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T H E HEAVISIDE OPERATIONAL CALCULUS* 

BY J. R. CARSON 

The Heaviside operational calculus is a systematic method, 
originated and developed by Oliver Heaviside, for the solu­
tion of systems of linear differential equations with constant 
coefficients, and linear partial differential equations of the 
type of the wave equation. Its important applications in 
mathematical physics are to the dynamics of small oscilla­
tions, the Fourier theory of heat flow and to electrical trans­
mission theory. I t was, in fact, in connection with problems 
of the latter class that the operational calculus was developed, 
and in the solution of such problems it is an instrument of 
remarkable directness, simplicity and power.f 

The operational calculus may be described with sufficient 
generality for our present purposes, in connection with the 
solution of the system of linear differential equations 

(i) 
Ö21#l + 022*2 + #23#3+ ' ' * +#2n#n = / 2 ( 0 , 

I 0nl#l + #n2#2 + 0n3#3+ * ' * +&nn%n=:fn(t) , 

where the coefficient a3-k has the form 

d d* 

(2) a =a 4-0 _ + 7 _ + . . . . 
dt dt2 

a, f3, 7, • • • being constants. We require the solution for 
^ l j »^2j y *^tl 

for the following boundary conditions : The 
known functions / i , • • • , fn and the dependent variables 
X\) ' ' ' , Xfi a r e identically zero for / < 0 . In the language 
of dynamics, the "forces" ƒi , - • • , ƒ n are applied to a system 

* An address delivered before the Society, May 2, 1925. 
t For a brief discussion of the Heaviside operational calculus rrom 

the point of view adopted in this paper, see Carson, The Heaviside Opera­
tional Calculus, BELL SYSTEM TECHNICAL JOURNAL, NOV., 1922. 
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characterized by the coordinates Xi, • • • , xn, when in a state 
of equilibrium. These boundary conditions are extremely 
important to the physicist, and it is to the solution of this 
boundary value problem that the operational calculus applies. 

In view of the linear character of the equations, we may, 
without loss of essential generality, set all the ƒ functions equal 
to zero except one, say jfi(/), and write the equations as 

011*1 + 012*2 + * * * + 0 1 n f f n = / l M , 

i #21*1 + 022*2 + * ' * + 02n*n = O , 

(4) 

I 0nl*l + 0n2*2 + • * * +<W«n = 0 . 

Now consider the auxiliary system of equations 

f 011^1 + 012^2+ * ' * + « l n A » = l » * ^ 0 , 

021^1 + 022^2 + * ' ' +02n^n = O , 

#nlAl+#n2^2 + +annhn = 0 , 

in the auxiliary variables hi, • • • , hn. As in (1) and (2), both 
sides of the equations are supposed to be identically zero for 
/ < 0 . 

For the equilibrium boundary conditions the solution of (4) 
supplies the solution of (3) by virtue of the formula 

(5) 
d r* 

Ki= 77 f(t-T)hi(r)dT, (*=1, 2, - . . , » ) . 
at Jo 

This formula is easily established in a number of ways; 
perhaps the simplest, and at the same time the most general, 
method of proof is to regard f(t) as the limit of a summation 
of the form 

51<Kt-fM)tfn, 

where </>(/) is defined as a function which is zero for / < 0 
and unity for t^O. The solution of (4) applies to this case 
and passing to the limit (ô/—»0) formula (5) results by usual 
processes. 



1926.] HEAVISIDE OPERATIONAL CALCULUS 45 

I t is to equations (4) that the operational calculus applies; 
Heaviside did not explicitly consider equations (3) in their 
completely general form. 

Heaviside's treatment of equations (4) proceeded as fol­
lows : Replacing the differential operator dn/dtn by pn, the 
differential equations become formally algebraic and yield 
the operational equation 

(6) ^ T T T T ' ^ = 1 > 2> 3> * ' * >") * 

I have called (6) an equation ; as a matter of fact it is not an 
equation except in a purely symbolic sense, since the left hand 
side is a function of / and the right hand side a function of p. 
Heaviside's point of view, however, was that (6) is the full 
equivalent of (4), and that the functional form of H(p) con­
tains all the information necessary for the explicit solution. 

