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Geographically Assisted Elicitation of Expert

Opinion for Regression Models

Robert Denham∗ and Kerrie Mengersen†

Abstract. One of the perceived strengths of Bayesian modelling is the ability to
include prior information. Although objective or noninformative priors might be
preferred in some situations, in many other applications the Bayesian framework
offers a real opportunity to formally combine data with information available from
experts. The question addressed in this paper is how to elicit this information in a
form suitable for prior modelling. Particular attention is paid to geographic data
for which maps might be used to assist in the elicitation. Two case studies are
used to illustrate the methodology: estimation of city house prices and prediction
of presence of a rare species.
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1 Introduction

One perceived strength of the Bayesian approach to data analysis is that it provides

a formalised method of combining prior knowledge with data. The specification of

the prior knowledge does however pose some problems. One criticism of using prior

knowledge in the form of informative priors is that subjectivity is introduced into the

model. A different prior may produce a different posterior, and hence different inter-

pretation of the results. This is why many workers propose the use of non-informative

priors. Here we use the term non-informative to describe any of the priors which do not

take into account any partial knowledge that might exist, and so include reference pri-

ors (Kass and Wasserman 1996), Jeffreys’ priors (Bernardo 1979; Bernardo and Smith

1994) and though usually not strictly non-informative, vague or flat priors. The issue

of prior specification becomes more important as the amount of data decrease. Since

the posterior can be considered a compromise between the likelihood and the prior,

the use of prior knowledge effectively increases the amount of data available. Models

using scarce data are also the sort of situation in which the value of prior knowledge

becomes more valuable, since a model relying on data alone can sometimes lack the pre-

cision to be useful, or may contradict so clearly the source of the data that the model

is rejected. For example, the modelling of a rare species’ distribution might proceed

something like this: a) collect data on presences and absences of the species, and using

a set of spatial explanatory variables use logistic regression to produce a map providing

the probability of presence across a region of interest; b) show this map to a group of

experts, who will then modify the map to be more in line with their knowledge. This

seems counter-intuitive at first, as clearly the expert knowledge here takes precedence
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over the data. Subjectivity in this scenario then enters after the statistical modelling

has been done, and enters in a non-formal manner, so many of the useful properties

of a statistical model are lost. How, for example, does one estimate the uncertainty

of a prediction at a given point if an expert has modified the prediction surface? This

appears to be an unusual way to conduct an analysis, but in many complex situations

these sort of compromises are often made. Gavaris and Ianelli (2002) give a similar

example in fisheries data, where some parameters, such as M , the instantaneous rate of

mortality are given arbitrary values because of difficulties in estimation due to lack of

data. The simplification of models by including arbitrary values for important parame-

ters can introduce bias and make realistic statements about model uncertainty difficult.

Other parameters, such as the catchability coefficient q in the fisheries example have so

few data to estimate that the estimates are found to be unreasonable, again suggesting

that the existing knowledge overrides the data. Subjectivity often creeps into statistical

models when data is scarce, and rather than trying to ignore it, it would be preferable

to include it in a formalised manner. This is possible in the Bayesian approach.

There is another possible reason that informative priors are used less often than

expected. This has to do with the difficulty in choosing the prior distributions, and this

is especially the case when the priors are chosen or elicited based on expert opinion.

Experts are rarely accustomed to quantifying their beliefs, and there are a number of

psychological stumbling blocks that make the task difficult.

Wolfson (1995) discusses some of the recognised psychological issues that commonly

occur in the elicitation of probabilities. Two of the most well known are the heuristic of

availability (Tversky and Kahneman 1974) and the heuristic of adjustment and anchor-
ing. Availability describes the situation in which assessors link their probabilities to the

frequency with which they can recall the event. Cooke (1991) provides the example in

which the probability of dying from a well publicised disease such as botulism is overes-

timated, while the probability of death by more common, but less publicised, diseases

such as stomach cancer are often underestimated. According to Wolfson, adjustment

and anchoring relates to the behaviour in which an assessor anchors their judgment

at some starting point and adjusts outwards; often the adjustment is insufficient, and

results in a credible interval which contains less probability than was asked. These, and

other sources of bias and error in converting an expert’s beliefs to probabilistic state-

ments will not be addressed in this paper. Here we wish to concentrate on a setting in

which elicitations will take place, and assume that the issues above can be surmounted

at least to some extent.

Provided we are satisfied that it is possible to elicit probabilities from an expert, and

we are prepared to put the effort into doing the task, we need some structured approach

to convert a set of elicited probabilities into prior distributions to suit a Bayesian model.

Consider the normal linear regression model in which we wish to use expert knowledge

to assist in the modelling of a response Y according to some set of explanatory variables

X .

