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0. Introduction. The purpose of this paper is to give an overview of
the general subject of period matrices or, what amounts to essentially
the same thing, variation of Hodge structures. Our main emphasis is
on the precise formulation and discussion of what I feel are the central
problems and conjectures in the subject.

This paper is divided into three parts, and a short introduction to
each will now be given.

(i) PartIisdevoted to giving the basic framework and main results
which have appeared thus far in the subject. No complete proofs are
given, and only a few are even sketched. One problem in writing this
part was to find formulations of the results in terminology which
would be understandable to both complex analysts and algebraic
geometers, and which would at the same time combine the classical,
geometric flavour of the subject while taking advantage of the gen-
erality and precision offered by the current homological formulations.
I have chosen a compromise course, one which seemed best to me, and
I have also parenthetically inserted alternate terminology and formu-
lations when it seemed appropriate.

The Table of Contents for Part I is fairly self-explanatory, and I
should only like to add a parenthetical remark about two main areas
in algebraic geometry and function theory which are playing a central
role in the study of period matrices. The first of these is Hironaka’s
resolution of singularities (cf. the end of §1), which in practice permits
us to have a suitable localization around singular points of algebraic
varieties. The second of these is hyperbolic complex analysis (cf. §6)
which, to paraphrase Chern, is the general philosophy that suitable
curvature conditions on complex manifolds impose very strong re-
strictions on the holomorphic mappings between such manifolds.

A third area which should play an increasingly important role in
variation of Hodge structures is group theory. Both the theory of
algebraic groups and their arithmetic subgroups [10], and the theory
of representations of real, semisimple Lie groups [24] have a close
relation to many of the problems given in Part II.
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About 1/3 of the results listed below have been announced in print,
another 1/3 exist in preprint form, and the remaining 1/3 have yet
to even reach that point. Except for the foundational results in §2,
essentially none have been published with proofs. Given this, I have
still included references as much as was possible.

(ii) In Part II I have given a fairly complete discussion of those
central problems and conjectures about period matrices of which
I am aware. Several of these are conjectures of others (such as
Andreotti-Weil's conjecture about K —3 surfaces—§7, Brieskorn’s
problem about the Picard-Lefschetz transformation around isolated
singular points of hypersurfaces—§8, or Deligne’s conjecture about
the Hodge structure of a degenerating algebraic variety—3§9). Some
of the problems (such as the K —3 conjecture) are long-standing, and
I have simply written these down together with whatever recent
information was available. Other questions are of recent origin, and
I have tried to give a precise and thorough explanation of these.

I have also used a system of putting asterisks “*” alongside the
problem or conjecture. A single asterisk means that the problem
should be accessible to present techniques, and occasionally 1 have
even given an outline of how the problem might be approached (e.g.,
(8.4) and (11.2)). Two asterisks means that the problem is one which
is perhaps accessible by current methods, and which, at any event,
seems to me as though it could be profitably worked on. Three
asterisks means that the problem will most likely require completely
new insight. Of course these “ratings” are my own opinions and
nothing more.

(iii) In Part III I have given some examples pertaining to the
problems and conjectures in Part II1. The first of these (§13) is essen-
tially an old unpublished result of Mayer and Mumford which says
basically that all of our general problems and conjectures are satis-
factory for curves or abelian varieties.

In §14 there is given an example, due jointly to Clemens and my-
self, of the periods of an algebraic surface which is degenerating in an
interesting manner. (Contrary to the case of curves, the “general
singularity” which a surface acquires is, from the point of view of
Hodge structures, not particularly interesting.) This example gives
nontrivial substantiation to some of the conjectures in §9.

In §15 I have discussed the monodromy theorem (§3) while also
giving some illustrations of the local invariant cycle problem (§8).

The appendix, which was added to the galley proofs, discusses some
recent progress on the problems and conjectures given in Part II.

In closing I should like to express my appreciation to the many
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colleagues with whom I have had helpful discussions and many of
whose suggestions have been incorporated into this paper. In par-
ticular, Professor Grothendieck read over two preliminary versions

of the manuscript and pointed out several statements which needed
clarification.