From this point on, however, his method was purely in­
ductive; from the known solution of specific problems, he 
inferred rules for expanding and interpreting the operational 
equation (6), and for converting it into the explicit solution. 
The body of rules and formulas so arrived at is termed the 
operational calculus. 

Instead of following Heaviside's inductive methods, we 
shall now take advantage of the following theorem. 

The operational equation 

is simply the symbolic or short hand equivalent of the integral 
equation 

1 f00 

pHi(p) Jo 

which is valid for all values of p in the right hand half of the 
complex plane. This uniquely determines a continuous function 
hi(t) in terms of Hi(p). From this integral equation the rules 
and formulas of the operational calculus are directly and im­
mediately deducible. 
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The equation (dropping subscripts) 

1 

PH(P) 
(7) -—TTs = f Ht)e-ptdt 

Jo 

is an integral equation of the Laplace type. Beyond the proof 
that it determines a unique continuous function h(t), curiously 
little work appears to have been done on it from the stand­
point of analysis. At present, however, we are concerned with 
it only as an instrument for the solution of the differential 
equations (4). 

The proof of the preceding theorem is easily arrived at 
as follows : Referring to equation (3) suppose that f(t) = 
ept(t^0) where p is a positive real constant or complex with 
real part positive. The solution of equations (3) with the 
subscripts dropped) is then of the form 

ept 

(8) "Wp)+ym' 
where y(t) is the complementary solution, so constructed as 
to satisfy the equilibrium boundary condition. But by (5), 
we have also 

d r' 
(9) % = — I e*^h{r)dr , 

dt J0 

whence, by direct equation, 

ept d f* 
-y(t)=—l eW-^h(j)dT . 

dt J0 

Carrying out the indicated differentiation and simplifying, 
we get 

1 

H(p) 
Finally, setting / = <x>, 

Jo 
f y{t)e~pt = h(t)e~pt+p I h{j)e~TpdT . 

1 f00 

= I h(t)e-ptdt , 
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provided the real part of p is positive. This establishes for­
mula (7) as an identity for all values of p in the right hand 
half of the complex plane. 

Before proceeding with an application of the foregoing 
integral equation, it should be remarked that while the opera­
tional calculus has been elucidated in connection with a set 
of differential equations involving a finite number of variables, 
it is not so limited in its applications. The derivations of 
formula (5) and the integral equation (7) are quite general 
and depend only on the linear character of the differential 
equations and the linear invariable character of the dynamic 
system which they describe. Consequently the resulting for­
mulas are applicable also when the number of variables is 
infinite (cases of which occur in important electrotechnical 
problems) and to linear partial differential equations of the 
type of the wave equation, the equation of the conduction of 
heat y and the telegraph equation.* 

We now turn to a discussion of the integral equation 

i r00 

pH(p) Jo 

as a means of deriving the rules of the operational calculus, 
and as an instrument for the direct solution of problems. My 
own work on this problem has been directed as follows : 
(1) guided by the inductive work of Heaviside on the opera­
tional equation, to develop general rules for the expansion 
and transformation of the integral equation, leading to general 
types of expansion solutions. (2) The accumulation of a table 
of definite integrals of the type 

J 4>(t)er»'dt. 
o 

It hardly needs to be pointed out, in view of the symbolic 
equivalence of the operational and the integral equations, that 

* See Whittaker and Watson, Modem Analysis, p. 386, for a discus­
sion of these equations. 
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the evaluation of an infinite integral of this type immediately 
furnishes the solution of the corresponding operational equa­
tion. The table of integrals which has been collected has 
proved quite valuable in technical problems. 

We shall now deduce two expansion solutions of the in­
tegral equation, corresponding to two important forms of 
solution of the operational equation first given by Heaviside. 