Kadane et al. (1980) and Kadane (1980) distinguish two elicitation approaches for

such a situation. The first is predictive, in which the expert is asked to quantify his
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opinion of the value of the response variable at various fixed values of the explanatory

variables. The second approach is termed structural, and refers to procedures that

specifically elicit information on parameters. The appropriateness of either of these

methods depends on both the problem to be solved and the type of expert providing

information. As an example, consider the problem of predicting a species’ geographic

distribution. This is frequently achieved using a regression based approach such as a

generalised linear model (GLM) or a generalized additive model, with species’ presences

or absences as the response variable, and a suite of environmental variables as the ex-

planatory variables. Of the available GLM techniques it is logistic regression which is

used most frequently. These approaches are well documented in the ecological litera-

ture; see Manel, Williams, and Ormerod 2001 and Guisan and Zimmermann (2000) for

recent reviews. If we were to undertake the statistical modelling of such data from a

Bayesian perspective and wish to make use of expert opinion, we might consider two

distinct types of experts. The first, which we describe as the physiologist, may have a

good understanding of the physical requirements of the species. This may be through

experimental studies such as germination trials, glass house or laboratory trials. The

second, which we term the field ecologist, has good knowledge of the places in which the

species is likely to be found, though not necessarily expertise in the reasons why. The

physiologist is likely to respond well to a structural elicitation procedure, while the field

ecologist is likely to prefer a predictive approach. We also believe that the expertise of

many will fall somewhere between the two extremes, and elicitation procedures should

reflect this.

The value of expert opinion, particularly when data is scarce has also been recognised

by the ecology community, although usually not explicitly incorporated into a GLM.

When data are scarce or unreliable, models based completely on expert knowledge have

been proposed (Store and Kangas 2001; Tamis and Van ’t Zelfde 1998; Pearce et al.

2001), although Pearce et al. (2001) also show how a GLM can be modified by us-

ing expert opinion. In their work, the incorporation took place during pre-modelling,

model-fitting and post-modelling stages of the analysis. The pre-modelling incorpora-

tion involved the creation of a new explanatory variable, based on fine-scale vegetation

and growth-stage information. The model-fitting stage involved experts choosing an

appropriate subset of explanatory variables, and at the post-modelling stage, maps pro-

duced from GLMs were modified or refined based on expert opinion. While this is one of

the few papers that explicitly discuss and compare the way that expert opinion is used in

combination with statistical models, it is likely that most modelling exercises routinely

use some combination of the these approaches. These methods don’t directly modify

the statistical estimation of parameters. The first two approaches merely modify the

inputs to the statistical model, and the third approach merely modifies the predictive

surface to better fit what the experts believe to be reality. Another way of incorporat-

ing expert opinion into a statistical model not considered by Pearce et al. (2001) falls

somewhere between their model fitting stage and the post-modelling stage, in that it

directly modifies the model parameter estimates. It requires the GLM to be formulated

in the Bayesian context, with a prior provided for the parameter estimates. This is the

approach considered in the present paper.
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Zellner and Rossi (1991); West (1985); West et al. (1985); Albert (1988); Zeger and Karim

(1991); Albert and Chib (1993); Gelfand et al. (1996); Chen et al. (2003, 1999) have all

described methods which allow informative priors to be included in a logistic regres-

sion, although the emphasis has been on computational methods rather than the prior

specification itself. Others (Chen and Dey 2003) have shown how historical data can be

used for analysis and variable selection for a current study. The use of expert opinion in

logistic regression doesn’t appear to have been documented until Bedrick et al. (1996,

1997) who describe a method in which informative priors for logistic regression can be

specified and elicited, and illustrate how an expert might provide sufficient information

to specify the prior. The conditional means prior (CMP) and data augmentation prior

(DAP) of Bedrick et al. (1996) share many things in common with some of the earlier

regression elicitation work (Kadane et al. 1980; Garthwaite and Dickey 1988) in that

they recognise the difficulties in eliciting directly a prior for β. To address this diffi-

culty, it is generally suggested that the elicitation procedure ask the expert questions

about the response for given values of the explanatory variables, and convert these into

a prior for β. The CMP approach requires an expert to provide their estimate of the

probability of a success p̃i at i = 1 . . . k carefully chosen points in explanatory variable

space x̃i. Bedrick et al. (1997) show how this can be applied to a logistic regression

model in which the response is the survival after a injury, with explanatory variables

injury severity score, revised trauma score, age and predominant type of injury.

This approach can be adapted to questions of species distribution modelling. Taking

one recent example of species distribution (Gibson et al. 2004), if expert opinion were

to be used in the CMP framework, an expert would be asked to provide their estimate

of the probability of presence of the rufous bristlebird at six combinations of elevation,

distance to creek, distance to coast, sun index and habitat complexity. Again, the

ability to answer these questions may depend to a large extent on the type of expert we

are questioning. Other serious concerns are that some variables, particularly indices,

may become more difficult to understand as the complexity of the model increases, and

that the method is perhaps testing the expert’s knowledge of the distribution of the

explanatory variables, rather than what the expert is an expert in.

