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The purpose of this announcement is to show how an extremely 
simple idea leads immediately to inequalities for finite sums, definite 
integrals, etc., which are stronger than many popular inequalities 
now current in the literature (see the bibliography). The procedure 
will be illustrated in detail only in the case of finite sums. A suitable 
interpretation of exactly the same argument leads immediately to the 
corresponding results for definite integrals, etc., which will merely be 
stated without proof. I t is planned that a more detailed presentation 
will appear elsewhere. 

THEOREM 1. Let the real numbers a&^O and bk (& = 1, 2, • • • , n) 
satisfy 

h 
(1) m g — ^ M. 

Then 

(2) Ê bl + mMJ2 *l ^ (M + m) £ akbk. 
&=i &=i fc=i 

Equality holds if and only if in each of the n inequalities (1), at least 
one of the equality signs holds, i.e., either bk — mak or bk = Mak (where 
the equation may vary with k). 

PROOF. In order to establish the inequality (2) one need only note 
first that 

0 ^ ( m)[M )ak 

\ak I \ aj 

follows directly from the hypothesis (1). Thus, summing from k — \ 
to k = n, 
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(3) 0 g ]£ (h - mak)(Mak - bk), 

which, upon expanding the product, gives the desired result. Clearly, 
equality holds in (3) (and hence, in (2)) if and only if each term of 
the summation is zero. The necessary and sufficient condition for 
equality in (2) follows readily. 

Inequality (2), together with the obvious 

K
n «A1/2 / n «A 1 / 2 ! 2 

s*) -(-*£*) ]• 
yields immediately results of Cassels [S], Greub and Rheinboldt 
[6, p. 408, equation (5)] (letting n—»<*> if needed), Kantorovich 
[9], Pólya and Szegö [14, problem 92], and Schweitzer [ ló] . 

There are several analogues of Theorem 1 above when the numbers 
ak and bk are allowed to be complex. Of these, only the following will 
be stated here. 

THEOREM 1C. Let the complex numbers a* 5^0 and bk(k = 1,2, • • -,w) 
satisfy 
(4) m £ Re(—\ + Imf—) ^ M 

\ak/ \ak/ 
and 
(5) m S Re f—̂  - Imf—^ û M. 

\ak/ \aj 
Then 

2 I h I2 + mM £ I ak |
2 S (M + m) Re £ akh 

W 
n 

g I Af + « I 23 a*&* 

Equality holds on the left of (6) if and only if: for each k such that 
I m (bk/ak)?*0, one equality sign holds in (4) and one equality sign 
{necessarily the "opposite" one) holds in (5); while f or each k such that 
Im (bk/ak)=0, at least one of the equality signs holds in (4) (pr> what 
is the same in this case, in (5)). 

In order to establish (6) one needs only to show that (4) and (5) 
lead to 

0 ^ Re[(Mak — bk)(h — mâk)}. 

A "continuous" version of Theorem 1 is 
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THEOREM 2, Let the real-valued functions fix) {never zero) and g{x) be 
square integrable on the finite interval a^x^b. Suppose they satisfy 

&{%) 
(7) m S ^-^ £ M 

f{x) 
for all almost a^x^b. Then 

(8) f g2{x)dx + mM f f{x)dx ^{M + m) f f{x)g{x)dx, 
J a J a J a 

Equality holds in (8) if and only if, for almost every x in [a, b], at least 
one of the equality signs holds in (7), where the equality sign in question 
may vary with x. 

This last inequality, together with the obvious 

r/ cb \ 1 / 2 / cb \ 1/2-12 
0 ^ ( 1 g*{x)dx\ - ImM I f2{x)dx) 

yields immediately results of Pólya and Szegö [14, problem 93], 
Schweitzer [16], and Kurschâk [ l0] . 

A "Hubert space" version of Theorem 1 is 

THEOREM 3. Let A and B be permutable linear selfadjoint operators 
on a Hilbert space onto itself. Suppose that A"1 exists and that 

(9) mE £ BA"1 S ME, 

where E is the identity operator on the Hilbert space {and (9) is to be 
understood in the usual sense that {mxy x) â {BA~~lxy x) ^ {Mx, x) for 
all x in the Hilbert space). Then 

(10) B2 + mMA2 g {m + M)AB; 

that is to say, 

{Bx, Bx) + mM{Ax, Ax) ^ {m + M){Ax, Bx) 

for all x in the Hilbert space. The equality sign holds in (10) if and only 
if {ME — BA~l){BA~l — mE) is the zero operator. 

Proceeding as before, in connection with Theorems 1 and 2, and 
using the obvious 

0 g {{Bx, Bx)1'2 - [mM{Ax, Ax)]1'2}2, 

one obtains immediately results of Kantorovich [9], Greub and 
Rheinboldt [6]. 
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Without entering into a detailed discussion, it is quite clear that 
the particular nature of the elements occurring in this class of in­
equalities, be they real numbers, operators, etc., is not essential. All 
that is needed to obtain inequalities of this general sort is a set of 
elements provided with binary operations of addition and multi­
plication, plus a subset of "non-negative" elements which have the 
property that the sum and the product of two non-negative elements 
is again non-negative. 
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