The Power Series Solution. Let us suppose, as is the case in 
a very large class of physical problems, that the function 
\/H{p) admits of formal asymptotic expansion; thus 

(10) l/H(p)~tlon/p*. 
0 

With the convergence or divergence of such an expansion we 
have no concern. I t must, however, satisfy Poincaré's defini­
tion of an asymptotic expansion.* 

Now starting with the integral equation (7) and integrating 
by parts, we get 

l r00 

— = A(0)+ er*WKt)dt , 
\P) Jo H(p) 

where h^n)(t) = (dn/dtn)h(t). Now let p approach infinity; in 
the limit the integral vanishes and, by virtue of the asymptotic 
expansion (10), the left hand side becomes a0. Consequently 

Integrating again by parts, we get 

p(-—-ao)=hu(0)+ f e-*WKt)dt. 
\H{p) / Jo 

Now let p again approach infinity; in the limit the integral 
vanishes and the left hand side by virtue of (10) becomes #i. 
Consequently 

AU)(0 )= f l i . 

* See Whittaker and Watson, Modem Analysis, p. 151. 
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Proceeding in this way we establish the relation 

*<»>(0)=ön. 

I t follows at once that, if we assume that a power series 
expansion of h{t) exists, it is given by 

(11) *(0=Sa»*V»l 
o 

We thus arrive at the Heaviside rule : 
In the operational equation, 

h = l/H(p), 

expand \/H(p) in inverse powers of p : 

(10) l/H(p)~a0+a1/p+a2/p*+ 

The explicit solution f or h{t) results by replacing \/pn by tn/n\ 
in the asymptotic expansion, so that 

(11) h(t)=a0+a1t/ll+a2t*/2\+ • • • 

is the required power series solution* 
I t may be remarked in passing that this type of solution, 

while extremely direct and always possible in the case of 
systems having a finite number of degrees of freedom, is of minor 
practical importance unless the power series can be recognized 
and summed. Furthermore this form of solution does not 
exist in many important technical problems. 

The Solution in Terms of Normal Vibrations. I t is known 
from the usual elementary theory of linear differential equa­
tions that the solution of equations (4) may be written in the 
form 

m 

(12) A*=Qo+X) d^i\ ( i= 1 , 2 , . . . , » ) 
o 

where pu p2, • • • , pm are the roots of the equation 

Dip) 
(13) B^-ink-*' 

Mi(p) 
* It is interesting to note that the series (11) is Borel's associated 

function of the series (10), and that the infinite integral is the Borel 
sum of the series (10), 



50 j . R. CARSON [Jan.-Feb., 

and the C's are constants of integration which must be so 
chosen as to satisfy the system of differential equations and 
the imposed boundary conditions. Assuming that these roots 
can be located, the problem of determining the constants of 
integration, while formally straightforward, is extremely 
troublesome in practice when the number of degrees of free­
dom is large. I t will now be shown that, assuming the roots 
Pu p2t • • ' to have been evaluated, the constants of integra­
tion can be evaluated from the integral equation with ex­
treme simplicity. Dropping the double subscript, we write 
the known form of solution as 

(14) h = Co+J^C3eV, 

and substitute in the integral equation 

(15) -> f h(t)e-p*di. 
PH(P) Jo 

Integrating term by term we get 

(16) -J^ = ± C o +£- i i~ , 
f H{p) p p-Pt 

where, i t will be recalled, pj is a root* of H(p). 
Multiplying through by pH(p) we get 

^ pH(p) 
(17) c,H(p)+j:——C,-I. 

P—Pi 
We now introduce restrictions which obtain in physical prob­
lems : H(p) has no zero root, no repeated roots, and 1/H(p) 
is a proper fraction of the form M(p)/D(p) where the 
numerator and denominator are prime to each other, and 
the numerator of lower order in p than the denominator. 

Now if we set £ = 0, the summation vanishes, and we get 

C 0 =l/ f f (0) . 

* In all physical problems, the real part of pi is negative, so that the 
integration of (15) is valid. 
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Next set p equal to p3+q, and then let q approach zero. 
Since H(p3) = 0, it follows at once that (17) reduces to 

frfl'(fr)CV»l, 
whence 

(18) C, -

where 

Lap Jp=pj 

We thus arrive at the solution 

(19) *(<)_.A.+£ 
H{0) ^p,H'(py 

first stated by Heaviside without proof. It was apparently 
arrived at inductively from the operational equation 

h-i/n(p). 