This paper explores flexible elicitation procedures which make use of both structural

and predictive processes, and ways the elicitation procedure can be improved in geo-

graphic settings. The method is designed to acknowledge different types of experts such

as physiologist and the field ecologist and to provide appropriate resources to assist them

in better translating their expertise into a formal prior. In Section 2 we briefly examine

standard elicitation approaches for regression problems, then describe how elicitation

could be approached in a geographic setting. A more flexible option can be achieved

by combining the predictive method with a structural method, and this is described in

Section 3.

Kadane and Wolfson (1998) make the important observation that the goal of elic-
itation . . . is to make it as easy as possible for subject-matter experts to tell us what
they believe, in probabilistic terms, while reducing how much they need to know about
probability theory to do so. With this in mind, careful consideration must be given to

the tools used to elicit expert opinion. In almost all elicitation applications, computer
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software is used since this is the simplest way to provide feedback to the expert on their

choices and allow visualisation of responses while simultaneously handling any neces-

sary computation. Visualisation of the geographic nature of the data and of the elicited

expert information is an integral part of the methodology proposed in this paper. To

further facilitate ease of use, the software developed for the case studies described below

built on existing discipline-specific software familiar to the experts and linked to third

party statistical and graphical software.

Craig et al. (1998) provide an example of an elicitation project which is spatial in

nature, and wrote software that included an interactive map which was used to select

points to gather expert opinion, much like our approach, although their elicitation

procedure is quite different.

Two experiments were conducted to test the proposed methodology. The first case

study, modelling the median house prices on a suburb basis for the city of Brisbane,

Australia was used to evaluate the various approaches as described in Section 4. The

second case study, described in Section 5 extends this evaluation to the more interesting

problem of predicting the distribution of a rare species, the Australian brush-tailed rock-

wallaby. A discussion completes the paper.

2 Geographically assisted expert elicitation

Consider first the formulation for the Bayesian linear regression model given by

Kadane et al. (1980),

Y |X, β, σ2 ∼ N(Xβ, σ2),
β|σ2 ∼ N(b, σ2R−1),

1
σ2 ∼ χ2

δ

wδ ,

where Y is a vector of observations and X a matrix of explanatory variables. The

distribution of Y then is multivariate normal with mean Xβ and variance σ2. The

model requires prior distributions for β and σ. Kadane et al. chose a conjugate prior

structure so that β is multivariate normal and 1/σ2 is a scaled χ2. The hyperparameters

which need to be estimated in the elicitation procedure are b, δ, R and w.

To estimate the hyperparameter b, the expert is asked to provide their median value

yi0.5 at each of xi, i = 1, . . . ,m, and b is estimated using weighted least squares, with

weights

vi =
yi0.9 − yi0.5

yi0.5

.

with yi0.5 , yi0.9 the expert’s median and 90th percentile at site xi.

The b parameter is then estimated by

b̂ = (XTQ−1
y X)−1XTQ−1

y y0.5

where y0.5 is the vector of elicited median values and Q−1
y = diag(v1, . . . , vm). We use

weighted least squares rather than the unweighted least squares as in Kadane et al.,
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since it seems difficult to accept that the elicited errors would have equal variances.

Two points far apart geographically may in fact be close together in variable space, and

we want to ensure that the point with which the expert is more familiar carries more

weight than the other.

The degrees of freedom parameter, δ, can be estimated taking

a(xi) = max

(
yi0.90 − yi0.50

yi0.75 − yi0.50

,
T∞(.90)

T∞(.75)

)
,

where Tδ(p) is the pth quantile from the standard t distribution with δ degrees of

freedom, yip
is the expert’s p’th quantile at xi.

The hyperparameter δ is then chosen to satisfy

Tδ(0.90)

Tδ(0.75)
=

∑m
i=1 a(xi)

m

The estimation of w and R is a little more complicated, and follows what Kadane et

al. describe as a conditional elicitation procedure. This requires further elicitation for

a subset of the values already provided. From the set of elicited values, y1, · · · , ym, we

choose m′ of these, with p+2 ≤ m′ ≤ m to perform further elicitations. The additional

elicitations are as follows:

for i in 1, . . .m′ − 1 {
generate y0

i

conditional on y0
1 · · · y0

i expert provides yi+10.5
, yi+10.75

conditional on y0
1 · · · y0

i expert provides yi0.5 , yi+20.5
· · · ym′

0.5

}
for i = m′ {

generate y0
i

conditional on y0
1 · · · y0

i expert provides yi+10.5
, yi0.5

}

Kadane and Wolfson (1998) describe use of the conditional assessments to construct

a symmetric positive definite matrix U , where the ith diagonal element is the spread of

yi, given by

S(yi|xi) =
(yi0.75 − yi0.50 )

2

T 2
δ (0.75)

, (1)

and the remaining i−1 elements of the ith row (and thus also of the ith column) are the

co-spreads of yi with (yi, . . . , yi−1). As explained by Kadane and Wolfson, wi can be

obtained as an estimate of w using the fact that at each stage of the construction of this

matrix, conditionally on y0
1 , . . . , y

0
i , yi+1 and y∗i+1 have a joint bivariate t-distribution.
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Thus there will be m′ estimates of w, which can be averaged to obtain the final estimate.

