zeroth spaces by an easy representation theoretical calculation: 

kOb 

X 

kO 

<t>' 

V 

-*k(F 

X 

By the transfer criterion of §16 and a representation theoretical calculation 
originally due to Tornehave [unpublished], the equivalence X: BO® -> BO® 
obtained by restriction of X to 1-components of zeroth spaces is an infinite 
loop map. By use of the uniqueness of deloopings of maps SF'-» BO®, the 
following is easily seen to be a commutative diagram of infinite loop spaces, 
where the rows are orientation sequences as constructed in §14. 

BO% T > B(SF; W6) q > BSF 

B\ 

B(SF; W) -+BSF 

Therefore BX is an equivalence of infinite loop spaces. 
Define BC8 to be the fibre of c(4>r): B(SF; k08)->BSp'm% (where 

2? Spin^ is the 2-connected cover of BO®). There results an equivalence of 
fibration sequences 

Sptó 

Spin. 

BC8 -+B(SF;k06) 

Ux 
-* BC B(SF; kO) 

J£&X 

A$X 

BSpin% 

X 

JSSpin 

The functor <f>r: &kq-> &kq preserves © and ® and is in fact a morphisjrn 
of bipermutative categories. Therefore its induced map B(B (? kq) -» B(B ©kq) 
is a map of E^ ring spectra. It follows that c(<f>r) is an infinite loop map. 
Thus, by the diagram above, c(\pr) is an infinite loop map and BC « BC8 is 
an infinite loop space. 
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Let y be the fibre of xpr - 1: kO -» èspin (where èspin is the 2-connected 
cover of kO). Then J and J® are the 0-component and 1-component of the 
zeroth space ofy. When/? > 2, definey5 = B(6kr) (S tkr would work equally 
well). When/? = 2, let %k3 be the subbipermutative category of Gk3 whose 
morphisms N(n, k3): n -» n are those matrices with equal spinor norm and 
determinant and define j 8 = B(2?9l/c3). Let 7Ô and J® denote the 0-compo-
nent and 1-component of the zeroth space ofj8. 

Clearly j is equivalent to the fibre of <j>r — 1: kO8 -» èspin6 (where Z?spin5 is 
the 2-connected cover of kO8). The composite of <j>r — 1 and the natural map 
j 8 -> /cOô is trivial (since elements of 0(n, kr) are left fixed by <£/), and there 
results a lift j>:y5 —>y. By use of calculations of Quillen [62] when/? > 2 and 
of Fiedorowicz and Priddy [24] when /? = 2, one can verify that v is an 
equivalence. Observe the effect of this: j was just a spectrum, with no 
additional structure, but is now seen to be equivalent to an E^ ring spectrum. 
On zeroth spaces, v restricts to equivalences J8 ->J and J% -> J® of additive 
and multiplicative infinite loop spaces. 

The composite of the natural map B(SF; j8)-> B(SF; kO8) and c(<j>r): 
B(SF; kO8)-* BSpin8® is the trivial infinite loop map (again because ele­
ments of 0(n, kr) are fixed by <ƒ/), and there results an infinite loop map 
B(SF; j8)-> BC8 which turns out to be an equivalence. Thus BC may be 
regarded as the classifying space for y5-oriented spherical fibrations. The 
orientation sequence 

SF^Ji^B(SF;j8)^BSF 

is the basic tool for the homological analysis of BC. Under the equivalence 
J® — «/S* e *s ^ e map discussed in §17. 

Recall from §§10 and 12 that S F can be regarded as the 1-component of 
the zeroth space of B(B & ), where S is the category of finite sets, and that e 
is derived from a morphism & -* Qkr (if p > 2) or & -» %k3 (if p = 2) of 
bipermutative categories. Thus, by the group completion property of the 
recognition principle, analysis of e^\ H^SF—> H^J® reduces to homological 
analysis of the homomorphisms 2„ -» 0(n, kr) or 2n -» N(n, k3). In view of 
the results of the previous section, this analysis will also determine the 
characteristic classes for stable topological bundles when p > 2. 

By regarding elements of 0(n9 kr) as permutations of the set (kr)
n of rn 

elements, one obtains a morphism (0kr, ©) -» (S, <S>) or (%k3, ©) -* (S, ®) 
of permutative categories. By use of the recognition principle (in particular, 
the last paragraph of §12 with M = {/"}), there results a commutative 
diagram of infinite loop spaces 

Q0S° & >SF 

(both maps e being restrictions of the unit map e: QO0S°-*j8). Tornehave 
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[79] showed by a representation theoretical argument, and I later showed by 
direct homological calculation, that ea8 is an equivalence when p > 2. It 
follows that the composite of a8 X t: J* X C~* SF X SF and the product 
SF X ST7-» ST7 is an equivalence of infinite loop spaces. It is conjectured 
that a8 agrees under the equivalence J ^ J8 with a map a which arises from 
a solution to the Adams conjecture. 

