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This seems to be the generalization of the classical result that a 
necessary and sufficient condition for the polar components of a 
matrix A to be commutative is that A be a normal matrix. 

QUEENS COLLEGE 

REMARKS ON REGULARITY OF METHODS OF SUMMATION 

G. E. FORSYTHE AND A. C. SCHAEFFER 

A doubly infinite matrix1 (amn) (m, « = 1,2, • • • ) is said to be regu­
lar, if for every sequence x = {xn} with limit x' the corresponding 
sums ym =^2^Liamnxn exist for m=l, 2, • • • , and if lim™^ ym = x'. 
An apparently more inclusive definition of regularity is that for each 
sequence x with limit x' the sums defining ym shall exist for all 
m^mo(x) and lim^,» ym = x'. Tamarkin2 has shown that (amn) is regu­
lar in the latter sense if and only if there exists an mi independent of x 
such that the matrix (amn) (ra = mi, n^l) is regular in the former 
sense. Using point set theory in the Banach space (c), he proves a 
theorem3 from which follows the result just mentioned. This note pre­
sents an elementary proof of that theorem and discusses some related 
topics. 

THEOREM 1. Suppose the doubly infinite matrix (amn) has the property 
that f or each sequence x= {xn} with limit 0 there exists an mo = m0(x) 
such that for all m^mo(x), um = \im supfc^0Q|y^«n,1amw^n| < ° ° . Then 
there exists an mi such that X^°°=i| amn\ < <*> for all w^Wi . 

If in addition lim^.^ um = 0 for each sequence x with limit 0, it will 
follow4 that there exists an N such that X^°°=i|a™n| = iV< oo, for all 

To prove Theorem 1, suppose there were an infinite sequence 
mx<m%< • • • such thatX^?Li|aTOn| = <*> f o r w G J w , } . Let#i , • • • , xkl 

be chosen with unit moduli and with amplitudes such that 

Presented to the Society, April 11, 1942 under the title A remark on Toeplitz 
matrices-, received by the editors January 22, 1942. 

1 In this note amn, xn and x' denote finite complex numbers. 
2 J. D. Tamarkin, On the notion of regularity of methods of summation of infinite 

series, this Bulletin, vol. 41 (1935), pp. 241-243. 
3 J. D. Tamarkin, loc. cit., p. 242, lines 1-6. 
4 See, for example, I. Schur, Vber linear e Transformationen in der Theorie der 

unendlichen Reihen, Journal für die reine und angewandte Mathematik, vol. 151 
(1921), pp. 79-111; p. 85, Theorem 4. 
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Writing ym(k) =^lsclamnxn, the sequence {#n} and integers 
kx<k2< • • • are thus chosen successively so that l^m^&i)! > 1, 
|;ym2(&2)| > 2 ; |yTOl(*8)| > 3 , |ym,(*4)| >4 , | :ym3(fe>) | > 5 ; |y»,(*6)| >6 , 
• • • ; while | xn\ = 1/V, for kr-i<n^kr. This is a sort of alternating or 

"sweeping-out" process. So defined, {xn} is a sequence with limit 0, 
but lim supfc^oo|X)n-ia»»w^n| = °°, for m E { m „ } . This contradiction 
completes the proof of Theorem 1. 

The matrix (amn) is said to be null-preserving, if for every sequence 
x — i Xn } with limit 0 the corresponding sums defining ym exist for 
m = 1, 2, • • • and if lim™^ ym = 0. An apparently more inclusive defi­
nition of null-preserving is that for each sequence x with limit 0 
we have wm = lim sup*-,» |X)n-i öW£n| < °° for all m^m^x) and 
lim™.»*, wm = 0. We remark that it is a consequence of Theorem 1 that 
(amn) is null-preserving in the latter sense if and only if there exists 
an m\ such that the matrix (amn) ( w ^ m i , n^l) is null-preserving in 
the former sense.5 

To consider a problem which is related to the above in the method 
of proof, let each element of a matrix (amn) be either + 1 or — 1. For 
O ^ / ^ l and n = l, 2, • • • let {<£„(£)} be the Rademacher orthogonal 
functions,6 and let ymk(f) =]C«=i a™>n 4>n(t). Then it is well known7 that 
for almost all/, for all m = l, 2, • • • and for all €>0,limfc->oo&~1/2_e3w(/) 
= 0. It is clear that for a particular fixed m there is a t such that 
Hindoo k~lymis(t) — 1. The problem is to show that there is a / such that 

5 For conditions that (amn) be null-preserving, see T. Kojima, On generalized 
Toeplitz's theorems on limit and their applications, Tôhoku Mathematical Journal, 
vol. 12 (1917), pp. 291-326; p. 300. 

6 A. Zygmund, Trigonometrical Series, Warsaw, 1935, p. 5. 
7 For references to this and more precise results, see A. Khintchine, Asymptotische 

Gesetze der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik, Berlin, 1933, pp. 
60-61. 
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simultaneously for all m = 1, 2, • • • , lim supfc->«> k~lymk(t) = l. That 
there exists such a t can be shown by using the alternating process of 
Theorem 1. 

Theorem 2 follows immediately from a theorem of Banach.8 

THEOREM 2. If Em is a linear manifold satisfying Baire's condition* 
in a Banach space E (m = 1, 2, • • • ) and if lim™.**, Em = E, then there 
exists an m\ such that Emi = E. 

Theorem 2 furnishes a Banach space analogue and a proof of Theo­
rem 1 which is related to Tamarkin's proof. To see this, let E be the 
Banach space (̂ o) of sequences # = { x w } convergent to 0, with 
| |x | |=max n \xn\, and with addition and multiplication by a (com­
plex) scalar defined as usual. Let (amn) be as in Theorem 1. Let Em 

be the subset of £ for which lim supfc.M |^n=i Q>rnXn\ < °° for all r ^ w . 
The hypotheses of Theorem 2 are satisfied, and from its conclusion it 
may be proved directly for an arbitrary m ^ m i that]T)*= x \ amn| < °°. 

STANFORD UNIVERSITY 

8 S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 22, Theorem 2. 
9 See S. Banach, loc. cit., p. 17. By considering a Hamel base for Ef G. W. Mackey 

has remarked to the authors that Theorem 2 is false if the words "satisfying Baire's 
condition" are omitted. 