Then the relationship that U − wI is an elicited version of the matrix

S(XTβ|X) =
w

n
X−1XT , (2)

where n = δ +m can be exploited to obtain the estimate of R−1.

In the context of species modelling, yi is taken to be the number of observations of

a species at site i, X is the n × k matrix of explanatory variables and η = Xβ is the

vector of linear predictor values. Under the logistic regression model yi ∼ Bin(ni, µi).

With the logit as the link function, g(µi) = log(µi/(1 − µi)), with a prior for β ideally

given by

p(β) = MVN(b,Σ).

It is through this prior that we can include expert opinion.

The methods of Kadane et al (1980), Kadane and Wolfson (1996), Wolfson (1995),

and Garthwaite and Dickey (1988, 1992), are well suited to many applications. However,

when applying such a technique to predictions of a spatial nature, there could be some

loss in translation from the expert to a prior. Applications of this nature could include

the modelling of disease rates, the logit of a species presence, or the house prices of

a suburb. Under the standard elicitation procedures, to estimate the hyperparameter

b, an expert would be asked to provide an estimate, perhaps including some quantile

information, for the value of y at particular values of x.

This task can be difficult if the expert’s knowledge is more related to their knowledge

of locational values of y, rather than the relationship between y and the explanatory

variables. The expert might, for example, quantify their beliefs by first trying to imagine

the locations that correspond to x, and then providing a typical value of y at these

points. The expert is effectively being asked about their knowledge of the distribution

of x across the landscape, a task which becomes increasingly difficult as the number of

explanatory variables increases. It seems that in many cases it would be more efficient,

and more consistent for the expert, if they were asked to provide information on their

knowledge of the geographic distribution of y directly.

To provide this information, an expert can be asked to map their estimates of the

response across the landscape. The detail of the map may vary from a complete coverage

of the area of interest, to a number of individual points with accompanying estimates.

The complete map is likely to be time consuming to achieve, and unless there is a

specific need for complete coverage (one possible scenario in which this would be useful

is discussed below), this would rarely be attempted. More common would be a map

consisting of areas of approximately equal response.

This essentially is equivalent to Kadane et. al. (1980), except that instead of choos-

ing a systematic set of design points, the design points are chosen by the expert based on

location, without specific reference to any explanatory variables. This allows the expert

to provide information on those areas he is most familiar with, although to achieve suf-

ficient coverage of the variable space the expert may be required to include information
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in areas with which he is less familiar. This increased uncertainty should be reflected

in the expert’s quantiles for y. As an alternative, design points could be chosen in the

same manner as in Kadane, and displayed on the map. The expert is then asked to

provide quantiles for a number of these design points. Many more design points can

be provided than is required for the elicitation, giving the expert the opportunity to

concentrate on those areas in which he is most familiar.

There are a number of ways in which the expert might be able to provide the

elicitations. The simplest would be to annotate a hard copy map of the area of interest.

This does however limit the expert to reporting on values at a fixed scale. For example,

if aspect (the direction in which a slope faces) is found to be an important predictor of a

species presence/absence, it would be difficult for an expert to select sites with a given

aspect using a map with a scale of say 1:25 000. Variables which are not discernible at

the scale of the experts map would need to be given a non–informative prior, or elicited

separately.

A more flexible procedure would make use of a Geographic Information System

(GIS). The two case studies described below provide examples of how a GIS can be

used to aid in the elicitation procedure. A GIS approach allows the expert to access

information at any point in a convenient manner. For example, the expert can have

several layers of data available at one time, each providing information of a different

feature (rainfall+temperature). The user can also build queries to determine relation-

ships between points and nearby features (distance to water). The user can also zoom

in or out, removing the scale dependency of the hard copy maps. Taking the example of

aspect again, if an expert believes a species is likely to be present in a particular area,

but only on sites with a given aspect, they can zoom in until aspect becomes discernible

and choose a location, or alternatively could select all sites within the area with suitable

aspect. The interactivity of the GIS also means that the expert can easily revisit and

modify any elicitations they have made.

3 Combination Approach

3.1 Methodology

Predictive elicitation procedures are often preferred over structural approaches since

the expert need not understand the statistical model and is only asked about observ-

able quantities. There are, however, situations in which a structural approach may be

appropriate. In the experience of Kadane and Wolfson (1998), for example, economists

are used to thinking in terms of parameters, and respond well to a structural procedure.