NOTES. See [48, VIII] for proofs and related results. The cited chapter is 
written jointly with J0rgen Tornehave and contains the material of his 
unpublished works [77], [78], [79]. 

CHAPTER IV. HOMOLOGICAL ANALYSIS OF INFINITE LOOP SPACES 

20. Homology operations on E^ spaces. Except where otherwise stated, all 
homology in this chapter is to be taken with mod p coefficients for a fixed 
prime/?. 

Let (X, S) be a S-space, where (2 is an E^ operad. The map 9p\ 
Q{p) X2 Xp ^ X gives rise to natural homomorphisms (homology analogs 
of Steenrod operations) 

Qr:HqX-*Hq+rX if/? = 2 and Qr: HqX~* Hq+Mp„l}X itp>2. 

These operations vanish if p = 2 and r < q or if p > 2 and 2r < q; they give 
the pth power if p = 2 and r = q or if p > 2 and 2r = q. For r > 0, Qr 

annihilates the identity element of H^X> There is an external Cartan formula 
of the form 

Qr(x®y)= 2 Q^®QJy, 

and both the product and the coproduct on H^X commute with the opera­
tions. There are Adem relations for the iterated operations which read as 
follows when/? = 2: 

QVS = S (2J? - r, r - s - i' - l)Ör+*~'<?. 
i 

The operations commute with the homology suspension a^: H^X -» H^X, 
where the loops on a G -space are given the pointwise induced <S -space 
structure. 

Of course, these properties are reminiscent of the standard properties of the 
Steenrod operations Pr (Pr = Sqr if/? = 2) in the cohomology of spaces [72]. 
There are differences. The Pr begin with P°= 1 and end with the /?th power, 
whereas the Qr begin with the /?th power. The coefficient in the Adem 
relations seems somehow reversed in the two situations. 

A brief description of how the operations arise may clarify the comparison. 
Let F be a Z/,(2/7)-free resolution of Zp and let W be the standard ZpO)-free 
resolution of Zp with one basis element e? in each degree i > 0, where m is 
cyclic of order /?. Embed W in V 77-equivariantly. Let K be a (Z graded) 
chain complex over Zp and let Kp denote the /?-fold tensor product of K with 
itself. Then the homology H(V ® 2 Kp) is generated by elements of the form 
e0 ® xx ® • • • ® xp for *y G # A and e. ® ^ for x G //^/C, where only 
those i of the form (2r — #)(/? — 1) — e with e = 0 or 1 appear when /? > 2. 
Given a morphism 9p: V ® s Kp ~> K of chain complexes, the elements 
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ex ® xp give rise to operations upon passage to homology. 
In our S-space situation, the map 6p induces a chain map 0p: C^G(p) 

®s (C*x)p~* c*x by use of the standard shuffle map C*X ® C*Y~* 
C*(x X Y), and C^Q(p) is a ZpÇ£p)-frœ resolution of Zp since G is an E^ 
operad. In the cohomology situation, an acyclic models argument gives a 
natural chain map V ®^ (C* Y)p -» C* Y for spaces Y except that, to make 
sense of this, one must regrade the cochains C* Y by nonpositive subscripts 
(or regrade V by nonpositive superscripts). In both situations, when p > 2, 
the / of the form (2r — q)(p — 1) give rise to the operations and the / of the 
form (2A* — q)(p — 1) — 1 give rise to their Bocksteins. 

The difference in grading fully accounts for the differences between Steen-
rod operations and homology operations. Their similarities are accounted for 
as well: the chains on E^ spaces and the cochains on spaces both give 
functors to the algebraic category which is the appropriate domain of defini­
tion of (generalized) Steenrod operations. The cobar construction on 
cocommutative Hopf algebras gives another such functor of considerable 
interest. Under appropriate algebraic hypotheses, we verify such things as the 
Cartan formula, the Adem relations, and commutation with suspension once 
and for all in the general algebraic context, We then deduce such results for 
the particular case at hand by checking that the appropriate hypotheses are 
satisfied. For example, the Adem relations for the homology operations come 
from the following diagram, the commutativity of which is part of the 
definition of an action by an operad: 

1 x (p f 

e<p) x (e(p) x xpy E—•ewxjp. e 

1 X jU 

e(p) x eipf x xp2 —*-^—• e(p2) x xp 

where /x is the evident shuffle homeomorphism. 
The homology operations Qr are related to the duals P£ of the Steenrod 

operations by the Nishida relations [57], which are deduced by naturality 
from computation of the P£ on H^(Q{p) X2 Xp). When/? = 2, they read 

pr*Q' = 2 (r - 2/, s - 2r + 2i)Qs-r+''P^ 

When X is an infinite loop space, the homology operations commute with 
X, the conjugation in the Hopf algebra H^X derived from the inverse map. 

