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Metric notions have entered the foundations of geometry in various 
ways. In his Grundlagen, Hubert formulates axioms of congruence 
which imply the availability of a metric, but the idea of distance is 
not explicitly used. In the projective framework for the classical non-
euclidean geometries (for example, Klein), distance is defined in terms 
of specific configurations which are themselves the product of rather 
elaborate preparatory study. In the differential approach (for ex­
ample, Cartan), the theory of coordinate manifolds is taken for 
granted, distance is first introduced locally, and even after its exten­
sion to nonlocal measurements it plays little essential part in the in­
vestigations. Others (Lie, Hubert (Anhang IV to the Grundlagen)) 
based their work on a group of transformations (motions) which pro­
vided the means for defining congruence. The advent of metric spaces 
(Fréchet) raised the possibility of beginning with metric ideas and 
developing from them the equipment and results of the earlier theo­
ries. Menger isolated and studied the properties a metric space must 
have in order to possess geodesies which behave conveniently. The 
present monograph takes up at that point and develops a connected 
theory, occasional portions of which have appeared elsewhere, of 
metric spaces with geodesies. 

The object of study is a finitely compact (hence separable) metric 
space 2 which is (internally) convex in the sense that, if Xj^Z, there 
is a point Y between X and Z (that is, such that XY+YZ^XZ). 
Define a segment to be a congruent map of a closed real interval, and 
a geodesic to be a locally congruent map of the real axis. As a decisive 
local restriction (D), each point of S is assumed to have a neighbor­
hood N such that, if A and B are any distinct points of Nt the set of 
points between A and B forms a segment which can be extended 
appreciably (in fact, outside N), in either direction past A and B, 
and which is the unique segment between any pair of its points of 
which neither is too far beyond A or B. Without Axiom D, any two 
points P and Q can be joined by a segment. With Axiom D, this seg­
ment turns out to be unique, if P and Q are not too far apart; further, 
any pair can be connected by a geodesic, and a given segment can 
be embedded in one and only one geodesic. If there is a point at which 
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S is one-dimensional, S is congruent to a euclidean straight line or 
circle; if S is two-dimensional, S is a manifold. 

S is Minkowskian at a point P if and only if there is a neighbor­
hood N of P into which a metric can be introduced, equivalent in an 
appropriate sense to the original metric, in such a way that under 
the new metric N is congruent to an open sphere of a linear space 
which is so normed (cf. Minkowski) that its unit sphere V is a strictly 
convex surface with the origin as center. The author outlines a proof 
that a Finsler space $ is a space S which is Minkowskian at each 
point if $ is regular (because U is strictly convex) and symmetric 
(because U has a center). Starting off, conversely, with a space S 
(of chap. 1), he imposes a local condition (A) which enables him to 
introduce a Minkowski metric m at each point where A is satisfied. 
A refers to a trio of points which tend to coincidence, and controls 
the convergence of the segments and of the ratios of the distances de­
termined by these points. The metric m is defined as follows, in a 
suitably restricted neighborhood N of P: For A in N and O ^ / g l , 
let At be that point on the segment PA for which PAt — tPA; then 
m(Ay B) =lim t~lAtBt as t—*0+. The neighborhood N is expanded to 
a space SP by continuing each segment TA past A up to the boundary 
of N and then on indefinitely through new points created explicitly 
for this purpose. tn(A, B) is extended throughout Sp, which is then 
seen to be a normed (Minkowskian) linear space associated with S 
at P. It follows from a further local condition A', if an open set G 
of S is the intersection of Sp and SQ, that the local (normal) coordi­
nates provided for G by these spaces are connected by a transforma­
tion of class 1. Finally, the metric m is used to define a function F(x, X) 
of the sort with which Finsler theories commonly set out. Thus A and 
A' are conditions sufficient to insure that S be a regular symmetric 
Finsler space. It may happen that m is euclidean in Sp; in the impor­
tant special case in which this happens at every point, the Finsler 
space reduces to a Riemann space and Sp then differs but slightly 
from the tangent space widely used in differential geometry. 

Specializing the space S of chap. 1 in quite a different manner, the 
remainder (two-thirds) of the book is based on the global Axiom E: 
Any two distinct points are on at most (hence exactly) one geodesic. 
Each geodesic of such a (straight line, S.L.) space is either open or 
closed (congruent to a euclidean straight line or circle), and the closed 
(open) geodesies form an open (closed) set. In the two-dimensional 
case any two closed geodesies intersect, and the geodesies through a 
given point are either all closed or all open. Hence an S.L. plane is 
either closed (all geodesies closed) or open (all geodesies open). By 
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mapping an S.L. plane S in a specific way on a projective plane P 2 

with an elliptic metric, it is shown that 2 is homeomorphic to E2 

(euclidean plane) or P 2 according as 2 is open or closed. A homeo-
morphism carrying geodesies of 2 into straight lines is possible (that 
is, 2 is Arguesian) if and only if Desargues' Theorem holds. (An 
Arguesian S.L. space of any dimension is either closed or open.) The 
inverse problem for E2 seeks conditions on a family F of curves a in E2 

sufficient to insure that a topologically equivalent new metric can be 
introduced in E2 in such a way that the curves a become the geodesies 
of the S.L. plane thus defined. In a very satisfying way, the suffi­
ciency of the following remarkably weak conditions is established: 
each a is an open simple unbounded Jordan curve, and any two dis­
tinct points of E2 are contained in eactly one curve of F. 

