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This seems to be the generalization of the classical result that a
necessary and sufficient condition for the polar components of a
matrix 4 to be commutative is that A be a normal matrix.

QUEENs COLLEGE

REMARKS ON REGULARITY OF METHODS OF SUMMATION

G. E. FORSYTHE AND A, C. SCHAEFFER

A doubly infinite matrix?! (@m.) (m, =1, 2, - - - ) is said to be regu-
lar, if for every sequence x= {x,.} with limit x’ the corresponding
SUMS Vm =2 2 1@mnXs exist for m=1, 2, - - -, and if limy., yn=x".

An apparently more inclusive definition of regularity is that for each
sequence x with limit x’ the sums defining vy, shall exist for all
m = mo(x) and limy, ., y» =x’. Tamarkin? has shown that (am,) is regu-
lar in the latter sense if and only if there exists an m, independent of x
such that the matrix (@ms) (m=my, n=1) is regular in the former
sense. Using point set theory in the Banach space (¢), he proves a
theorem? from which follows the result just mentioned. This note pre-

sents an elementary proof of that theorem and discusses some related
topics.

THEOREM 1. Suppose the doubly infinite matrix (am.) has the property
that for each sequence x = {x,.,} with limit O there exists an mo=my(x)
such that for all m=mo(x), Um=1iM SUDPk_w|D b 1@mnkn| < . Then
there exists an my such that 32| @un| < © for all m=m,.

If in addition lim,... %~ =0 for each sequence x with limit 0, it will
follow* that there exists an N such that D s2i|am.| SN < o, for all
m = m.

To prove Theorem 1, suppose there were an infinite sequence
my<me< - -+ such thatz,,”=1|am,,l = formE{m,}. Letxy, - -+, 2,
be chosen with unit moduli and with amplitudes such that
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1 In this note @mn, ¥, and x’ denote finite complex numbers.

2 J. D. Tamarkin, On the notion of regularity of methods of summation of tnfinite
sertes, this Bulletin, vol. 41 (1935), pp. 241-243.

3 J. D. Tamarkin, loc. cit., p. 242, lines 1-6.

4 See, for example, I. Schur, Uber lineare Transformationen in der Theorie der
unendlichen Reihen, Journal fiir die reine und angewandte Mathematik, vol. 151
(1921), pp. 79-111; p. 85, Theorem 4.



864 G. E. FORSYTHE AND A. C. SCHAEFFER [December

k1 k1
E Amin¥n = Z' dm‘nxnl > 1.
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Let xk41, * -+, %k, be chosen with moduli 1/2 and with amplitudes
such that
k2 k1
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Let xk,41, * + +, %, be chosen with moduli 1/3 and with amplitudes

such that
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Writing  ym(E) =2 % _1@mn%., the sequence {x,,} and integers
ki<ky< - .. are thus chosen successively so that ]yml(k1)| > 1,
| Ymo(Be) | >2; | ymy(Bs)| >3, |ymy(Ra)| >4, | ymy(ks)| > 55 | ym,(ke) | >6,

- ;while | x.| =1/7, for k,_1<n <k,. This is a sort of alternating or
“sweeping-out” process. So defined, {x,} is a sequence with limit 0,
but lim Supi..|D 5 1@me%s| = ©, for m& {m,}. This contradiction
completes the proof of Theorem 1.

The matrix (@mn) is said to be null-preserving, if for every sequence
x= {x,,} with limit O the corresponding sums defining y. exist for
m=1,2, .- andif limmu., y»=0. An apparently more inclusive defi-
nition of null-preserving is that for each sequence x with limit 0
we have #,=lim supi.. lZLx am,.xnl < o for all m=my(x) and
limp, ... %#n=0. We remark that it is a consequence of Theorem 1 that
(@mn) is null-preserving in the latter sense if and only if there exists
an m; such that the matrix (@ma) (m =m1, n=1) is null-preserving in
the former sense.®

To consider a problem which is related to the above in the method
of proof, let each element of a matrix (@m.) be either +1 or —1. For

0<t<tandn=1,2,--- let {¢.(t)} be the Rademacher orthogonal
functions,’ and let yui(t) =D % @mn (). Then it is well known? that
for almostall¢, forallm=1,2, - - - andfor all €>0,limy_, 2724y, (£)

=0. It is clear that for a particular fixed m there is a ¢ such that
limy, 2~ Yymi(t) = 1. The problem is to show that there is a £ such that

5 For conditions that (am.) be null-preserving, see T. Kojima, On generalized
Toeplitz's theorems on limit and their applications, Tohoku Mathematical Journal,
vol. 12 (1917), pp. 291-326; p. 300.

8 A. Zygmund, Trigonometrical Series, Warsaw, 1935, p. 5.

7 For references to this and more precise results, see A. Khintchine, 4symptotische
Gesetze der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik, Berlin, 1933, pp.
60-61.
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simultaneously for all m=1, 2, .- -, lim Supi.. £ Yy.x() =1. That
there exists such a ¢ can be shown by using the alternating process of
Theorem 1.

Theorem 2 follows immediately from a theorem of Banach.?

THEOREM 2. If E,, is a linear manifold satisfying Baire's condition®
in @ Banach space E (m=1, 2, - - - ) and if lim,., E.=E, then there
exists an my such that E,, = E.

Theorem 2 furnishes a Banach space analogue and a proof of Theo-
rem 1 which is related to Tamarkin’s proof. To see this, let E be the
Banach space (cy) of sequences x= {xn} convergent to 0, with
|l«|| =max, |x.|, and with addition and multiplication by a (com-
plex) scalar defined as usual. Let (@) be as in Theorem 1. Let E,,
be the subset of E for which lim supj..| 2 ., @] < o« for all r Zm.
The hypotheses of Theorem 2 are satisfied, and from its conclusion it
may be proved directly for an arbitrary m =m; that ) n_, lam,.l < o,
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8 S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 22, Theorem 2.

9 See S. Banach, loc. cit., p. 17. By considering a Hamel base for E, G. W. Mackey
has remarked to the authors that Theorem 2 is false if the words “satisfying Baire’s
condition” are omitted.