There are also analogs S: Hq{X\ Zpl) -> Hpg(X; Zpi+\) of the Pontryagin 
pth powers in cohomology (see Thomas [76]). 

NOTES. See [43] and [20, I, §§1, 7] for details. The mod 2 homology 
operations were first introduced by Araki and Kudo [7], and a simpler 
treatment was later given by Browder [16]. The mod p operations for p > 2 
were first introduced by Dyer and Lashof [22]. When p = 2, the operations £ 
were introduced by Madsen [40]. 
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21. The Dyer-Lashof algebra; H^CX and H^QX. Pursuing the analogy with 
Steenrod operations in cohomology, we define the Dyer-Lashof algebra R to 
be the quotient of the free commutative algebra generated by the operations 
Qr and, Up > 2, (3Qr+[ for r > 0 by the ideal generated by those elements 
which annihilate every homology class of every E^ space. R is a Hopf 
algebra and has a basis consisting of iterated operations Ql = 
j3£lQSl • • • fiEkQSk for certain admissible sequences / = (e,, sv . . . , ek, sk), the 
/Ts and e's being absent when p = 2. Such monomials of length k span 
a subcoalgebra of R; its dual is a polynomial algebra on k generators when 
p = 2 but has a considerably more complicated structure when p > 2, the 
complications arising from the Bockstein operations. 

We define an allowable jR-structure (module, Hopf algebra, Hopf algebra 
with conjugation, etc.) to be an /^-structure which satisfies the constraints 
dictated by the properties of the operations discussed in the previous section 
(in particular, the vanishing of the operations below the /?th power). We then 
construct free allowable /^-structures. In particular, we have the free allow­
able /?-Hopf algebra UH and the free allowable /?-Hopf algebra with con­
jugation GUH generated by a (suitable) coalgebra H. Noninvariantly, UH 
can be described as the free commutative algebra generated by elements of 
the form Qlx for appropriate admissible monomials / (depending on the 
degree of x), where x runs through a basis for H (with unit element deleted 
since the Qr for r > 0 are to annihilate the identity element). The coproduct 
on H extends to UH by the Cartan formula and commutation with the 
product. The R operations are determined by the Adem relations. If H has 
Steenrod operations, then these extend to UH by the Nishida relations and 
the Cartan formula. GUH is the localization of the algebra UH at its 
(appropriately defined) multiplicative submonoid of components. The 
coproduct, R operations, and, if present, Steenrod operations extend from 
UH to GUH by commutation with the conjugation. 

Let C be the monad associated to an E^ operad i£. By freeness, the natural 
maps rj: X -» CX and rj: X -» QX induce morphisms 

rj: UH*X-»H*CX and rj: GUH^X -» H+QX 

which preserve all structure in sight. The essential starting point of the 
applications of homology operations is the fact that rj and 17 are isomor­
phisms. For QX, modulo care needed when X is not connected, the proof 
proceeds by application of the comparison theorem to the Serre spectral 
sequence of the fibrations QX -* PQ^EX -» QEX and is quite analogous to 
Serre's procedure [68] (see [43] when p > 2) for the calculation of the 
cohomology of K(TT, n)9s. For CX, we first note that the commutative 

UH*X • GUH+X 

ttco* 
H^C^X = >H*QX 

shows that rjT is a monomorphism when (? = 6^ and thus for any <£ (by the 
equivalences CX *-(C X C^XX) -» C^X). That rj is an epimorphism is then 
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proven by induction over the filtration {FkCX} by exploitation of the 
structural maps y of the operad (?. 

These calculations imply the case n = oo of the approximation theorem 
discussed in §4. 

Since CS° = IIK(2^., 1), the calculation just sketched includes a rederiva-
tion of Nakaoka's fundamental results [55], [56] on the homology of symmet­
ric groups. The operad structure incorporates the iterated wreath products 
essential to the algebraic understanding of these homology groups. 

The calculations discussed here have played a vital role in the proofs of 
three very beautiful theorems in homotopy theory. Let Q0S° be the compo­
nent of the trivial loop in QS°. Kahn and Priddy [31], [32] used these 
calculations and the transfer to prove that if/: RP00 -> Öo^° *s a ny m a P 
nontrivial on 77,, then the induced map QRP°° -» Q0S° induces an epimor-
phism on homotopy groups; they also proved an analogous result at odd 
primes. Building on the Kahn-Priddy theorem, Nishida [58] proved the long 
conjectured assertion that every element of n*, n > 0, is nilpotent. Finally, 
along different lines, Curtis [21] proved that the Hopf maps and (if present) 
the Arf invariant classes in dimensions 2' - 2 are the only elements of the 
2-primary component of 77J which can have nontrivial image under the 
(mod 2) Hurewicz homomorphism of QS°. 3 

NOTES. See [20, I, §§2-5] for details. The calculation of H^QX is due to 
Dyer and Lashof [22], explicitly for connected X and implicitly otherwise. 
The calculation of H + CX was implicit in the work of Nakaoka [55], [56] and 
was long part of the folklore. When/7 = 2, the dual of R was first analyzed by 
Madsen [38], [39]. 