Garthwaite (1998, Queensland Department of Natural Resources report) presented a

structural elicitation procedure for habitat distribution models. While this problem is

spatial in nature, it does not explicitly take this into account in the elicitation procedure,

except perhaps providing some information on the distribution of explanatory variables

in the form of paper maps. An expert who is asked for information on the relationship

between a species presence and average annual rainfall, for example, would be provided
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with a map of rainfall over the region of interest.

However, an elicitation procedure need not exclusively be predictive or structural.

Kadane and Wolfson (1998) present an example which they describe as a hybrid ap-

proach. In this case, some variables were elicited in the predictive manner, and others

in the structural manner. Our proposal can also be considered a hybrid approach, but

differs from that of Kadane and Wolfson in that it offers the opportunity to use ei-

ther method simultaneously for a single variable. It is the expert’s preference which

determines which is used more.

The basis for this procedure is the combination of the map prior of Section 2 with

a structural elicitation procedure. To illustrate, consider initially the procedure for

eliciting the b parameters in a linear regression. The expert uses the map elicitation

procedure to derive a first pass estimate of b. Univariate graphs for each of the p
variables are presented. In each, we fix each of the remaining p − 1 variables at some

value, such as the mean or median. That is, for variable j, j = 1, . . . p, we display the

graph of

y = b0 + bjXj +

p∑

k=1,k 6=j

bkX̄k .

As the expert updates the map, by either adding points or editing values, the uni-

variate graphs are automatically updated. Additionally, the user is able to manipulate

the graphs, which in turn will update the map. The user continues adding points and

adjusting values until a consensus between the map and the univariate graphs is reached.

The procedure for estimating the hyperparameters R and w could continue as de-

scribed in Section 2, although under the combined approach it may be the case for some

experts to prefer to provide a more direct prior for β, such that

β ∼ N(b0,Σb)

The expert, for example, can provide a 95% envelope around the displayed regression

lines. This information can be used to determine Σb. For each variable Xp, the expert

is asked to provide upper and lower 95% quantiles for ŷ at either end of the range of

Xp. These points create a quadrilateral region, which describes the distribution of β.

The derivation of Σb is as follows:

If

ŷi ∼ N(bX∗
i , σ

2
ŷi

)

where X∗ is the matrix of the end points . For the simple case with two explanatory

variables (P = 3), then

X∗ =




1 X11 X̄2

1 X12 X̄2

1 X̄1 X21

1 X̄1 X22
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then b = Qŷ, where Q = ((X∗)TX∗)−1(X∗)T and Var(bi) =
∑

k=1 q
2
ikσ

2
ŷk

since

Cov(yi, yj) = 0, and Cov(bi, bj) = 1
2

(∑
k=1(qik + qjk)2σ2

ŷk
− Var(bi) − Var(bj)

)

To clarify this, in the two variable case, if

Q =




q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34




then

b0 = q11ŷ1 + q12ŷ2 + q13ŷ3 + q14ŷ4
Var(b0) = q211σ

2
ŷ1

+ q212σ
2
ŷ2

+ q213σ
2
ŷ3

+ q214σ
2
ŷ4

and similarly for b1 and b2. In addition,

b0 + b1 = (q11 + q21)ŷ1 + (q12 + q22)ŷ2 + (q13 + q23)ŷ3 + (q14 + q24)ŷ4

so

Var(b0) + Var(b1) + 2Cov(b0, b1) =

(q11 + q21)
2σ2

ŷ1
+ (q12 + q22)

2σ2
ŷ2

+ (q13 + q23)
2σ2

ŷ3
+ (q14 + q24)

2σ2
ŷ4

3.2 Software Development

For the specific case of species’ distribution modelling, we needed software that allowed

the expert to explore the statistical relationship between the species and a number

of environmental variables. Initial prototypes were constructed using the R language

(R Development Core Team 2004). It quickly became apparent that this approach was

limited since the ability to display and query the spatial data was a crucial component

of the elicitation exercise. Rather than write functions replicating the functionality of a

geographic information system (GIS) into a statistical package, we integrated statistical

methodology into an existing GIS.

Our software thus has three components: a GIS, statistical routines and graphing

functions. This combination means the expert is free to explore the spatial data using

all the functionality of the GIS and to answer statistical questions with the assistance of

interactive graphs. The statistics are largely hidden from the expert. The construction

of these three components is briefly discussed below in the context of the species’ distri-

bution case study, but the concepts are transferable to any generalised linear modelling

situation.