This is a beautifully compact solution, and of first-rate im­
portance in many technical problems. 

It is quite beyond the scope of this paper to discuss in detail 
the appropriate expansion and transformations of the in­
tegral equations, each having its counterpart in the correspond­
ing operational equation, which are useful when the opera­
tional equation does not admit of direct solution as it stands. 
A few theorems, immediately derivable from the integral 
equation, may be of interest. 

1. If two functions h and g are defined by the operational 
equations 

h=l/H(p) , and g-l/pH(p) , 

then 

g{t) = f h(t)dt 
Jo 

2. If h and g are defined by the operational equations 

k-l/H(p) , g-p/B(p) , 
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then 

d 
g(/) «—*(/) , 

at 
provided A(0) = 0 . 

3. If h and g are defined by the operational equations 

h=l/H(p) , g=l/H(p+\) , 

then 

g( / )=( l+xf dt\e-^h{t) . 

4. If h and g are defined by the operational equations 

h=l/H(p) , g = e-^/H(p) , 

then 

g = 0 for t<\ , 

= A(/-X) /of /èX • 

5. Le/ A 6e defined by the operational equation 

h-l/H(p) , 

and suppose that H(p) can be factored in the form 

H(p) = H1(p) -Ht(p). 

Let the auxiliary functions hi and hi be defined and determined 
by the auxiliary operational equations 

Ai=l/ffi(*) , h2=l/H2(p) ; 

then 

h(t)=— h^t-^h^dr 
d c% 

'-7.JI **" 
d rl 

= — Aa(/-T)Ai(T)dT • 
dt J0 

The following theorem is of considerable theoretical in­
terest, as it formally extends the methods of the operational 
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calculus to the case of arbitrary functions ƒ(/) as compared 
with the "unit" function of equations (4). 

6. If the function ƒ(/) of equations (3) is such that the in­
finite integral 

( f{t)e~^dt 
Jo 

can be evaluated and is equal to l/pF{p), then x(t) of equations 
(3) is given symbolically by the operational equation 

1 1 
x = T{p) -H{p)~x~{i>)y 

and by the corresponding integral equation 

i r00 

X(p) Jo 

This integral equation corresponds precisely with (7), and is 
solvable by the same general procedure. 

The Telegraph Equation. The telegraph equation formulates 
the propagation of current and voltage along the transmission 
line. It will serve as an excellent example of the utility of the 
operational calculus and the integral equation. 

We suppose that the transmission line extends along the 
positive axis and is energized by an electromotive force ap­
plied at x = 0. The differential equations of current / and 
voltage V are 

/ d \ d 
[L — +R)I = F , 
\ dt / dx 
/ d \ d 
[C— +G)V = 7 , 
\ dt ) dx 

where L, R, C and G are the distributed constants of the line, 
the inductance, resistance, capacity and leakage per unit 
length. 
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Replacing d/dt by the symbol p, we get 

ox 

(Cp+G)V= / , 
dx 

thus formally eliminating the variable time t. Successive 
elimination of V and of I give the equations 

d2 

7 2 /= / , 
dx2 

d2 

y2V = V , 
dx2 

where y2 = (Lp+R)(Cp+G). These equations are satisfied 
by solutions of the form 

Cp+G, 
/=— (Ae-**-Bé**) , 

7 
where 4̂ and 5 are constants of integration. 

We now assume that the line is infinitely long so that the 
reflected wave vanishes. We also assume a voltage Vo(t) = Vo 
applied at x = 0. The equations then become 

.73 F = F 0e-

Cp+G 
ƒ = — V<>e-yx 

Finally, if we assume that Vo is zero for t<0 and unity for 
tgtO, we have the operational equations 

Cp+G 
I = — e->x . 
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Let us write 

V2 

where 

R G R G 
v*=l/LC , p=— + — , 0-= , 

2L 2C 2L 2C 

and let us consider the operational equation defining a new 
variable F: 

(20) F = —e^x = , ^ e • 

I t follows at once from the operational rules discussed above 
(Theorems 1 and 2) that 