22. The homology of E„ ring spaces; /f„C(Ar+), H^Q(X^), H^SF. Let 
(X, 0, £) be a (S, S)-space, where G and § are E^ operads. Then H^X has a 
Pontryagin product * and homology operations Qr coming from the addi­
tive E^ structure (X, 9) and a Pontryagin product # and homology opera­
tions Qr coming from the multiplicative E^ structure (A", £). The assertion 
that 9: CX-+X is a map of S-spaces can be written as a commutative 
distributivity diagram 

1 x 0 . x • • • x 0. 
8(*) x £Q\) x X'1 x • • • x (?(/*) x Xfk ! *-» @(k) x X* 

evl---ik)xx,i-'1* ^ >x 
where the map 4 on the left is as specified in §9. 

Chases of special cases of the diagram lead to explicit formulas for the 
computation of # and the Qr in terms of * and the Qr. As an obvious 
example, with k = 2, j \ = 2, andy2 = 1, we get 

(1) (x *y)#z = 2 ( ~ l ) d e g Z ' d e g ' ( * # 0 * (y#z")> 

where the coproduct on z is given by \pz = 2z ' ® z". Less obviously, with 
k = 2,y, = p, andy2 = 1, we get 

^Wellington recently found a gap in Curtis' proof; the quoted result may be false. 
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(2) {Q'x)#y-2Q'+'(x#P',yy 
i 

The formulas for the Qr are less tractable. With k = p and7, = • • • ** j = 
2, we get a "mixed Cartan formula" for the evaluation of Qr(x * / ) . When 
p = 2, this reads 

;+y + * ~ r 

the extra summations being over the terms of xpx and # . When p > 2, the 
formula is considerably more complicated. Finally, with k = /? and y, 
= . . . x jp z>z p9 w e get "mixed Adem relations" for the evaluation of 
QrQsx. If /? = 2 and * = [1], the multiplicative identity of H^X, these read 

(4) Ô r e 5 [ l ] ~ 2 ( r - s - l , 5 - y ) Ô y [ l ] * Ô r + ^ y [ l ] f o r r > 5 > 0 

The relations for general x are rather convoluted, and the relations in the case 
p > 2 are positively labyrinthine. 

When X admits an additive conjugation x, with x[l] = [~ 1]» we have the 
further relations 

x # [ ~ l ] = X * ; Ô r [ ~ l ] - Ô r [ l ] * [ ~ l ] i f / > = 2and 

(5) Ô r [ - 1 ] - O i f p > 2 a n d r > 0 . 

Now consider a S -space (Â , £) and let A" ^ be the S0-space obtained by 
adjoining a disjoint basepoint 0 to X. In terms of * and the Qr, we have 
H*C(X+)^ UH*(X+) and H*Q(X+)^ GUH^X*). The general for­
mulas in principle completely determine the product # and operations Qr\ in 
the sense that they provide an algorithm for the expression of any product 
x#y and any operation Qrx in terms of the given bases. Indeed, H^C(X*) 
and H*Q(X+) are the free allowable "tf-Hopf bialgebra" and "#-Hopf 
bialgebra with conjugation" generated by H^X. In more detail, H^C(X+) is 
generated under * by elements Q'x for x E H^X. Given # and the Qr on 
H^X, all products QJx#y for x,y e J/*^, can be evaluated by (1) and (2), 
the Nishida and Adem relations for the Qr, and induction on the length of If 

and then all products Q'x#QJy can be cojnputed similarly by induction on 
the length of J. The determination of the Qr is analogous. For any space Y, 
write [a] for a component a E <n0Y regarded as an element of H0Y, 
H*Q(X+J has the additional generators [-a] = [#]#[-1] under * , but # 
and the Qr are still determined in view of (5). 

The most important example is X * {1}, when X* = 5°. We have seen 
that # and the Qr are completely determined on F = QS° and thus also on 
SF. Unfortunately, they are determined by some of the most incredibly 
complicated formulas yet to appear in topology. We are faced with the purely 
algebraic problem of determining the global structure of H^SF from the 
given element-wise relations. 

For the algebra structure, the problem is quite manageable. It was solved 
by Milgram [51] when/? * 2 (just from (1) and partial information along the 
lines of (2), since that formula only came later [44]), and by Tsuchiya [80] and 
myself [44], independently, when p > 2. 
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For the ƒ?-algebra structure, the problem is drastically more difficult and, 
in important respects, still unsolved. The best result is due to Madsen [38], 
[39], who obtained a minimal set of /{-algebra generators in the case/? = 2. It 
is a perversity of nature that while each of the steps of his argument admits a 
generalization valid for all primes, the resulting statements depend on p in 
such a way that they fail to yield the desired global information when p > 2. 