ParT I. SUMMARY OF MAIN RESULTS

1. The geometric situation giving rise to variation of Hodge struc-
ture. All algebraic varieties will be defined over C and will be reduced.
The ad’ective smooth for an algebraic variety will mean nonsingular;
thus a smooth algebraic variety X may be considered as a complex
manifold, and we will denote by 0x (or simply 0 if no confusion is
possible) the sheaf of germs of holomorphic functions on X. A mor-
phism f:X—Y between algebraic varieties will be a rational, holo-
morphic mapping. If X and Y are smooth, then a morphism f: X— YV
will be smooth if the mapping between tangent bundles fix: T(X)— T(Y)
induced by the differential of f has everywhere maximal rank.

The situation we will study is that of an algebraic family of alge-
braic varieties. To be precise, such a situation is given by a proper
morphism f:X—S between algebraic varieties where we make the
following assumptions:

(a) X, S, and f are smooth;

(b) X, S, and the fibres V,=f~1(s) (s&S) of f are connected; and

(c) we are given a distinguished class of projective embeddings

X CPy (i.e., a polarization of X).
We may intuitively think of this situation as a nice family { V,}ses
of smooth, complete (i.e., compact), and projective algebraic varieties
with an algebraic parameter space S. In general S will zof be com-
plete, and we should have the picture that the V, are acquiring singu-
larities as s tends to infinity in S.

We shall also consider smooth compactifications of our situation
f:X—S. By this we shall mean a diagram

XCX
i 17
SCS
where X, S are smooth and complete and where X —X and S —.S are

divisors with normal crossings. Thus, for example, S —S will be given
locally by

(11) 21"'Zk=‘-0
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where z1, - - -, 2, is a local holomorphic coordinate system on S. The
nonsingular divisors 2z;=0, - - -, 2, =0 will be referred to as the
irreducible branches of S at infinity. Another example is when dimcS
=1, so that S—.Sis given by s =0 for a local holomorphic coordinate
son S. Then f: X—3S will be given locally by

1.2) Xy ey =5

where %1, - + -, %, is a local holomorphic coordinate system on X.

Such smooth compactifications exist by the fundamental work of
Hironaka. In fact, I should like to insert here the personal observa-
tion that Hironaka's work has found many important applications
in the area of periods of integrals and Hodge structures. Among these
applications are:

(i) Grothendieck’s algebraic deRham theorem [5];

(ii) the local monodromy theorem stated in (3.1) below (cf. also
§15 for the sketch of a proof);

(iii) the complete reducibility of global monodromy (3.3);

(iv) the regularity of the Picard-Fuchs equations (Theorem 4.1);

(v) the geometric analogue of Tate’s conjecture (Theorem 5.1);
and

(vi) the theorems applying hyperbolic complex analysis to the

study of the behavior of period matrices at infinity (Theorems 6.3,
6.5, and 6.6).

2. Data given by variation of Hodge structure. Given the situation
f:X—S of §1, we may pass to the cohomology along the fibres and
thereby effect a linearization of the geometric picture. Upon so doing
the following data is obtained:

(a) A holomorphic vector bundle 7: E—.S with a canonical flat
connexion D. Fixing a base point so& .S, we may define E as being the
holomorphic bundle, with constant transition functions, which is
associated to the usual representation of the fundamental group
m1(S, so) on the cohomology H(V,,, C). The connexion D is the usual
flat connexion which one has on any bundle associated to a represen-
tation of the fundamental group.

The sheaf 0(E) of holomorphic sections of E contains the subsheaf
C(E)= {¢€G(E):D¢=0} of locally constant sections of E. In fact,
C(E) is just the usual Leray sheaf R}, (C), the latter, by definition,
being the sheaf associated to the presheaf U—H¢(f~(U), C) where
U runs through the family of open subsets of S. Following [5], D is
termed the Gauss-Manin connexion.

(b) A holomorphically varying filtration FOC - - - CF¢=E (Hodge
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filtration) where the fibre F; of the holomorphic subbundle Fr of E is
just H*9(V,)+ - -+ +Herr(V,) viewed as a subspace of H¢(V,, C)
=E, [2], [3].