Many ecologists are familiar with GIS software, and this often forms part of their

standard research toolbox. This familiarity means that the expert is not confronted
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with a new and unfamiliar package in the elicitation procedure. A GIS in its simplest

sense, is a software package that allows the user to interactively represent and query

spatial data. From our point of view this is important since while we may be interested

in gaining prior information on a number of explanatory variables, say X1, X2, X3, we

believe that the expert is best able to provide their prior on the variable by making use

of extra, contextual information. This may mean simply allowing the expert to see the

spatial distribution of X1, but it may involve more complex displays such as overlaying

towns, roads or reserves.

An example situation using the Brush-Tailed Rock Wallaby elicitation example (See

Section 5) might begin by showing the region of interest with biogeographical regions

(see below), then labelling major towns in the area, national parks and other reserves, a

digital terrain model (DTM) as well as showing the variables of interest to the statistical

model such as slope, aspect and geology; examples screenshots are given in Figures 1,

2 and 3.

Figure 1: GIS showing region of interest (delineated in red) with biogeographic regions.

Additional functions were written to provide simple buttons and menus on the Ar-

cGIS interface for the expert to access the elicitation functions (Figure 4).

ArcGIS has only limited statistical functionality, but it is possible to customise its
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Figure 2: GIS showing the zoomed in section of the region of interest with slope
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Figure 3: GIS showing the zoomed in section of the region of interest with geology

Figure 4: Menu for elicitation functions and point locator button (red push-pin icon)

as seen on the ArcGIS interface
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environment by scripting with Visual Basic for Applications (VBA), and by communi-

cating with other applications written for Windows. Statistical calculations required for

the estimation of a number of parameters was achieved by linking ArcGIS to R using

the R(D)Com package. Some examples of the specialist statistical routines constructed

in VBA and the functions used to call and use R are given in the Appendix.

The graphing requirements of the software were facilitating by sending the results of

the statistical analysis to a number of interactive graphing functions using the TeeChart

ActiveX control. These were displayed as forms in ArcGIS and were used in the first

stage to allow an interactive selection of hyperparameters for a Beta distribution and at

the second stage to display univariate interpretations of the expert’s prior as described

above. An example of the code used to convert expert elicited data to graphable elements

is given in the Appendix.

4 Case Study 1: Estimating House Prices

Brisbane, with a population of 1.6 million people, is Australia’s third largest city. It

is a city experiencing considerable economic growth, and this is reflected in increases

in median property prices throughout the city. This growth has led to a widespread

interest in house prices amongst many residents, and for the purposes of this example

we consider anybody who has recently bought or sold a house, or who is looking to do

so as an expert. A general trend in Brisbane, as with many cities, is that suburbs close

to the city centre tend to have higher median house prices than suburbs further out.

We thus use distance to city centre as the first explanatory variable to predict median

house price. The Brisbane River flows through the city, and out to Moreton Bay on the

cities eastern side. There is some suggestion that proximity to either the river or the

bay also affects house price, so this formed our second explanatory variable.

There is no doubt that there are a number of other variables which determine a sub-

urb’s median house price, such as topography, access to public transport and historical

features. These variables were not considered in the model, for a number of reasons.

First, this was an exercise in elicitation, not an attempt to find the best model for house

price prediction. Secondly, most regression models for physical systems, such as species

distribution models, have some explanatory variables that are difficult to capture. An

important variable determining the presence or absence of many plant species for ex-

ample relates to soil moisture content, a value difficult to determine on the regional

scales necessary for distribution models. We are often restricted to the use of available

explanatory variables, even when we are aware that there are other, important variables

missing from the model.

To achieve flexibility while maintaining the simplicity of linear regression, we have

chosen to use piecewise–linear regression. Knots were chosen to be at the 0.33 and 0.66

quantiles for each of the explanatory variables, though it would also have been an option

to include the knots as additional parameters in the model.

The formulation of the model then is
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yi = β0 + β1xi1 + β2x
′
i1 + β3x

′′
i1 + β4xi2 + β5x

′
i2 + β6x

′′
i2

Where X1 represents distance from city centre in kilometers and X2 represents

distance from the Brisbane River/Moreton Bay in kilometres, and

x′ij =

{
xij − x0.33j if xij > x0.33j

0 otherwise

and

x′′ij =

{
xij − x0.66j if xij > x0.66j

0 otherwise

We also choose to simplify the Bayesian representation of this model when compared

with either Kadane et al. (1980) or Garthwaite and Dickey (1992). Specifically, we use

an inverse gamma prior for σ, requiring the estimation of two hyperparameters ν0 and

S0, and we specify a prior for the regression parameters β as described in Section 3,

giving

Y |X, β, σ2 ∼ N(XTβ, σ2),
β ∼ N(b,Σb),
σ2 ∼ IG(ν0/2, ν0S0/2).