Since the algebra structure of H^SF is easily described, more detail may 
not be out of place. Recall that H^QS0 is generated under * by [± 1] and 
elements Q'[\] for certain admissible sequences /. Write /( /) for the length of 
ƒ. Q*[\] lies in the p^-component of H^QS0 if /(/) = A:, hence x, = 
Q'[\] * [1 - pk] lies in H*SF. If p > 2, H^SF is the free commutative 
algebra generated by the Xj. If p = 2, the elements xs have square zero and 
the exterior algebra E{xs} is the image of H^SO in H^SF. Define x{ss) = 
QSQS[\] * [-3]; QSQS[\] = Q'[l] * Qs[l] but the x{ss) are indecomposable 
under # . Here H^SF is the tensor product of H^SO and the polynomial 
algebra generated by the x(ss) and the xt with /(/) > 2. 

As noted by Milgram [51], when/7 = 2 the coalgebra structure of H^BSF 
follows directly from the algebra structure of H^SF. Its algebra structure 
(due to Madsen [38]) and the additive as well as the Hopf algebra structure of 
H^BSF when/? > 2 (due to Tsuchiya [80] and myself [44]) are more delicate, 
requiring use of the mixed Cartan formula. In all cases, H^BSF has an 
enormous number of generators o^xr As given, they are specified in terms of 
the additive operations ö7[l], which have no geometric significance. One 
wants to describe new generators for H^SF in terms of its own operations Qr 

since the corresponding generators of H^BSF would then come from the 
action of £ on BSF, and the fibration theoretical interpretation of the maps 
ip: £(/?) X2 (BSF)P -> BSF is well understood. I conjectured (in 1968) that 
if ƒ = (/, KJ with l(K) = 2 and Xj = QJxK, then the description of H^SF as 
an algebra would remain valid with the Xj replaced by xr Madsen [38], [39] 
proved this when p = 2 and went further by determining which xL with 
l(L) = 2 are decomposable in terms of operations QJxK with (7, ZQ inadmis­
sible. When p > 2, the conjecture is still open.4 Even when p = 2, it would 
appear to be unmanageably difficult to obtain a defining set of relations for 
H+SF as an /?-algebra. 

The complexity makes computation of H^BjSF) for all / prohibitively 
difficult, but attempts are being made to compute the cohomology of the 
spectrum BSF. 

NOTES. See Madsen [39] when /? = 2 and [20, II, §§1-6] for details and 
related results. Madsen relied on the mixed Cartan formula, due to him when 
p = 2, and on Kochman's calculation [33] of the homology operations in 
H^SO. The mixed Adem relations came later and were obtained in stages by 
Tsuchiya [82] and myself. 

23. The homology of matrix groups; BC -» BSF -* BJ%. Recall that we 
reduced analysis of B Top at p > 2 to analysis of BC in §18 and that we 
reduced analysis of BC, at any prime, to analysis of e: SF-*J® in §19. We 
have explained how H^SF can (in principle) be calculated as an /^-algebra. 
The requisite formulas depended ultimately on calculations having to do with 
the homology of symmetric groups. Among other things, we describe here 

4This contradicts the main theorem of [82]; unfortunately, the proof there contains a gap. 
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how H^J® can (in principle) be calculated as an /^-algebra. J® is the 
1-component of TB6kr (or, equivalently, TB§tkr) if/? > 2 and of TBVlk3 if 
p = 2. The additive operations Qr on these group completions are best 
analyzed by diagram chasing on the level of the homology of groups, and the 
operations Qr are then computable by the formulas of the previous section. 
The same diagrams serve to compute the homology operations for such other 
spaces derived from matrix groups as BO and BU, the O-components of the 
spaces TB& z* BO X Z and TB6^ a BU X Z derived from the classical 
bipermutative categories of orthogonal and unitary groups. 

Let S be a subbipermutative category of § tk for some (topological) field 
k. Let IT be cyclic of order p and suppose given a homomorphism f : 
7T-* G(l) C GL(1, k). It is very often the case that much of H^TB8 is 
generated under * by [—1] E H^T_XB§ and the images vt E H+T{B§ of 
the standard basis elements e- of Hfiir. For example, consider (? with/? = 2. 
Here TT = 0(1) and it is classical that H^BO = P {vt * [— 1]}. Similarly, for 
any/?, if f embeds TT in the circle group U(l), then H^BU = P{v2i * [ — 1]}. 