(Grothendieck remarks that the above filtration of E can be
defined in a purely algebraic manner as follows: Let Qx/s
=Przgim v Q%/s be the algebraic coherent sheaf, in the Zariski
topology, of relative differentials on X which are simultaneously
holomorphic and rational. The exterior differentiation on Qx induces
d: Qg s—%Ys which is 0g-linear. Thus Qx/s is a graded, differential
sheaf and so the Leray hypercohomology sheaves [5] R,/ *(Qx/s) are
defined and are coherent algebraic sheaves on S. By the main theorem
in [5] we see that the analytic coherent sheaf associated to R, (Qx/s)
is just R; (C)® 0s.0n the other hand there is the usual spectral
sequence {E”"} with EP" =R,/ (ks and with @D pir=g EZ being the
graded sheaf associated to a filtration of {Rf (Qx/s) }‘1 by coherent
algebraic subsheaves. This is the algebraic definition of the filtration
F°C - .. CFe=E, since because of the degeneracy of the above
spectral sequence the F* are just the holomorphic vector bundles
associated to coherent algebraic subsheaves of {R,f((zx/s)}q.)

As conditions on the data (a) and (b) we have

(c) the Gauss-Manin connexion satisfies

2.1) D:0s(F") — s(F"*).

This is the infinitesimal period relation or transversality condition [2].
Passing to the associated graded situation in (2.1), we see that D
induces an Og-linear mapping

) D:os(F/F* ™) — as(F**'/F).

If we now denote by Qx/s the sheaf on X of relative, holomorphic
r-forms, then 05(F?/F?~!) is just the Leray sheaf R/”(Q%/%). Thus, in
(571) we see that D is given by a global section D of

Home,(R?(%78), RI*(%75))0® %

From [2] it follows that this D is just the cup product with the
Kodaira-Spencer infinitesimal deformation class

6 € R} (Hom(2x/s, Ox)) ® 0.

(d) Oneach fibre FICF,C - - -CF* 'CE, of thesituation (b), there
is defined the Hodge bilinear form Q, which is a bilinear form, flat with
respect to D, and with the properties given in Hodge [6] or Weil [9].
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We now want to formulate the data and conditions (a)-(d) just
given in an equivalent, but perhaps more geometric, manner. The
idea is to use a classifying space for Hodge filtrations. More specifi-
cally, we reconsider E as now being the bundle formed from the prim:-
tive cohomology HY(V,, C)o [2], [9]. Recall that the rational primi-
tive cohomology H4(V,,, Q) is, by definition, the kernel of

Lr=at1: HY(V,, @) — H*2%(V,,, Q)

where LE H*(V,,, @) is the cohomology class of a hyperplane section
of V,, relative to the given embedding X CPy. It is clearly the case
that L operates on the Leray sheaves R;z(Q), so that m1(S, so) leaves
H«(V,, @)oinvariant as a subspace of H¢(V,, @). Because of the
Lefschetz decomposition
H V., Q) = Z LrHT?* (Vs @)oy

any information about H¢(V,,, @) is adirect sum of information about
the primitive cohomology groups. The reason for passing to the prim-
itive cohomology is that the Hodge bilinear form Q now has the nice
positive-definite sign properties given in [6] and recalled in (9.8),
(9.9) below.

Then we construct, as in [2], [3], the period matrix space D of all
possible inequivalent Hodge structures on a given vector space E
(=H(Vy, C)o) having fixed Z lattice (=image of H1(V,,, Z),) and
rational bilinear form Q (=Hodge bilinear form on He(V,,, C),), and
having given Hodge numbers h** (=dimH**(V,,),). The data and con-
ditions (a), (b), (d) above are equivalent to giving a holomorphic
mapping (period mapping)

(2.2) &:5— D/T

where I'C Autz(E) is the global monodromy group (which, by defini-
tion, is the image of 71(S, so) in Autz{H"(V,o, C)o}).

To explain the infinitesmial period relation (2.1) in (c), we recall
from [2] and [4] that D is in a natural way a homogeneous complex
manifold H\G, where G is the identity component of the real ortho-
gonal group of the bilinear form Q, and where H is the compact sub-
group of G which leaves a given Hodge structure invariant. Letting
K be the maximal compact subgroup of G and R=K\G the corre-
sponding Riemannian symmelric space, in the equivariant fibering

D = H\G

(2.3) & l 1

R = K\G,
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there is a unique, G-invariant connexion
To(D) = Vo © Hy

(R€D) where the vertical space Vy is tangent to the K-orbit of
Q-K in D and H, is the complementary horizontal space [4]. Now
the condition (c) above implies to the statement:

(2.4). The period mapping ®:S—D/T is horizontal in the sense that
P«(t) E Hp(s) for a tangent vector ¢E T,(S).