(21) I=V(C + GC dtJF , 

r'dF 

(22) V=-v dt. 
Jo dx 

Our problem is thus reduced to evaluating the function F, 
as defined by the operational equation (20) and the cor­
responding integral equation 

(23) : = F{t)e-^dt . 
V(p+p)*-o* J0 

T h e solution of this integral equat ion is deducible from the 

known definite integral 

r™ e~*VFH 

Jx Vp*+l 
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This, regarded as an integral equation, determines a function 
which is zero for /<X and has the value J0(Vt2—\2) for /^X, 
Jo being the Bessel function of the first kind of order zero. 
In order to solve (23) by aid of (24) we proceed to transform 
the latter as follows: 

(1) Let *kp = q and t/\ = h> Substitute in (24) and then 
replace q by p and h by /, in order to retain our original 
symbolism. We get 

(25) , I e-ptJoiWP-Wt . 

(2) Making the substitution p — q+fx in (25) and then re­
placing q by p, we get 

(3) Making the substitution 

x v 
p =—q t and t= —h , 

v x 

in (26), and ultimately replacing q by p and h by t, we get 

where X and fx are parameters at our disposal, except that, 
as yet, they are restricted to positive real values. 

(4) Now if we compare (27) with the integral equation (23) 
it will be observed that the left sides become identical if 
we set M = p and X = i<r = crV — 1. (This last operation is justi­
fied because o-^p.) Introducing these relations we get finally 

e-^V(p+p)2-^ /»°° 

(28) =\ <r**e->*UWt%-*/*)M , 
v ( ^ + p ) 2 ~ e2 J*h 
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where 1Q(X) = Jo(ix). Consequently it follows that 

( F = 0 for t<x/v 
(29) 

= e-^IoiaV^2 ~ x2/v2 ) for / ̂  x/v . 

I t now follows from (21), (22) and (29) by straightforward 
procedure, that 

1 = 0 for t<x/v 

(30) 

(31) 

+ D G | e-'TJo(<Vr2-*2A2)<Zr, / e x / » ; 

7 = 0 for t<x/v 

ax r* e-ptlxiaV^-xt/v2) 
= e-px/v_\ I fa, t^x/v. 

» Jxh VT
2 — x2/v2 

The foregoing is believed to be an excellent example of the 
value of the operational calculus and in particular of the 
advantage attaching to the recognition of the integral equa­
tion identity. The directness and simplicity of the solution, 
as derived above, as compared with its derivation by classical 
methods, is noteworthy. At the same time it must be admitted 
that a direct solution from the operational equation, without 
recognizing the integral equation identity, presents formidable 
difficulties. Heaviside's own attack on this problem from the 
operational equation, while distinguished by extraordinary 
ingenuity and almost uncanny intuition, can hardly be 
regarded as entirely satisfactory.* 

However, without a knowledge of the integral identity (24) 
on which the preceding solution is based, it is possible to de­
rive a series solution as follows. The method will be sketched 
for the operational equation 

V = e~y* 

* See Heaviside's Electromagnetic Theory, vol. II, p. 290 et seq. 
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for the voltage. The procedure for the current is the same and 
will require no explanation. The method of solution depends 
on Theorem 4, given above. Since 

x 
y X sa y/(p + p)2 — a2 

V 

we can write the operational equation as 

by the binomial expansion of the exponent. This is formally 
reducible to the form 

A direct application of Theorem 4 now gives 

7 = 0 for t<x/v 

p f / - * / » (t-x/v)2 

(t-x/vY \ 
+A>—jr-+--T 

It is easily verified that this series solution in the "retarded" 
timet—x/v is absolutely convergent and identical with the 
expansion of the solution (21). 

The Asymptotic Solution of Operational Equations. An 
extremely interesting and important part of the operational 
calculus relates to the derivation of asymptotic expansions 
directly from the operational equation. A study of the many 
problems for which Heaviside obtains asymptotic expansions 
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shows that they may be divided into two classes : (1) those 
of which the operational equation is of the form 

(I) I=VpF(p) , 

and (2) those of which the operational equation is of the 
form* 

(II) h=4>Wp) . 