The additive action 9p: ty(p) X^ BG(n)p -> BG(pn) of §8 is the classify­
ing map of the natural inclusion of the wreath product 2pfG(n) in G{pri). 
Map TT X ir to 2^ ƒ G (1) via the standard inclusion <n -» 2^ on the first factor 
and the composite of £p and the diagonal map TT -> ^ on the second factor. 
Up to conjugation by a certain matrix y E GL(/?, /I), which in practice lies in 
the normalizer of G(/?), the composite homomorphism TT X TT -*T7/G(1)—> 

G(/?) breaks up into the sum of p homomorphisms TT X TT—> G(l), each of 
which is easy to analyze on homology. There results a formula for calculation 
of the operations Qrvs. When/? = 2, it reads 

s 

0 ) Q% = 2 ( r - J - U-7 ' ) ï* (ü ,* tV + , - y ) f o r r > * > 0 
7 - 0 

(and should be compared with (4) of the previous section). If y E ê(/?), then 
y* = 1. This holds in the cases § = g tk, § = 0 with /? = 2, and g = 9i. 

Turning to the multiplicative operations, we note that BG{\) is a sub 
<3) -space of B% under £. Now f : 7r -• G(l), as a map of Abelian groups, is a 
map of 9l-spaces, and the ^-action on G(l) is just the pullback of the 
91 -action. The Pon try agin algebra of BTT is known and its homology opera­
tions are trivial. Thus the products vs # vt are known and Qrvs = 0 unless 
r = s = 0. By formulas (1) and (5) and the mixed Cartan formula of the 
previous section, the * -subalgebra of H^B§ generated by [— 1] and the t>, is 
closed under # and is closed under the Qr and Qr if y# = 1; indeed, # and 
the Qr are completely determined in terms of * and the Qr. 

In particular, the procedure just sketched completely determines both 
/^-algebra structures on H^TBQ for/? = 2 and on H^TB^l for all/?. 

Now consider J8 and «/|. First consider /? > 2, where J8 = T0B§£kr. 
Quillen's calculations [64] determine H^J8 as a quotient of H*T0B§ tkr{^\ 
where kr{\i) is the extension of degree/? - 1 over kr obtained by adjoining all 
/?th roots of unity in the algebraic closure k (r = qa is as in §17). The 
procedures discussed above apply directly to 

HJ0B§£kr(ii) = P{v2i* [-1]} ® E {v*^* [-1]}. 

On the other hand, the homological proof of the infinite loop splitting 
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Jô x C » S F discussed in §19 gives 

H,J> = P{Qs[l] * [1 "/»]} ® * W [ 1 ] * [1 "/>]} 
and determines a8: H^J8 -> H^SF explicitly in terms of this description. 
Comparison of the two sets of generators for H^J8 allows determination of 
the operations Qr(PeQs[l] * [I — />])• We have the exponential infinite loop 
equivalence ea£\ J* -*J%, and we can therefore read off the operations Qr 

on H^J®. Unfortunately, this information is not very useful because of our 
incomplete global control on H^SF as an R-algebra. However, since e: 
SF-+J® is a component of a map of E^ ring spaces, it preserves the additive 
as well as the multiplicative operations, and we can obtain precise calcula-
tional control on e* from knowledge of the additive operations. On the 
classifying space level, these methods yield complete information on H^BC 
and how it sits in H^BSF. Via §18, this translates to yield a complete analysis 
of H+BSTop and of the natural map from it to H^BSF. 

Next consider p = 2. Here analysis of J8 requires prior analysis of TB&k3. 
Its 0-component, denoted JO8, is equivalent to the fibre of ^ ~ 1: BO -* 
BSO, and the Serre spectral sequence of SO -+J08 -* BO collapses. We 
have 0(1 , k3) - TT, and H JO8 = H^SO ® P {vf * [-1]} where the ele­
ments vt are those considered in our general discussion above. The interesting 
fact is that the splitting of H^JO8 is not a splitting of R-algebras. The 
operations Qr(vs * [—1]) involve elements in H^SO, and this phenomenon 
seems to be undetectable by purely A^-theoretical study of i£<3 — 1 and JO. In 
fact, what makes this nonsplitting of /£-algebras possible is that the element 
y E GL(2, k3) which enters into formula (1) cannot be chosen in O (2, /c3). 
Explicit calculation of y* leads to a complete determination of H^JO8 and 
H^J8 as R-algebras, and this allows computation of e#: H^QQS0-^ H^J8. In 
the absence of an exponential equivalence J8-*J%, it turns out that e*: 
H^SF-^ H^J® is most efficiently analyzed by translation to 1-components. 
An attractive formulation of part of the result is that the minimal set of 
/^-algebra generators for H^SF found by Madsen maps onto a minimal set of 
algebra generators for the complement of //„«Spin® in H#J® « //„«Spin® ® 
H^BO®. Again, on the classifying space level, complete information on the 
homological behavior of the infinite loop fibration BC -* BSF-* BJ® is 
obtained. While the detailed results are too complicated to summarize here, 
one concrete consequence may be worth mentioning. By use of Madsen's 
work on the higher torsion in BSF [40], the mod 2 calculation allows 
computation of the maps of Bockstein spectral sequences induced by the 
fibration above. Madsen had shown that, in cohomology with Z8 coefficients, 
there are classes in H4lBSF which restrict in H4iBSO to the mod 3 reductions 
of the Pontryagin classes. Our results give that there exists such a class in the 
image of H4lBJ® if and only if i is a power of 2. This is a surprising, and 
negative, fact: it had been expected that this image would yield canonical Z8 

