NOTE ON HADAMARD'’S DETERMINANT THEOREM
JOHN WILLIAMSON

Introduction. We shall call a square matrix 4 of order » an Hada-
mard matrix or for brevity an H-matrix, if each element of 4 has the
value +1 and if the determinant of 4 has the maximum possible
value n™2 It is known that such a matrix 4 is an H-matrix [1]! if,
and only if, A4’=nE, where A’ is the transpose of 4 and E, is the
unit matrix of order #. It is also known that, if an H-matrix of order
n>1 exists, » must have the value 2 or be divisible by 4. The existence
of an H-matrix of order # has been proved [2, 3] only for the following
values of #>1: (a) n=2, (b) n=p*+1=0 mod 4, p a prime, (c) »
=m(p"+1) where m =2 is the order of an H-matrix and p is a prime,
(d) n=q(g—1) where ¢ is a product of factors of types (a) and (b), (e)
n=172 and for # a product of any number of factors of types (a), (b),
(c), (d) and (e).

In this note we shall show that an H-matrix of order » also exists
when (f) #=g(g+3) where g and g+44 are both products of factors of
types (a) and (b), (g) n=nmmns(p*+1)p* where n:>1 and n,>1 are
orders of H-matrices and p is an odd prime, and (h) 7 =nmm(m-+3)
where 7;>1 and #n,>1 are orders of H-matrices and m and m+4 are
both of the form p*+1, p an odd prime.

It is interesting to note the presence of the factors #; and 7, in the
types (g) and (h) and their absence in the types (d) and (f). Thus,
if p is a prime and p*+1=0 mod 4, an H-matrix of order p*(p*+1)
exists but, if p*+1=2 mod 4, we can only be sure of the existence of
an H-matrix of order mn.p*(p*+1) where #;>1 and 7, >1 are orders
of H-matrices. This is analogous to the simpler result that, if p*»+1=0
mod 4 an H-matrix of order p*-+1 exists but, if p*+1=2 mod 4, we
can only be sure of the existence of an H-matrix of order n(p*+1)
where n>1 is the order of an H-matrix.

We shall denote the direct product of two matrices 4 and B by
A - B and the unit matrix of order # by E,.

Theorems on the existence of H-matrices. If a symmetric H-matrix
of order m >1 exists, there exists an H-matrix H of order m with the

form
()
H= ,
e D
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where e is the row vector (1, 1, : - -, 1) of dimension m —1 and e’ the
column vector which is the transpose of e. Since H is a symmetric
H-matrix

H?* = HH' = mEn,

and accordingly

( m e+eD) (m 0 )
¢ +De ee+D) \0 mE,.)

Therefore

1) eD = — ¢, De = — ¢
and

2) D? = mE,,_; — R,
where

(€)) R =/e

and R is the square matrix of order m —1 each element of which has
the value 1. It follows easily that

4 R*= (m — 1)R
and by (1) and (3) that
©) = — R = DR.

If F=2E,.1—R, Fis a symmetric matrix each element of which has
the value +1. Further

(6) FD = DF
by (5) and
) F? = 4E, 1+ (m — 5)R

by (4). If n is a product of factors of types (a) and (b) there exists
[3, p. 67] an H-matrix of order #» with the form E.+S where S is
skew-symmetric so that

® S§% = — (n — 1)E..
If
W =F-E,+ D-S,

each element of W has the value +1 and
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WW' = (F-E, + D-S)(F-E, — D-S)
= F*.E, — D?.S* (by (6))
= [4En_1+ (m — 5)R]-E, + (mEn-1 — R)-(n — 1)E,
(by (7), (2) and (8))
= [4+mn —m)En_] -E,+ (m — n — 4)R-E,.
Therefore, if n=m—4,
WW' = (m — 1)(m — ) Ep—s- Eps = n(n + 3)En- Epys

and W is an H-matrix.

Since a symmetric H-matrix of order 2 exists and a symmetric
H-matrix of order p*+1=0 mod 4, where p is a prime, exists [3,
p. 67], there exists a symmetric H-matrix of order # where # is a

product of factors of types (a) and (b). We have therefore proved the
theorem:

THEOREM 1. If n and n-+4 are both products of factors of types (a)
and (b) there exists an H-matrix of order n(n-+3).

As a particular case of this theorem we have the corollary:

CoROLLARY 1. If n—1 and n+3 are both powers of primes and are
congruent to 3 modulo 4, there exisis an H-matrix of order n(n+3).

If m=p*+1=2 mod 4, where p is a prime, there exists [3, p. 66]
a symmetric matrix T of order m, each diagonal element of which has
the value 0 and each other element the value +1 and such that

T

and

9 T2 = (m — 1)E,.

It follows therefore that

(10) UU' =U?= (m — 1)En_y — R,

where R is defined by (3). Let 4, and B; be two H-matrices of order
m such that [3, p. 66]

(11 4.B{ = — B.A{

and let K=A4,-E,_1+B;- U. Then each element of K has the value
+1and
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(12) KK’ = A14{ -Epn1 + B1B{ - U? (by (11))
= mE, - (mEns_ — R) (by (10)).