Heaviside himself gives no justification or proof of his ex­
pansion solutions. He does not formally distinguish between 
the two classes, and he gives no information regarding the 
asymptotic character of the series. While a completely satis­
factory theory of these expansions has not as yet been worked 
out, the application of the Laplace integral equation to their 
investigation throws a great deal of light on the problem, 
and at least reduces it to a form to which the orthodox 
processes of analysis are applicable. 

We start with the type of problem (class 1), which is 
symbolically formulated by operational equations of the type 

(32) h = VpF(p) , 

of which the corresponding integral equation is 

(33) —^f = I h{t)e-^dt , 
Vp Jo 

and we suppose that F(p) admits of the power series expansion 

(34) a0+aip+a2p
2+ • • • , 

For this problem the Heaviside rule is as follows. 
If the operational equation 

h=l/H(p) 

* More generally h=<f>(pk\/p) where k is a positive integer. The case 
where &=0, however, illustrates Heaviside's procedure with sufficient 
generality. 



60 J. R. CARSON [Jan.-Feb., 

can be expanded in the form 

h=(aQ+a1p+a2p
2+a*pz+ • - • Wp , 

the explicit solution, in the form of an asymptotic series, is ob­
tained by replacing the symbol y/p by l^/irt, and pn by dn/dtn, 
whence 

/ d d2 \ 1 
(35) h(t)~[ao+a1 — +a2-7-+ • • •) 

V dt dt2 / VVt 

(35a) ~— — (aQ-ai/2t+l . 3a2/(2t)2 

Vwt - 1 • 3 • 5a3/(2*)3+ • • ) . 

We now proceed to derive this rule from the integral equa­
tion (33), and to discuss its limitations. 

We assume the existence of an auxiliary function ƒ(/), de­
fined and determined by the auxiliary integral equation 

(36) F(p)= ( f(t)er*'dt. 
Jo 

Now since 

1 f00 dt 
- - = e-?'—— , 
/p Jo V irt Vp 

it follows from Theorem 5 above that h(t), as defined by (33), 
is given by 

(37) *(*)=—r f——dr. 
VIT JO Vt — r 

We observe that if (36) is differentiated repeatedly with 
respect to p and p set equal to zero, then, by virtue of the 
expansion (34), 

(38) a * = ( - l ) « f ~f(t)dt , ( n = l , 2, • • •) . 
Jo n\ 
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It will be noted, in this connection, that this expansion pre­
supposes the convergence of the infinité integrals (38) for 
all values of n and therefore imposes severe restrictions on 
ƒ(/) and hence on F(p). We shall suppose that these restric­
tions are satisfied. 

We are now prepared to prove the following theorem. 
A necessary and sufficient condition for the validity of the 

Heaviside asymptotic expansion (35) of the operational equation 

h = F(p)V~P , 

is that the definite integral (37) shall be asymptotically represent-
able by the series 

( i f r00 i r 0 0 / 

i-3 r" t* m + W I nmd' 
1-3-5 r00 t* \ 

I ^ (20s Jo 3 ! y W / 

This theorem is an immediate consequence of the preceding 
analysis, for by (38) the series (39) is simply 

— - (a0-ai/2t+h3a2/(2t)2- • • • ) , 
Vwt 

whence, by (37), 

h(t)~—— (ao-a1/2t+l-3a2/(2t)2- • • • ) , 

which is simply the Heaviside expansion (35a). We have thus 
succeeded in reducing the problem of the asymptotic expan­
sion from the operational equation to that of the asymptotic 
expansion of the definite integral 
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where ƒ(/) is defined and determined by the integral equation 

Hp) = f mentit, 
Jo 

If we write the definite integral in the form 

(40) - 1 - f tfr./(r).(l-r/ri/2, 
v TT/ JO 

we see at once that the series (39) is obtained by expanding 
( l—r/0~1 / 2 by the binomial theorem, replacing the upper 
limit in integration by infinity, and integrating term-by-
term. 