Pontryagin classes in H*BSF. 
NOTES. See [20, II, §§7-13] for complete results. The procedure for comput­

ing the Qrvs> which is the key to these calculations, is due to Priddy [60], the 
details when p > 2 having been worked out by Moore [54]. The first com­
putation of the additive homology operations on H^BO and H^BU was due 
to Kochman [33], his results being less precise in homology but more precise 
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in cohomology than those presented here. In particular, he obtains precise 
fomulas for the dual operations ÔJ on the Stief el-Whitney and Chern classes 
(among other results). Herrero [25] working prior to the introduction of E^ 
ring spaces, first computed the multiplicative operations for BO X Z and 
BU X Z. The calculation of H^TBQk^ with its homology operations, is a 
very special case of the comprehensive set of calculations of the homology of 
the classical groups of finite fields obtained by Fiedorowicz and Priddy [24]. 

The first (and much less precise) calculations of H^BTop when/? > 2 were 
due to Tsuchiya [81] and myself [44], independently. The calculation of 
H+BTop when p = 2 has been carried out by Brumfiel, Madsen, and 
Milgram [18], the essential point being the surgery theoretical determination 
of the map H^F-* H#(F/Top). Madsen's calculation [38] of the homology 
operations in H^F/Top was the key to determination of the algebra structure 
of H+BTop and to the calculation of H^BTop -» H^B(F/Top) in [41]. 

The analysis of H+BTop for p > 2 discussed here has been used by 
Ligaard, Mann, Milgram, and myself to compute the jE -̂term of the Adams 
spectral sequence converging to ir+MSTop. 

24. The homology of «-fold loop spaces. An «-fold loop space clearly carries 
a portion of the internal structure present on an infinite loop space, and this 
structure leads to a more complicated theory of "unstable" homology opera­
tions. Cohen [20, III] has given a complete analysis, and we summarize his 
results here. 

The source of the complexity is already visible on the single loop space 
level. HJÙX is an algebra, generally not commutative, and thus has a pth 
power operation £0 and a commutator operation A0 under which it is a 
restricted Lie algebra. Of course, £0 is not additive, the Cartan formula for 
£0(xy) involves A0, and there is a Cartan formula for X0(xx\ yy'\ a Jacobi 
identity for iteration of X0, and a formula for the evaluation of X0(x< £0y): 
Clearly HJ2n+lX should admit operations £„ and A„, under which it is some 
sort of analog of a restricted Lie algebra, such that £„ suspends to £0 and \n 

suspends to A0 in HJ1X. Since ün+xX is also an (/ + l)-fold loop space for 
0 < / < «, it should have operations £,. and \ . Just as X0 vanishes by 
commutativity in a 2nd loop space, so all À, for / < n should vanish in an 
(n + l)-fold loop space. But then the £, for i < n should be additive and 
should satisfy the Cartan formula, and thus ought to behave just like the 
homology operations on infinite loop spaces already discussed. Moreover, 
there should be commutation formulas among all these operations (Adem 
relations) and between them and the product and coproduct (Cartan for­
mulas), the Steenrod operations (Nishida relations), and the conjugation. 

The appropriate context for this development is that of c?w+l -spaces, where 
S„+, is the little cubes operad of §2. Given such a space (X, 0), the maps 9p: 
Qn+i(p) X2 Xp -* X give rise to all requisite operations. The commutative 
diagrams given by the definition of an operad action (compare the diagram in 
§20) give all commutation formulas among the operations and between the 
operations and the product (internal Cartan formulas). The external Cartan 
formulas are obtainable by easier diagram chases, and they imply the com­
mutation formulas between the operations and the coproduct by naturality; 
they do not imply the internal Cartan formulas since the product X X X -> X 
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is only a map of 6n -spaces, not of Gn+} -spaces (even up to homotopy). 
Computation of the Steenrod operations in //*(ö„+1(/>) X2 Xp) yields the 
Nishida relations by naturality. Commutation of the operations with the 
conjugation when X is an (n + l)-fold loop space is proven by use of an 
appropriate involution of the little cubes operad. 