In general, a locally liftable holomorphic mapping ¥ from a complex
variety W to D/T issaid to be horizontal if the condition on the differ-
ential ¥+ given in (2.4) is true at simple points of W. (Recall that a
holomorphic mapping ¥: W—D/T is locally liftable if, for each point
w& W there is a neighborhood U, of w in W and a holomorphic map-
ping ¥: U,—D such that the diagram

~

¥ D
Uw\p<;>l/r

commutes.)

It is perhaps worth recalling here that the fibering (2.3) has the
following properties [2]:

(i) the projection is #not holomorphic unless H=K and D is a
bounded symmetric domain in the sense of E. Cartan;

(ii) the fibres @~ !(r) are all nonsingular, complex submanifolds
of D which are biregularly equivalent to the rational, homogeneous
projective variety H\K; and

(iii) R may roughly be thought of as the set of “real points” in the
“Chow variety of all deformations of a fixed fibre &= '(ro) in D” (cf.
Remark 11. 2 below).

3. Theorems about monodromy of homology. There are two main
results here: the essential unipotence of the local action of m(S) on
H4(V,, C) around the branches of §—.S at infinity (thisis the so-called
monodromy theorem), and the global complete reducibility of the
monodromy group I'.

(a) The local theorem is this: We localize f: X—3 around a single
irreducible branch of S—S and let T:H(V,, C)—H(V,, C) be the
Picard-Lefschetz transformation (P.-L. transformation) obtained by
transporting cycles around the branch of S-S [3], [7], [8], [19]. A
more precise description of this localization is given in §8 below.

(3.1) TeeoreEM (MONODROMY THEOREM). (i) The eigenvalues of T
are roots of unity, so that TV is unipotent for some N >0,
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(ii) The elementary divisors of TN are less than q-+1, so that
(Th-I)et1=0.

(3.2). REMARK. There are four methods of proof of this theorem
which I know of, and which I will discuss briefly.

(P-1). The first is the original topological argument based on the
methods of Lefschetz (Landman [22]) and the direct topological
proof by Clemens [14]. Grothendieck has also found a cohomological
proof which is similar to Clemens’. In §15 we will sketch this proof in
conjunction with a discussion of one of our problems. Both arguments
use the resolution of singularities of a singular fibre of f: X—3, and
each gives estimates on IV and on the index of nilpotency of 7%-1.

(P-2). The second is Grothendieck’s original arithmetic argument
[19], which also uses resolution of singularities.

(P-3). The third is a combination arithmetical and analytic argu-
ment based on the fact that the Picard-Fuchs equations (Gauss-
Manin connexion) have regular singular points ([3] and §4 below). As
best as I can determine the two proofs of this kind are due to Bries-
korn and Grothendieck-Katz. These methods do not require resolu-
tion of singularities, but the proofs I have seen only give the eigen-
value statement (i) in Theorem 3.1. An outline of this proof is given
following Theorem 4.1 below.

(P-4). The last is a proof using hyperbolic complex analysis (cf. §6,
and (8.3), (8.4) below), this argument being due to Borel. Here again
use is not made of resolution of singularities, and thus far Borel gets
out only the eigenvalue statement—cf. Problem (8.3) in §8 below.

(b) The main global theorem is the following result of Deligne [1]
(cf. Lefschetz [7] and Hodge [6] for special cases).

(3.3) THEOREM. The global monodromy group I' CAutg(H*(V,,, C))
is completely reducible.

(3.4). REMARK. In outline, Deligne's proof of semisimplicity goes
as follows: First, Deligne observes that the Leray spectral sequence of
f:X—S degenerates at the E,-term, so that in particular we have

(3.5) H*(X, C) 1 H(S, R¥(C)) — 0.