That the series (39) does represent the behavior of the 
function (37) for sufficiently large values of /, provided f(t) 
converges with sufficient rapidity, is evident qualitatively 
from the form of the definite integral. It can also be shown 
rigorously that the asymptotic representation of (37) by the 
series (39) is valid provided the integrals (38) exist. We thus 
arrive at the conclusions, deducible by rigorous processes, that 
the validity of the Heaviside rule stated above depends on 
the properties of the function f(f), defined by the integral 
equation (36), and in particular on the existence of the in­
finite integrals (38). On the other hand, the precise sense in 
which the expansion asymptotically represents the solution 
will depend on the particular problem, and no general state­
ment on this subject can be made. 

We now take up the problem of the expansion solutions, 
usually divergent, of problems of class 2, formulated by 
operational equations of the form 

(41) h = <t>(Vp) , 

of which the corresponding integral equation is 

1 _ r00 

(42) —<I>WP) = h(i)<rpiàt . 
P Jo 
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If we suppose that <j>{^p) admits of power series expansion 
in the argument, we may write 

(43) <t>{Vp) = bQ + biy/p + b2p + hpVp + b*p2 + • • • , 

without, however, making any statement regarding the con­
vergence of this expansion. 

The Heaviside rule for this type of problem may be stated 
as follows. 

If the operational equation h = 1/H(p) can be expanded in 
the form 

h = b0 + hVp + b2p + hpVp + • • • • , 

discard all terms containing integral powers of p, and write 

h = b0+(b1 + bzp + böp
2 + • • -Wp. 

The series solution is then obtained by replacing \/p by 1/vV/ 
and pn by dn/dtn, whence, 

/ d d2 \ 1 
(44) k(t) = bo+ I Ji + *8 —+*6 — + • • • ) - = 

\ dt dt2 / Vrt 
or 

1 / *a 1*305 1-3-SJT \ 
(45) h(t) = bo + — [ h — + — : - ; + • l. 

In order to investigate this expansion solution, we construct 
the auxiliary functions g, g\, gs, • • • , g», • • • , denned by the 
following scheme: 

g(t) = h(t) - bo , 

gi0) = «(0 - —!=- , 
Va-* 

1 b, 
* i ( 0 - * * i W + - -2 Vvt 

1-3 b, 
g3(i) = *&(<) - — 

g*(t) = Ht(t) + 

22 VTt' 
1-3-5 b7 

~V~ Va' 
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Successive substitutions in the integral equation (42) and re­
peated differentiation with respect to p, lead to the set of 
formulas 

X 
X 
X' 
X 

g(t)e-ptdt~—z as p-+0 , 
Vp 

t'gi{t)e~ptdt^ as p->0 , 
2Vp 

1 • 3 65 

t>g2(t)e-ptdt~ z as p->0 , 
2 Vp 

1 - 3 - 5 h 
t'gS)e-vldt~ as p->0 . 

23 V ^ 

Now since 

o v^i v^ 

it follows from the preceding that the functions gi, g2, g3, • • • 
all converge to zero as l/t\/wt as /—><*>, provided g(/) contains 
no term which converges in an oscillatory manner. It is this 
latter restriction, namely that g{t) must contain no oscil­
latory term, say of the form 

1 
cos / , 

VTT/ 

which stands in the way of a satisfactory theory. 
However, assuming that the auxiliary f unctions gi.g2.gz, • • • 

converge to zero as \/ty/irt as t—»°°, the foregoing leads at 
once to the formal asymptotic expansion (45). The same 
procedure, it can be remarked, is applicable to class I problems 
and gives formally the expansion (35a). 

The foregoing cannot be regarded as a satisfactory discus­
sion and is indeed almost as heuristic as Heaviside's own 
procedure. In addition to the theoretical defects it is un-

gi.g2.gz
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satisfactory to the physicist who requires an automatic rule 
for deriving the asymptotic expansion from the operational 
equation by algebraic processes without investigation of 
auxiliary functions, or remainder terms, and in particular 
an estimate of the numerical error committed by stopping 
with any term of the series.* Some of these defects it is be­
lieved can be overcome; some are inherent, however, in the 
nature of the problem. For example, in some problems the 
series is asymptotic in the sense that the error is less than the 
last term retained; in others it is meaningless for a certain 
range of values of t, while in yet others, remarkably enough, 
the series is absolutely convergent for all finite values of t. 

