
1926.] RATIONAL PLANE CUBICS 71 

thesis that the theorem is false for 7, and establishes the 
desired result. 

The above theorem may be stated otherwise as follows. 
If the sequence of horizontal functions h(x, n) satisfying the 
conditions of the lemma approach the zero limit function 
monotonically, they must approach it uniformly. I t follows 
as a corollary from this theorem that if we have a series of 
"interval" functions, such that f(x, n) is a single-valued 
continuous curve in each subinterval, and if the sequence of 
functions approach a continuous limit function monotonically 
for each fixed x in I} then the approach to the limit function 
is uniform with respect to x. In particular, the sequence of 
"interval" functions may be a set of functions fn(x) each of 
which is continuous in I. 
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1. Introduction. Many constructions have been devised 
for a rational plane cubic. One of the most interesting of 
them is due to Zahradnik* who noticed that the familiar 
construction for the cissoid of Diodes could be extended so 
as to generate any rational plane cubic. It is as follows : 
Take any conic C, a fixed point O on C, and a fixed line b. 
Any line I through O meets C a second time at P , and b 
at Q. On I lay off a segment O M equal to and in the sense PQ. 
The locus of the point i f is a rational plane cubic R with double 
point at 0 . The tangents to R and 0 are the joins of 0 to 
the two points in which b meets C. 

Niewenglowski* showed a bit later that this same con­
struction may be applied to R, using a second fixed line dis-

* Presented to the Society, September 10, 1925. 
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tinct from b. A rational quartic results which has a triple 
point a t 0, the triple tangents being the joins of 0 to the three 
points in which the second fixed line meets R. Indeed, any 
rational plane curve of order n having a multiple point of 
order n — 1 may be obtained in this way. 

Evidently the point M is given by means of a parabolic 
substitution operating on the line I. The self-corresponding 
point of this substitution is the point at infinity on I. In this 
note we introduce homogeneous coordinates which has the 
effect of replacing the above metric determination of M by a 
purely projective one. A simple geometric characterization 
of the relations between the conic C, the line b> and the cubic 
R is obtained. 

2. Zahradnik's Formula. Let the fixed point 0 be (0,0,1) 
Then the conic C may be written 

(1) ax2 + bxy + cy2 + dxz + eyz = 0 , 

and the fixed line b 

(2) px + qy + rz = 0 . 

The equation of R is, according to Zahradnik, 

(3) (ax2 + bxy + cy2) (px + qy + rz) — (dx+ey) (px + qy)z = 0 

a result which may be readily verified. 
The tangent to C at 0 meets the fixed line b in a point which 

is a flex for R. The flex-tangent at this point is the line b. 
We shall not insist upon the verification of these statements 
at this time as their truth will appear a bit later. Moreover, 
one would suspect this from the construction. 

In order to obtain the desired relations between C and R 
we solve the converse problem of finding C and b when R 
is given. 

3. Determination of C and b when R has Distinct Tangents 
at 0 . If R has a double point with distinct—real or imagin-
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ary—tangents, we may canonize its equation by means of a 
convenient choice of the triangle of reference. Let the double 
point be (0, 0, 1) ; y = 0 be a line joining the double point to a 
real flex-point (there is at least one) ; z = 0 be the flex-line (the 
line on which the three flexes of R lie) ; x = 0 be the harmonic 
of y = 0 with respect to the pair of tangents to R at 0. With 
these assumptions the equation of R may be written 

(R) z(x2 + ey2) + y(3x2 - ey2) = 0 , 

in which e is a real number not zero. 
We introduce a parameter X into this equation by writing 

it in the form 

(Rx) z{%2 + ey2) + \y(3x2 - ey2) = 0 . 

The hessian of R\ is 

(#x) z(x2 + ey2) - 3\y(3x2 - ey2) = 0, 

from which we infer that it also belongs to the family. Hence 
the curves R\ form a syzygetic family all of whose members 
have the same double point and tangents there. All the 
cubicsi?x have the same flex-points (V^, V3 , 0), (— Ve, V3 , 0), 
(1, 0, 0) which we denote by Fi, F2, F3, respectively. Conse­
quently, the members of the family have the same flex-line 
2 = 0. The only points of intersection of different members 
of the family are the flex-points and the double point. Hence 
a particular cubic R\0 may be individualized by specifying 
a point, other than the above fixed points of intersection, 
through which it must pass. 

For R\ Zahradnik's formula (3) becomes 

(4) z(x2 + ey2) + \y(3x2 — ey2) = (ax2 + bxy + cy2)(px + qy + rz) 

— (dx + ey) (px + qy)z . 

There are six essential constants in the equation of a cubic 
with a double point at a given point, and an equal number 
in the equations of C and b. Hence, upon equating coefficients 
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of like terms in (4), a finite number of solutions are obtained. 
They are 

3X 2e 1 2e 
(C<«>) — xy + —y2 xz H yz = 0 , 

x Pi y pi 9X 
3X 

(J(«>) #<* - —y + « = 0 , ( i = l , 2) 
x 2 

where 4e£2 = 27X2, the positive root being indicated by pi ; 

c 4e 
(C<«>) a2 y2 yz = 0 , 

x 3 9X 
(ico) 3X^ + 0 = 0 . 