Deligne then proves the basic fact that, in the diagram

H*(X,C) I H*(V,, C)

r

(3.6)
%X, C)
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the image of » equals that of 7. This proof is based on his notion of
“weight filtration and generalized Hodge structure” on H*(X, C)
(cf. §9 below). Consider now the invariant part I*=H*(V,, C)"'®
= H°(S, R;(C)). According to (3.5) and (3.6), I* is the image in
7:H*(X, C)»H*(V,, C) and is thus a “sub-Hodge-structure”; in
particular, using the Hodge inner product, we have a m(S)-invariant
splitting H*(V,,, C)=I*® (I*)*. If now FCH(V,,, C) is a maximal
m1(S)-invariant subspace, then, if dimF=I, the I/th exterior power
A’FCA‘{H‘I(V.O, C)} gives an invariant line in

Hi (VX + + + XV, C),
(7 times)

and we can find an invariant vector generating this line and proceed
as before.

4. Theorems about Picard-Fuchs equations (Gauss-Manin con-
nexion). The basic general fact is the result announced in [3] that
the Picard-Fuchs equations have regular singular points. This is es-
sentially equivalent to saying that the “periods” in our family f: X—S
do not have essential singularities on §—.S, or what amounts to the
same thing, that these periods have polynomial growth at infinity.
Before stating the theorem, we will define the notion of regular singu-
lar points in our context.

Let S be a smooth algebraic variety and E—S an algebraic vector
bundle with a flat algebraic connexion D. (This applied to our situ-
ation as was remarked in (b) of §2). We will say that D has regular
singular points at infinity on S if the following is true:

For any smooth compactification S of S given locally by (1.1),
given &S5 —.S there is a topological neighborhood U of 5in S and ra-
tional sections ¢y, « * +, ¢n of E—S with the following properties:

(i) ¢1, * + +, ¢m are holomorphic in UNS and give a basis for all of
the fibres E, (s&€ UNS); and

(ii) the connexion D is given by

k i dZa n
(4.1) Doy =S diti @ =+ 3 Aboi® da,

a=1 2a w=k+1

where the 4},, 4}, are holomorphic in U. Thus, e.g., if dimS=1, then
D will have a regular singular point at s =0 if

m i d
@.2) Dg,(s) = 3 AK5)oi(s) ® ? :
=1
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(4.3). THEOREM (REGULARITY THEOREM). The Gauss-Manin con-
nexion has regular singular points. Moreover, there exists a locally free
coherent analytic sheaf O5(E) on S such that:

(1) O3(E) restricted to S is just Og(E); and

(ii) if ¢ is a local section of O5(E) in a neighborhood of 5&S—S, then

k d n
D¢ = Z¢j®—zi+ > 61 ® dz

i=1 %j l=k+1
where ¢1, + + -, Pn are sections of O5(E).

ReEMARKS. We shall outline the original proof of (4.1) and then
comment on two very interesting recent proofs by Deligne and Katz.
Consider for simplicity the case dimS=1 and let s be a local holomor-
phic coordinate on S such that S—Sis given by s=0. Fix sonear to s
and let ¥y, -+ -, ¥, be a basis for H4(V,,, C). Then ¥y, - + -, ¥,, will
displace to a many-valued basis for H¢(V,, C) in the punctured disc
0< I s| <e. The indeterminacy in this procedure is given exactly by
the P.-L. transformation T discussed in §3.

For simplicity we assume that the eigenvalues of T are all equal to
1. The case when all eigenvalues are equal to a fixed number p is done
exactly the same way, and the general case is then done by writing
He(V,, C) as a direct sum of subspaces on which T has a single eigen-
value. If we define

logT=(T—-0—(T—-D¥2+ -+ (=DT — Dy,

then the matrix log T has the properties:
(i) (log T)et1=0, and
(ii) T=ee" = 4log T+ - - - +log T/q'is a polynomial in log T.
Let now ¥y, - - -, ®, be any rational sections of E—.S which are
holomorphic and give a basis of E, for 0<|s| <e. Then we will have

®,(s) = Zm: Cii(s)¥;
=1

where the matrix C(s) = (Cji(s)) is locally holomorphic in 0< I s| <e
and satisfies

“.4) C(e?ris) = C(s)- T,

where C(e?v%s) denotes the result of analytically continuing C(s)
around s=0. The entries Cj;(s) are to be thought of as integrals

L ()
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of rational differential forms ®;(s) on V, which depend rationally on
s&S, and where the v; are cycles in Hy(V,, Q). The main step in the
proof of (4.1) is to prove the estimate

f 3 ®;(s)

for suitable constants a, b, ¢. This estimate is done using the method
of Lefschetz [7] to describe the cycles on V, as s tends to zero.
Now let I(s) =log s/2w7 and write