We shall now close this paper with a few examples of the 
series expansion just discussed. The first example will be 
the asymptotic solution of the operational equation 

where p is a positive real parameter. The corresponding 
integral equation is 

1 f00 

(47) = h(t)er*'dt . 
^p2+2pp Jo 

The physical problem which this represents is the current 
entering a transmission line of distributed constants L, i£, C, 
in response to a unit e.m.f. applied at time t = Q. 

The solution of equation (47) is known. It is 

(48) Kt) = <r»h{pt) , 

where 70 is the modified Bessel function of the first kind and 
order zero. 

Now return to the operational equation (46). I t will be 
observed that it is of the form h = F(p)\Zp, and hence falls 

* Heaviside appears to have regarded the series as asymptotic in the 
sense that the numerical error is less than the value of the last term re­
tained. This, however, is certainly not true in general. 
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within class I. Expanding (46) in accordance with the 
Heaviside rule, we find 

i P 1 ' 3 / M 2 1 . 3 . 5 / M 3 \ 

»-{l-£+F®--ïr(S) + ---r'/*-
Now apply the Heaviside rule given above for converting this 
operational expansion into the explicit solution. We get 

1 I 1 (1-3)2 (1-3-5)2 ' ) h(t) h + _ + _!——+ - + • • • , 

which will be recognized as the usual asymptotic expansion 
of the function e~ptIo(pt). The directness of the result, com­
pared with usual methods, is remarkable. 

We now take up the example falling in class 2, namely, 
the operational equation 

(49) h = e-vZp , 

where a is a positive real parameter. This equation, it may 
be remarked, formulates the propagated voltage in a non-
inductive cable. 

The corresponding integral equation is 

1 _ r00 

P Jo 
(SO) 

of which the solution is known. It is 

1 cT e"1,T 

(51) A f l ) . - — -—dr9 
VT JO TVT 

where r = 4//a. 
Equation (49), it will be observed, falls in class 2; that is, 

it is of the form h^^Ç^/p). In accordance with the Heavi­
side rule for this class, we expand (49) as a power series in 
Vp. It is 

y/ap ap apy/ap 

1! 2! 3! 
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Rearranging, 

\ 3! S! / ' \ 2 ! 4! / 

Now apply the Heaviside rule; that is, discard the series in 
integral powers of p, replace y/p by l/y/ict and pn by dn/dtn 

in the first bracketed series. We get 

(52, «,)_l-1/5(I_J_(f.) + _i.Q'_ . . . ), 

which, as it is easy to verify, agrees with (51). The remarkable 
feature of this example is that the expansion (52) is abso­
lutely convergent, although established by methods applicable 
to asymptotic expansions. 

A final example will be given : 

(53) A — 
VP/P+1 

where /3 is a positive real parameter. This equation formulates 
a fairly important problem in cable telegraphy, namely the 
effect of a terminal resistance on the shape of the cable voltage. 

The integral equation of the problem is 

(54) — — « f k(t)e-p'di, 
pVp/p+1 J° 

of which the solution is known. It is 

/T r™ ere* 
(55) A(/) = l - ^ 4 / — I — — it. 

Equation (53) is of class 2; expanding therefore as a power 
series in s/p, we find 

h=l-VW + P/P~ (P/P)VW+ • • • • 
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Applying the Heaviside rule, we get 

1 / 1 1.3 \ 
(56) h(t) = l - - — ( l + - • • • ) . 

If the definite integral of (55) is asymptotically expanded 
by repeated partial integrations the resulting series is identical 
with (56). Furthermore, it is easy to show that it is asymptotic 
in the sense that the numerical error is less than the value 
of the last term included. 

Borel has employed infinite integrals of the type 

£°f(t)<r»dt 

to sum divergent series. The foregoing suggests that they 
may be profitably employed to obtain asymptotic expansions 
of f{i), when such an expansion in inverse fractional powers 
of t exists. 
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