Since eU=0= Ue¢’,

(13) RU =UR = 0.

Hence, if '=4, R,

(14) IT = mEyy-(m — DR (by (@)

and

(15) TK' = 4;4{ -R = KI (by (13)).

Finally, if 4, and B; are two H-matrices of order #; satisfying

(16) A3B] = — By44,

and

W = A4, T-E, + B;-K-T,
WW’' = 4,44 -TTV-E,, + B3Bj -KK'-T? (by (15) and (16))

= N9Bny M Ep - [(m — )R + MEp_y — R)Y(m — 1)]-En,

(by (9), (12) and (14))
= rE, (r = namam(m — 1)).
Therefore W is an H-matrix and we have proved the theorem:

THEOREM 2. If H-matrices of orders n, and ns exist, ny>1, ne>1, and
D is a prime such that p*+1=2 mod 4, there exists an H-matrix of order

mngph(pr+4-1).

Since, if p is a prime such that p*41=0 mod 4, there exists an
H-matrix of order p*(p*+1), we have the corollary:

CoROLLARY 1. If H-matrices exist of orders n;>1 and na>1, there
exists an H-matrix of order mna(p*-+1)p* where p is an odd prime.

Since an H-matrix of order 2 exists we have the corollary:

COROLLARY 2. If p is an odd prime an H-mairix exists of order
4ph(ph+1).

In the proof of the final theorem we require the following lemma:

LemMMA 1. If there exists an H-malrix A of order n>1, there exist
two H-matrices B and C of order n such that AB'=—BA', AC'=CA’,
BC'=CB'.
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In fact the matrices B=XA4 and C= Y4, where X is the diagonal

| —_— I O , — I O ' ! _1 0

and Y is the diagonal block matrix

(G o.G o) Gl

satisfy the conditions of the lemma. For BB'=C(C’'=nE,, AB'=nX'
=—nX=—BA’', CA'=nY'=nY=CA’ and BC'=nXY' =nYX'’
=CB’.

Let M=C;-(2En-1—R) and N=A4,-E,1+B;- U, where R is de-
fined by (14), U by (10) and A, B; and C, are matrices of order #,
with the properties of Lemma 1. Then each element of the matrices
M and N has the value +1. Further

an MM’ = mE,,-(4En—1 — 4R 4+ R?

= mEpn, [4Ep s + (m — )R] by @),
(18) NN’ = mE,, - (Em—1 + U? = mE,-(mE,_, — R) (by (10))
and

MN' = C14{ -(2En_1 — R) + C1B{ -(2En—1 — R)U

= Cid! -(2Em_ — R) + C1B{ -2U (by (13)).
Therefore by Lemma 1
(19) MN’ = NM'.

Let A, and B, be two H-matrices of order n,>1 satisfying (16) and
let n=p"*4+1=2 mod 4 where p is a prime. Then there exists a matrix
G of order n and of the same form as T in (9) and satisfying

(20) G*= (n — 1)E,.

If finally W=A4;-M-E,+B;-N-G, each element of W has the value
+1and

WW' = nE,,-(MM'-E, + NN'-G?) (by (16) and (19))
= nlngE,.,,.,- [4Em_1 -+ (m - S)R]E,.
+ (MEp— R)-(n — 1)E, (by (17), (18) and (20))

= nin2Enin, [(4 + mn — Mm)Epy + (m — 4 — n)R]-E,.
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Hence, if m =n+4 and r =mnan(n+3) =mny(m—1)(m—4),
WW' = rE,
and W is an H-matrix. We have therefore proved the theorem:

THEOREM 3. If n and n-+4 are both of the form ph+1=2 mod 4
where p is a prime and if H-matrices of orders ni>1 and ny>1 both
exist, there exists an H-matrix of order minan(n-+3).

As a consequence of Theorem 1 we have the corollary:

COROLLARY 1. If n and n-+4 are both of the form p*-+1 where p is an
odd prime and if H-matrices of orders ni>1 and ny>1 both exist, there
exists an H-matrix of order ninan(n+3).

Since an H-matrix of order 2 exists we also have the corollary:

COROLLARY 2. If n and n-+4 are both of the form p*—+1, where p is
an odd prime, there exists an H-matrix of order 4n(n+3).

Particular examples. That the above theorems do actually increase
the values of n as orders of H-matrices which are known to exist is
shown by the following examples.

By Theorem 1 an H-matrix of order (56)(59) exists. For 56 =2(33+1)
and 59 is prime. Further no one of (56)(59), (28)(59), (14)(59), 4(59)
or 2(59) is of the form p*-+1. Therefore (56)(59) is not a product of
factors of types (a), (b) or (c). By Theorem 2 an H-matrix of order
4(73)(74) exists and by Theorem 3 an H-matrix of order 4(230)(233)
exists. Neither of the numbers 4(73)(74) nor 4(230)(233) is a product
of factors of types (a), (b), (c) and (d).
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