4. Properties of the Solutions, Denote the point of inter­
section of 6(x\ fr(x\ by 5(x}, etc. Then 

5C0- (V3^, - 1 , 3X), £(«« (-V37, - 1 , 3X), 
^(3) = (o, 2, 3X) . 

As X varies £ (x\ B(l\ Bf move along #+V3e;y = 0, x-V3ey 
= 0, x = 0, respectively. The first two lines are harmonic 
with respect to the pair <ry = 0. The lines b£, bl\ b® are the 
flex-tangents at Fh F2, FZ, respectively. The three conies 
pass through the double point 0 . They touch by pairs in 
the three flex-points. In fact, C^ and C® are tangent at 
Fz = (1, 0, 0). Their fourth point of intersection is ( 0 , - 1 , 3X). 
Similarly, C^ and C® touch at F2 = ( — Ve, A / 3 , 0) and have 
their fourth meet at (VSef 1, 6X). The meets of C(® and C® 
are found by changing the sign of the radical involving e. 
Hence the variable point of intersection of the conies, in the 
above order, always lies on the lines 

x — 0 , x—\/3t y = 0 , x+\/3e y = 0 , 

which are the same as those on which B x move. 
It is a simple matter to show that the polar of B® with 

respect to C(x is the line b® and that the tangents to C(
x
} at 
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(0, 0,1) meet R\ in F{. Also, that the real points of intersection 
of C x and R\, other than 0, lie on lines which pass through F{. 

The jacobian of the three conies C® is 

(A) z(x2+ey2)+3\y(3x2-ey2) = 0 , 

so that it also belongs to the syzygetic family. Let (x, y, z) 
be any point P on J\. The three polar lines of P with respect 
to C x meet in a point Q whose coordinates are (ey2, — xy, 
6kxy+xz). This point has been called the conjugate of P 
and lies on J\. The conjugates of the three flex-points of the 
syzygetic family are Qi=(V3e, — 1 , 6X), 02 = ( —V3e, — 1 , 6X), 
03 = (0, 1, 3X) from which we infer that the three points Q 
coincide with the variable points of intersection of the conies 
Cj{ belonging to i?_x. The associated cubics R\ and R-\ 
meet x = 0 in two points which form an harmonic pair with 
(0, 0, 1) and (0, 1,0). They are the only cubics of the family 
which meet x = 0 in these two points. 

The polar conic of R-\ with respect to any point (a, j8, 7) is 

(5) (7 - 3j8X)a* - 6a\xy + t(y + 3p\)y2 + 2axz + 2peyz = 0 . 

For(atp,y) = (VTe,-l, 3X), ( + vTe, + 1 , 3X), (0, 2, ~3X), 
the equation (4) gives the three conies C$. But these points 
are associated with R-\ in the same manner that J3_x are 
related to R\, that is, they are the points B% It is a simple 
matter to show that B_l are the poles of the flex-line s = 0 with 
respect to the conies C%. 

We may formulate our principal results as follows. Any 
rational plane cubic R having distinct tangents at its double 
point can be generated, in the sense of Zahradnik, in three ways. 
The three fixed lines are the flex-tangents of the cubic, while the 
three conies are the polar conies, with respect to R„\, of the points 
of intersection of the three flex-tangents of R~\. 

5. Determination of C and b when R has a Cusp at O. Let 
the cusp be a t (0, 0, 1) with x = 0 as the tangent and (1, 0, 0) 
be the one flex. The equation of R may be written 

x2(ay + j&s) + 7 ƒ = 0 . 
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A real projective transformation—of no geometrical signifi­
cance—may be found which will give the equation the form 

x2(ky + z) + y8 = 0 , 

where k may be any real number including zero. For this 
form ky+z = 0 is, of course, the flex-tangent. 

With the use of formula (3) we again find three solutions 
for C and 5, namely, 

(C<'>) 2k2xy + 2kV~y2-2kxz ± V ~ ^ = 0 , 

(i«>) ±2kVl:'kx-2ky + z = 0 , 
(1=1,2), 

in which i = 1 refers to the upper sign ; 

(C»>) k2x2 + ky2+yz = 0 , 
cj(3)) ky + z = 0 . 
Since k may be made to assume any real value without af­
fecting the geometrical significance of our equations, we dis­
regard the first two solutions as giving analytic solutions of 
no real interest. 

As before, the fixed line &(3) is the flex-tangent. A simple 
calculation shows that C(3) meets the cubic R in only two real 
points, other than (0, 0, 1). These points lie on the line 
2ky+z = 0. The two pairs of lines 3> = 0, 2ky+z = 0 and 
ky+z = 0, z = 0 are harmonic. Moreover, the two tangents 
to C(3) from the flex-point are the flex-tangent and y = 0. 
These properties serve to characterize C(3) and &(3). In fact, 
if we are given any cuspidal cubic referred to a triangle whose 
sides are the cuspidal tangent, the line joining the cusp to 
the flex-point, and a third line through the flex-point which 
is not the flex-tangent, we obtain the line b by drawing the 
flex-tangent. The conic C is determined as that conic whose 
tangents from the flex-point are the line joining the double 
point to the flex, and the flex-tangent ; and which meets R 
in the two points cut out from R by the line through the flex 
harmonic with y = 0 with respect to the pair z = 0 and the 
flex-tangent. These conditions completely determine C. 
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