(3)

Volunteers were broken into two groups. The first used the map elicitation procedure

first, followed by the combined approach. The second group used the standard elicitation

procedure without geographical assistance, followed by the combined approach. For the

standard elicitation procedure, a simplified approach based on Kadane et al. (1980)

was used. In this case, design points were chosen to be the four knots for each variable,

with the possible option of a further eight design points. The typical way to choose the

design points is to find the minimum and maximum values for each of the variables and

divide this into say 4 equal parts. Then there will be p4 design points. This doesn’t

always work very well, since not all combinations will make sense. For example, in

Brisbane since the river flows through the city centre, there are no locations which are

both close to the city and far from the water. Design points were instead chosen to

cover the explanatory variable space.

The software developed for the combined elicitation approach for this case study

is illustrated in the screenshot in Figure 5. The bottom right-hand graph depicts the

suburbs of Brisbane and the river, with one suburb, Ashgrove, highlighted. The expert’s

median house price and limits are displayed above the graph and a corresponding slide

bar allows these to be altered easily. To the left of the plot the visual realisation of the

expert’s information is given in the form of the relationship between house price and

distance to city centre and distance to water. Options to ‘Dump to R’, ‘Reset’ or ‘Quit’

are also given.
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Figure 5: Screenshot of Elicitation Program
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Standard Map

annie sam brendan mark shane robert

b0 659312 354691 459242 926968 520043 867269

b1 -29891 -4446 3644 -24027 -19240 -49349

b2 10178 12081 -18670 -17212 8939 43272

b3 29476 -25357 2366 11322 21008 411

b4 -113534 -44714 -61887 -57078 -65588 -35217

b5 99456 41435 33292 60914 55118 17284

b6 19906 3219 33035 -24665 13184 32458

Table 1: Elicitation results for b (see Equation 3) using the combination approach.

The first three experts used a standard elicitation approach, followed by the combined

approach, the last three experts used a map only approach followed by the combined

approach.

The results from the experts using the combined approach are given in Table 1. For

this experiment we had observed median house prices for each suburb in the Brisbane

city area, and comparisons between the elicited and the actual values can be made.

Figure 6 and Figure 7 shows this comparison.

These results suggest that in general the experts were able to provide quantifica-

tions of their beliefs of the distribution of house prices accross Brisbane which were

consistent with actual house prices. Each session with the experts was conducted in-

dividually, but the priors appear to be relatively consistent. Only one of the experts

provided a prior markedly different to the actual relationship between house prices and

the two explanatory variables. This, of course, doesn’t necessarily imply that the pro-

cedure failed to accurately elicit that expert’s opinion. It is in fact difficult to assess

the quality of an elicitation procedure, since differences between procedures may merely

reflect differences in opinions between experts, rather than a differences due to the

methodology. We also have no measurable way of determining how close the quantifi-

cation of opinion matches an expert’s true beliefs. Some work has been done in the

area of validation of elicitation procedures. Kadane and Wolfson (1998) in their survey

of the literature cite relevant measurements of reliability (Wallsten and Budescu 1982),

coherence (Lindley et al. 1979) and calibration (Morgan and Henrion 1990). All partic-

ipants, however, reported that they preferred the combined approach over the map or

traditional approach. This, coupled with the agreement the experts priors had with the

actual relationship provides some support for the method.

The experiences of the experts in providing information under these experimental

conditions were documented and compared. In both groups, the exploitation of the

geographic nature of the data in the elicitation process was unanimously preferred by the

experts. The overall indication was that elicitation without distributional information

was at least as good as the elicitation without geographical assistance but not as good as

the combination approach. Moreover, experts reported that the combination approach

reduced the time required to provide quantitative information with which they were

satisfied, due in particular to the ease of submission of the information and the available
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Figure 6: Elicited relationship between distance from city centre and house price. Ex-

perts on the top row used a standard elicitation procedure followed by the combined

approach. Experts on the bottom row used a map only procedure followed by the com-

bined approach. The blue line represents the expert’s mean estimate (b̂) and the light

blue region represents the expert’s 95% envelope for the prior distribution of β. The red

line is the estimated relationship using the known median house price of all Brisbane

suburbs. Crosses represent the expert’s selected design points.

.
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Figure 7: Elicited relationship between distance from water (bay or river) and house

price. Experts on the top row used a standard elicitation procedure followed by the

combined approach. Experts on the bottom row used a map only procedure followed

by the combined approach. The blue line represents the expert’s mean estimate (b̂) and

the light blue region represents the expert’s 95% envelope for the prior distribution of

β. The red line is the estimated relationship using the known median house price of all

Brisbane suburbs. Crosses represent the expert’s selected design points.
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graphical feedback.

Most experts provided slightly different priors under the different elicitation methods

to which they were exposed. Almost all expressed greater satisfaction with the results

of the graphical approach, but it was difficult to determine whether this was because

of the accuracy of the result or the quality of the process of elicitation. This is further

addressed in the Discussion below. Graphical representation of priors obtained under

the combination approach are shown as part of the next case study.

