This seems to be the generalization of the classical result that a necessary and sufficient condition for the polar components of a matrix A to be commutative is that A be a normal matrix.

QUEENS COLLEGE

REMARKS ON REGULARITY OF METHODS OF SUMMATION

G. E. FORSYTHE AND A. C. SCHAEFFER

A doubly infinite matrix (a_{mn}) $(m, n=1, 2, \cdots)$ is said to be regular, if for every sequence $x=\{x_n\}$ with limit x' the corresponding sums $y_m=\sum_{n=1}^\infty a_{mn}x_n$ exist for $m=1, 2, \cdots$, and if $\lim_{m\to\infty}y_m=x'$. An apparently more inclusive definition of regularity is that for each sequence x with limit x' the sums defining y_m shall exist for all $m\geq m_0(x)$ and $\lim_{m\to\infty}y_m=x'$. Tamarkin² has shown that (a_{mn}) is regular in the latter sense if and only if there exists an m_1 independent of x such that the matrix (a_{mn}) $(m\geq m_1, n\geq 1)$ is regular in the former sense. Using point set theory in the Banach space (c), he proves a theorem³ from which follows the result just mentioned. This note presents an elementary proof of that theorem and discusses some related topics.

THEOREM 1. Suppose the doubly infinite matrix (a_{mn}) has the property that for each sequence $x = \{x_n\}$ with limit 0 there exists an $m_0 = m_0(x)$ such that for all $m \ge m_0(x)$, $u_m = \lim\sup_{n \to \infty} \sup_{n=1}^k |a_{mn}x_n| < \infty$. Then there exists an m_1 such that $\sum_{n=1}^{\infty} |a_{mn}| < \infty$ for all $m \ge m_1$.

If in addition $\lim_{m\to\infty} u_m = 0$ for each sequence x with limit 0, it will follow that there exists an N such that $\sum_{n=1}^{\infty} |a_{mn}| \leq N < \infty$, for all $m \geq m_1$.

To prove Theorem 1, suppose there were an infinite sequence $m_1 < m_2 < \cdots$ such that $\sum_{n=1}^{\infty} |a_{mn}| = \infty$ for $m \in \{m_{\nu}\}$. Let x_1, \dots, x_{k_1} be chosen with unit moduli and with amplitudes such that

Presented to the Society, April 11, 1942 under the title A remark on Toeplitz matrices; received by the editors January 22, 1942.

¹ In this note a_{mn} , x_n and x' denote finite complex numbers.

² J. D. Tamarkin, On the notion of regularity of methods of summation of infinite series, this Bulletin, vol. 41 (1935), pp. 241-243.

³ J. D. Tamarkin, loc. cit., p. 242, lines 1-6.

⁴ See, for example, I. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen, Journal für die reine und angewandte Mathematik, vol. 151 (1921), pp. 79-111; p. 85, Theorem 4.

$$\sum_{n=1}^{k_1} a_{m_1 n} x_n = \sum_{n=1}^{k_1} |a_{m_1 n} x_n| > 1.$$

Let $x_{k_1+1}, \dots, x_{k_2}$ be chosen with moduli 1/2 and with amplitudes such that

$$\left| \sum_{n=k_1+1}^{k_2} a_{m_2n} x_n \right| > 2 + \sum_{n=1}^{k_1} \left| a_{m_2n} x_n \right|.$$

Let $x_{k_2+1}, \dots, x_{k_3}$ be chosen with moduli 1/3 and with amplitudes such that

$$\left| \sum_{n=k_0+1}^{k_3} a_{m_1 n} x_n \right| > 3 + \sum_{n=1}^{k_2} |a_{m_1 n} x_n|.$$

Writing $y_m(k) = \sum_{n=1}^k a_{mn} x_n$, the sequence $\{x_n\}$ and integers $k_1 < k_2 < \cdots$ are thus chosen successively so that $|y_{m_1}(k_1)| > 1$, $|y_{m_2}(k_2)| > 2$; $|y_{m_1}(k_3)| > 3$, $|y_{m_2}(k_4)| > 4$, $|y_{m_3}(k_5)| > 5$; $|y_{m_1}(k_6)| > 6$, \cdots ; while $|x_n| = 1/r$, for $k_{r-1} < n \le k_r$. This is a sort of alternating or "sweeping-out" process. So defined, $\{x_n\}$ is a sequence with limit 0, but $\limsup_{k\to\infty} |\sum_{n=1}^k a_{mn} x_n| = \infty$, for $m \in \{m_r\}$. This contradiction completes the proof of Theorem 1.