The essential first step of the program is calculation of 

The space Cw+1(/?) may be replaced by the configuration space F(Rn*\p), 
and the key point is the determination of the homology of the braid space 
B(Rn+\p) = F(Rn+\p)/2p. When n = 1, this space is a K(Bp, 1), where 
Bp is Artin's group of braids on p strings [8], hence the terminology. Work of 
Fadell and Neuwirth [23] gives the starting point for the calculation of 
H*F(Rn+\p) as a 2^,-algebra, and a careful analysis of the spectral sequence 
of the covering F(Rn+\p) -» B(Rn+\p) leads to the required calculation of 
HtB(Rn+l

9 p). Of course, when n = 1, this gives the homology of the 
classical braid groups. Proofs of commutation formulas require information 
on H^(Qn+l(k) X^k Xk) for certain values of k other than/? and on certain of 
the homomorphisms y* determined by the structural maps QÎ 6n+\. 

Actually, the details are much more devious than the straightforward 
outline above would indicate. Determination of many of the commutation 
formulas along the lines indicated would be prohibitively difficult, and we 
have not yet mentioned the most crucial property of the operations, namely 
commutation with the suspension a^: HJÙn+{X -* H^QPX. 

The rigorous development interweaves the program above with calculation 
of HxQ"+l2"+{X along the same lines as the calculation of H^QX sketched 
in §21, comparison of these two calculations, and exploitation of the geomet­
ric diagrams constructed in [45] for the inductive proof of the approximation 
theorem of §4. 

HJÙn+ l2"+lX, with all structure in sight, turns out to be the appropriate 
free functor (with conjugation) on H^X. By an analog of the calculation of 
H^CX sketched in §21, and use of the equivalence Cn+{X->tin+^n+xX for 
connected X, Cohen also proved that, for any X, H^Cn+{X is the appropriate 
free functor (without conjugation) on H^X and so completed the proof of the 
approximation theorem of §4. 

One other calculation of Cohen [20, IV] should be mentioned. When p = 2 
or when p > 2 and n is odd, the natural map from H^SF(n) to H^SF is a 
monomorphism because in these cases the operation À„„, on H^unSn is 
trivial. When n is even and p > 2, there is a large kernel. Cohen proved that 
HçSF(n) is free commutative on specified generators. The essential point is 
commutativity. Since SF(n) is not homotopy commutative, the proof re­
quired explicit calculation of commutators and in fact required use of every 
one of the commutation formulas between operations. In contrast to the 
stable case, determination of H^BSF(n) does not follow directly, due to lack 
of internal structure on BSF(n), and is work in progress. 

NOTES. When p = 2, Araki and Kudo [7] constructed all requisite one-vari­
able operations on H^2nX. The Xn were introduced by Browder [16]. Dyer 
and Lashof [22] introduced some of the one-variable operations when p > 2, 
by use of skeleta of J?2p, but it is impossible to so construct all of the 
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operations. Milgram's calculation [50] of HtQ,n2nX as an algebra implicitly 
gave all operations, but not in a form usable for such detailed calculations as 
those discussed here. 

CONCLUSION. The theory and applications that we have discussed are 
reasonably complete, although there are numerous loose ends. On the theore­
tical side, for example, precise comparisons between the black box discussed 
here and those developed by other authors would be of interest. 

In the area of calculations of characteristic classes, and more so in the 
concomitant area of calculations of cobordism classes (of topological bundles 
and Poincaré duality spaces), there are a number of basic computations still 
to be made. There also remain unsolved problems in the area of descriptive 
analysis on the infinite loop space level of the classifying spaces of geometric 
topology (notably concerning BTop at 2 and the Adams conjecture away 
from 2). 

Applications of the full strength of infinite loop space theory to algebraic 
/f-theory seem likely to lie far in the future. The theory's calculational power 
lies in applications to known homotopy types and their deloopings, and it is 
precisely the determination of such basic underlying homotopy types as that 
of (B§ £Z)+ which is most needed (and seems most intractable) in this area. 

One direction in which very much more work needs to be done is the 
exploration on the calculational level of the connections between infinite loop 
space theory and stable homotopy theory. From the theoretical point of view, 
it is well understood that these are two sides of the same coin: with the 
appropriate morphisms, the categories of (grouplike) E^ spaces and of 
connective spectra are equivalent. However, from the calculational point of 
view, there is a marked disjunction between the techniques used for analysis 
of the two sides of the coin. For example, there is no known calculational 
route from the homology of a spectrum to the homology of its zeroth space, 
and the known theoretical calculational route the other way is at best 
tortuous. 

As we have pointed out in several places, substantial homotopy theoretical 
results have already been obtained by infinite loop space techniques. It is my 
hope that these are just the beginning, and that much new information will 
come when we learn how the rich space level structures described here can 
effectively be exploited for calculations in stable homotopy theory. 
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