(4.6) C(s) = B(s)elt 10871,

4.5) < al|s||logs|e

By (4.4) we have B(e?"%s) = B(s), and it follows from (4.5) and the
fact that elt®leT =) ?_, I(s)* (log T)* is a polynomial in log (s) that
B(s) =) . _yB.,s" is single-valued and meromorphic at s=0, and
holomorphic with det B(s)#0 in 0< | sl <e. We may then obviously
assume that our rational sections &y, - - -, ®,, have been selected so
as to give a holomorphic basis for E, in 0< | s| <e and such that the
matrix B(s) in (4.6) is holomorphic in the whole disc 0 = I sl <e and
det B(0) 0. Since D¥,;=0 it follows that D®;=)_,0;:®; where

60 = dB-B~! + (B log TBY)ds/s

is the connexion matrix. Comparing this with (4.2) we find our
theorem.

The proof by Deligne is of a somewhat more general result and is
also based on the characterization of a flat, algebraic connexion with
regular singular points by growth estimates similar to (4.5).

Before discussing Katz’ argument, we remark (as was done in [3])
that (4.3) is a purely algebraic theorem whose proof was, however,
based on analysis. This state of affairs has just been remedied and
clarified by Katz, who gives a purely algebraic proof of the regularity
theorem and which I will now outline.

(i) The first step is that the Gauss-Manin connexion admits a
purely algebraic definition (cf. Katz and Oda, J. Math. Kyoto Univ.
8 (1968), 31-45). This is an extension of Grothendieck’s comment

given in §2(b). Thus we may think of D as a rational differential
operator

D: Rj*(flx/s) - RZ(S.ZX/S) ® 9.19

where Rys(Qx/s) is the algebraic coherent sheaf coming from the pre-
sheaf U—H*(f~*(U), Qx,s) where U is a Zariski open set in S, Qx/s is
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the algebraic coherent sheaf of relative rational, holomorphic differ-
entials on X, and H*(f~(U), Qx/s) means hypercohomology.

(ii) From (i) it follows that D may be “reduced modulo p” for al-
most all primes p whenever the same is done to the situation f: X—S.
Katz then observes that, in the reduced situation modulo p for al-
most all p, we have

(@.7) DM =0

for a suitable M = M (p), this being related to the fact that, for ra-
tional, holomorphic functions f(x), we have d*f(x) /dx*=0 (modulo p)
for k= p. We may think of (4.7) as the nilpotence of the Gauss-Manin
connexion in characteristic p.

(iii) From the nilpotency of the Gauss-Manin connexion in char-
acteristic p for almost all p, Katz uses the following result of Turrittin
(Acta Math. 93 (1955), 27-66) to deduce the regularity theorem:
Let A(z) =Y . _. A,2* be a meromorphic (in the usual sense) nXn
matrix defined on the disc | z| <1 which is holomorphic for 0 < |2 <1,
and consider the system of ordinary differential equations

(4.8) du(z)/dz = A(z)u(z)

for an unknown vector function #(z) in 0< | z[ <1. Then, by a change
of variable z=¢* and change of coordinates B(¢)=C(t)4(t) where
Clt)y=Y.> _, C is meromorphic in | t| <1 and holomorphic with
det C(£)#0in 0< I tl <1, we may bring the system (4.8) into the ca-
nonical form

(4.9) dv()/dt = B()o(l)

where B(t) = D> _, B,t* and where B_; is not nilpotent if #>1.

The link between the nilpotency of the Gauss-Manin connexion in
characteristic p and (4.9) is roughly that, if we set D = {d/dt—B(t)},
then we cannot have D¥=0 (modulo ) for infinitely many primes p if
h>1 because B_; is not nilpotent in (4.9). Thus we must have =1
and so (4.9) has a regular singular point at =0.

The proof of the eigenvalue statement in the monodromy Theorem
3.1 also follows by a similar argument, since in fact T=exp (B_;) in
(4.9) while B_; must be nilpotent for the same reasons as before.

There are three applications which I know of the regularity
theorem.