The matrix (a_{mn}) is said to be *null-preserving*, if for every sequence $x = \{x_n\}$ with limit 0 the corresponding sums defining y_m exist for $m = 1, 2, \cdots$ and if $\lim_{m \to \infty} y_m = 0$. An apparently more inclusive definition of null-preserving is that for each sequence x with limit 0 we have $u_m = \lim_{m \to \infty} \sup_{k \to \infty} \left| \sum_{n=1}^k a_{mn} x_n \right| < \infty$ for all $m \ge m_0(x)$ and $\lim_{m \to \infty} u_m = 0$. We remark that it is a consequence of Theorem 1 that (a_{mn}) is null-preserving in the latter sense if and only if there exists an m_1 such that the matrix (a_{mn}) $(m \ge m_1, n \ge 1)$ is null-preserving in the former sense.⁵

To consider a problem which is related to the above in the method of proof, let each element of a matrix (a_{mn}) be either +1 or -1. For $0 \le t \le 1$ and $n = 1, 2, \cdots$ let $\{\phi_n(t)\}$ be the Rademacher orthogonal functions, f and let $y_{mk}(t) = \sum_{n=1}^k a_{mn} \phi_n(t)$. Then it is well known that for almost all t, for all $m = 1, 2, \cdots$ and for all $\epsilon > 0$, $\lim_{k \to \infty} k^{-1/2 - \epsilon} y_{mk}(t) = 0$. It is clear that for a particular fixed m there is a t such that $\lim_{k \to \infty} k^{-1} y_{mk}(t) = 1$. The problem is to show that there is a t such that

⁵ For conditions that (a_{mn}) be null-preserving, see T. Kojima, On generalized Toeplitz's theorems on limit and their applications, Tôhoku Mathematical Journal, vol. 12 (1917), pp. 291-326; p. 300.

⁶ A. Zygmund, Trigonometrical Series, Warsaw, 1935, p. 5.

⁷ For references to this and more precise results, see A. Khintchine, *Asymptotische Gesetze der Wahrscheinlichkeitsrechnung*, Ergebnisse der Mathematik, Berlin, 1933, pp. 60-61.

simultaneously for all $m=1, 2, \cdots$, $\limsup_{k\to\infty} k^{-1}y_{mk}(t)=1$. That there exists such a t can be shown by using the alternating process of Theorem 1.

Theorem 2 follows immediately from a theorem of Banach.8

THEOREM 2. If E_m is a linear manifold satisfying Baire's condition⁹ in a Banach space E $(m=1, 2, \cdots)$ and if $\lim_{m\to\infty} E_m = E$, then there exists an m_1 such that $E_m = E$.

Theorem 2 furnishes a Banach space analogue and a proof of Theorem 1 which is related to Tamarkin's proof. To see this, let E be the Banach space (c_0) of sequences $x = \{x_n\}$ convergent to 0, with $||x|| = \max_n |x_n|$, and with addition and multiplication by a (complex) scalar defined as usual. Let (a_{mn}) be as in Theorem 1. Let E_m be the subset of E for which $\limsup_{k\to\infty} \left|\sum_{n=1}^k a_{rn}x_n\right| < \infty$ for all $r \ge m$. The hypotheses of Theorem 2 are satisfied, and from its conclusion it may be proved directly for an arbitrary $m \ge m_1$ that $\sum_{n=1}^\infty |a_{mn}| < \infty$.

STANFORD UNIVERSITY

⁸ S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 22, Theorem 2.

⁹ See S. Banach, loc. cit., p. 17. By considering a Hamel base for E, G. W. Mackey has remarked to the authors that Theorem 2 is false if the words "satisfying Baire's condition" are omitted.