Define a sphere to be convex if no geodesic tangent to it contains a 
point interior to it. Let each sphere of the S.L. space 2 be convex 
(condition K). This implies, for fixed P, as -X" moves on a geodesic g, 
that PX either is constant or has precisely one minimum which is 
attained just once. It follows that 2 is either open or closed. In the 
closed case, with dimension not less than 3, 2 is elliptic. In the open 
case K is equivalent to convexity in the usual sense and to the exist­
ence of precisely one (suitably defined) perpendicular to each geodesic 
from each external point. By detailed argument in which perpendicu­
lars and baselines, parallels, bisectors (loci PX=*QX) and their limits, 
and so on, are studied extensively, several theorems are proved estab­
lishing conditions which completely characterize 2 in one way or an­
other. Examples: with dimension not less than 3, K, differentiate 
spheres (suitably defined), and euclidean parallelism, 2 is Min-
kowskian. In the plane case, with euclidean parallelism, 2 is Minkow-
skian if the following strengthened form of K holds: for some fixed 
a è l , if I F = FZ = XZ/2, then 2PY«£PX«+PZ« for any P. If all 
bisectors are linear, regardless of dimension, then 2 is euclidean or 
hyperbolic. 

Along with the classical geometries, w-dimensional S.L. spaces 2 
can be characterized in terms of their mobility. An examination of in-
volutoric motions and their fixed points reveals that 2 is homogene­
ous (congruent to a euclidean, hyperbolic, or elliptic space) if it is 
symmetric about each geodesic. If 2 is closed and symmetric about 
each point, 2 is elliptic. In En a congruence between two triangles can 
be extended to a motion of JSn; if 2 has the property that there is a 
number 5>0 such that a congruence between any two triangles, each 
with diameter less than ô, can be extended to a motion of 2, then 2 
is homogeneous. An example of Fubini is adapted to show that the 
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similar hypothesis for pairs instead of trios of points is insufficient. 
Suppose that 2 is open, and admits a transitive abelian group G of 
motions; it is easily seen that G is closed and simply transitive and 
generates a Minkowskian plane by carrying either of two intersecting 
geodesies along the other, whence it follows that 2 is Minkowskian. 
The plane case is studied in detail by means of translations along 
geodesies. Typical result : An S.L. plane is Minkowskian, hyperbolic, 
or elliptic if all possible translations exist along two geodesies one of 
which is not an asymptote to either orientation of the other. If an 
S.L. plane admits a transitive group of motions, then : either the plane 
is closed and its metric elliptic, or parallelism is euclidean and the 
metric is Minkowskian, or parallelism is hyperbolic and the metric 
is quasi-hyperbolic (admitting all translations along a geodesic and 
its nonparallel asymptotes). Attention is called, in conclusion, to a 
number of unsolved problems. 

As the cited results suggest, a superficial refresher in non-euclidean 
geometry is a desirable preliminary. The exposition is clear and per­
suasive with the exception of one passage (pp. 49-63) which the re­
viewer found rough in spots. The situation there is inherently com­
plicated, notation, typography, and display are uncooperative, and 
the style seems unnecessarily terse. Slight expansion would have ren­
dered this material much more pleasantly accessible. 

Reading is enlivened by a stimulating diffusion of misprints. Only 
the following, which the author has kindly verified, are thought ca­
pable of delaying the attentive reader: 

Page Line For Read 
9 7 4 5 

65 4' AyB AV,BP 

97 4 [tf(n)/n-l/tn2»] t[2f(n)/n-l/m2»] 
167 S h T 

With these trivial qualifications, the project has been conceived and 
executed in a thoroughly workmanlike fashion. Loose ends lead either 
to specified passages in the literature, or to outstanding problems 
which are clearly indicated with accompanying remarks and refer­
ences. Although the argument is basically "coordinate-free," appeal­
ing picturesquely to the intuition, one senses none of that loss of rigor 
which is sometimes felt to accompany "synthetic" methods. In pre­
senting a connected account of the author's valuable contributions, 
this book gives very useful access to an interesting field of study. 

In a recent paper (Trans. Amer. Math. Soc. vol. 54 (1943) pp. 171-
184) the author establishes important new results. 
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1. A closed S.L. space of dimension not less than 3 is elliptic if each 
of its spheres has order 2 (condition Ki, weaker than K). ThusKi, 
which was known (p. 135) to be equivalent to K in open spaces, is 
now seen to be an adequate basis for the main theorem (p. 124, cited 
above) proved with K in closed spaces. 

2. Several conditions, of Which a few have been cited, are found in 
the book under which an S.L. space is necessarily open or closed. 
Such conditions are now seen to be entirely superfluous, for any S.L. 
space is either open or closed with each geodesic in the closed case 
having the same length. 

These facts open the way for substantial improvements in the study 
based in the book on condition K. 

F. A. FICKEN 