(a) The first is in the proof of the monodromy theorem discussed
in Remark 3.4 and given in outline form just above.
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(b) The next is Deligne’s generalization [15] of Grothendieck’s
algebraic deRham theorem [5]. For affine S, this result is:

(4.10). THEOREM. The cohomology H*(S, R}': (C)) is the same as the
deRham cohomology of the complex of rational, holomorphic differential
forms with values in E (this has a meaning because of Theorem 4.3).

(c) The last application of Theorem 4.3 is the first, and fairly
crude, result on the behavior of the period mapping (2.2) at infinity (or
what amounts to the same thing, the limiting posilion of the Hodge
filtration of H1(V,, C) as s tends to 5&5 —.S). To explain this result, I
first recall that there is naturally associated to D a dual D with the
following properties [4]:

(i) D is arational, homogeneous projective algebraic variety of the
form D = B\G where G is a complex, simple Lie group and B isa para-
bolic subgroup;

(ii) the period matrix domain D = H\G where G is a real form of G
and H=GNB; and

(iii) from (ii) it follows that there is a natural equivariant em-
bedding DC D whose topological boundary dD=D—D is a disjoint
union of G-orbits.

The relation of D to Hodge structures is the following (cf. [2], [3]):
If we think of D as all points on a flag manifold which satisfy the two
Hodge bilinear relations Q(Q, 2) =0 and Q(®, 8) >0, then D is just
these Q which satisfy the first relation Q(2, 2) =0 (cf. §13 below where
the case g=1 (Stegel-upper-half-plane) is discussed in this setting).

We now localize the period mapping around an irreducible branch
Bof §S—S. If 2!, - - -, 2" is a coordinate system on S such that B is
given by 2! =0, we set 2! =exp(w), 2= (32, : - -, 2"), and lift the period
mapping to

HXA"'=HXAX:-+XA
(n — 1 times)

where H is the usual upper-half-plane {w:Imw>0} and A is an
ordinary disc in C. The lifted map ®: H XA !'—D satisfies

d(w+ 1,2 = &(w,2)-T

where T: H*(V,, C)—>H(V,, C) is the P.-L. transformation obtained
by turning around B.

(4.11). THEOREM. The limit limimy., P(w, 3) exists as a point
®(0, 2) €D and has the properties:
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(i) ®(0, 2) =®(0, 2)- T is a fixed point of T, and
(ii) ®(0, 2) depends holomorphically on z= (22, - - -, z").

REMARK. In particular if T is of infinite order, then (0, z) EAD
=D—D (cf. (6.4) below for the complement to this remark). Ex-
amples of Theorem 4.11 are given by (13.28) and (14.38) below. The
general problem of describing the limiting period matrix in a family
of degenerating algebraic varieties is discussed in §9.

5. Global theorems about holomorphic and locally constant
cohomology classes. Let S be a smooth algebraic variety and E—S
a holomorphic vector bundle with a flat holomorphic connexion

D: 05(E) — Qs(E)

as was discussed in §2. We suppose that E has a flat conjugation
e—%¢, a flat bilinear form

Q: EQ E—C, Qle, €) = (—1)2Q(¢, ¢),

and a holomorphic filtration FOCF!C - - +- CF*'CF=E such that
the conditions (c) and (d) of §2 are satisfied. We call §=(E, D, Q,
{F*}) a variation of Hodge structure, and we observe that it is not
necessary that & arise from an algebraic family of algebraic varieties
f: X—S. In case & does come from linearizing such a family as dis-
cussed in §2, we shall say that & arises from a geometric situation. For
the obvious reasons it is desirable to prove as much as possible about
a variation of Hodge structure § =(E, D, Q, {F" }) without assuming
that it arises from a geometric situation.

We shall give some results about a variation of Hodge structure §
when the base space S is complete. These were given in [16 ] where it
was falsely claimed that the results held for general .S (this claim was
based on the assertion that Conjecture 8.1 below was “obvious”). In
[1] Deligne has given an independent treatment of some of the ma-
terial below and, using (3.5) and (3.6), he is able to remove the as-
sumption that Sis complete in case § arises from a geometric situation
f: X—S.

Our methods are based on the structure equations of the variation of
Hodge structure § =(E, D, Q, {F & } ), especially the curvature proper-
ties of the Hodge bundles E* = F*/F*1, together with use of the maxi-
mum principle. These struct