5 The Brush-Tailed Rock Wallaby

The brush-tailed rock-wallaby (Petrogale penicillata) is a medium sized wallaby, about

1.2m in total length. The Brush-tailed Rock-wallaby has a coastal to sub-coastal distri-

bution, ranging from just north of Brisbane to western Victoria (Maynes and Sharman

1983). Its range has declined substantially, particularly in the west and south. There

is still much to be learnt about the ecology and habitat requirements of the species,

including habitat requirements (Eldridge 1997). Distribution mapping for this species

will add to our knowledge of this species, and ultimately assist in its conservation and

management (Carter and Goldizen 2003).

Predicting the distribution of this species with the assistance of expert opinion was

the subject of a workshop organised at the Queensland University of Technology. Two

experts were recruited. Peter Jarmin (Expert P) is a highly respected researcher with

many years experience in macropods but no local knowledge of the species of interest

and no experience in GIS. In contrast, Justine Murray (Expert J) has excellent recent,

local knowledge about the species of interest and good GIS skills. We can consider

expert J as the field ecologist and expert P the physiologist.

We chose a large area in south-east Queensland (Figure 8) because it is known to

contain populations of the species of interest and is large enough to provide a reasonable

coverage of environmental variables but small enough that useful information could be

obtained from the experts in the limited time available in the workshop.

Expert J made suggestions as to which explanatory variables may be appropriate.

In her view, aspect was the most important explanatory variable, although geology and

terrain are also likely to be important. We chose slope as a measure of terrain. An

additional variable, annual mean moisture index (mind), was also chosen to represent

a variable which would be more difficult to elicit information on. Moisture index is an

indication of the moisture in the soil, and is a function of the precipitation, evaporation

and soil type. The index ranges from 0 (dry) to 1.0 (saturated). This parameter was

included to allow us to see if useful prior information could be elicited even when an

understanding of the variable is limited.

The variables slope and mind included quadratic terms in our model. The geology
variable was classified into 11 broad groups based on dominant rock type with the

assistance of a geologist. These 11 broad groups were later reduced to four groups,

based on the geology types for which the experts provided information and the groups
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that were featured in the observed data.

The model in which we are interested is thus

yi ∼ Bernoulli(pi)

logit(pi) ∼ N(µi, σ
2)

µ = β0 + β1xslope,i + β2xmind,i + β3x
2
mind,i

+

β4xaspect,i + β5x
2
aspect,i

β6xgeol1,i + β7xgeol2,i + β8xgeol3,i

β ∼ MVN(b,Σ)

where the subscript i represents the ith observation. Expert J provided a dataset, of

which we used a subset of 38 observations. We wish to elicit from the expert their

prior for β, that is a multivariate normal distribution with mean vector b and variance-

covariance matrix Σ.

Each expert was questioned separately. During each session, the procedure was

explained to the expert. Although each expert was reasonably well versed with concepts

of probability and statistics, a short discussion on the concepts of medians and quantiles

was also included here in an attempt to calibrate the user’s quantification approach.

We used the double lottery system to help the expert quantify quantiles. We were

specifically interested in four explanatory variables (slope, mind, aspect and geology),

although a number of additional layers were available in the GIS to help the expert

obtain contextual information when providing their estimates. These included layers to

help the expert locate themselves, such as towns, national parks and state forests, and

a 25m digital elevation model to help the expert visualise the terrain. Both the broad

group and the detailed description was available to the expert.

We allowed the expert to choose the design points rather than choosing them in

advance. Experience has shown us that this is preferable since when working with

rare or uncommon species, the vast majority of sites will have a low probability of

presence. Even a carefully preselected set of design points often provide a poor range

in the probability of presence. We have essentially used expert opinion in selection of

the design points by asking the experts to choose sites that would cover the range of

probabilities of species occurrence, from highly unlikely to be present, to highly likely

to be present. Further restrictions were also constructed to ensure that a reasonable

coverage of the study area was created, and that the no design point was allowed to be

located in an area in which the expert had undertaken field work.

The expert chooses a design point or a virtual field site by clicking on a point in

the map, upon which an interactive dialog pops up (Figure 9). This dialog includes the

plot of a beta distribution with three adjustable points located at the median and at

the 0.05 and 0.95 quantiles. The expert is asked to provide their best estimate of the

probability of presence at that site by clicking on the median point, and sliding it left

or right until its position matches their belief. They were then questioned about the

possible range of values of the probability of presence. To help estimate the quantiles,
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Figure 8: Location of study area
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the expert was asked to consider placing 100 field sites at locations like the one chosen,

in the same vicinity. Their median was the value in which the expert believed would

be the proportion of sites in which the species would be found, given an exhaustive

search each time. The upper and lower 0.05 quantiles were chosen by asking the higher

and lower number which the expert thought was believable, but surprising. The value

of surprising was set based on the 0.05 and 0.95 quantiles from the lottery exercise

mentioned earlier. These upper and lower quantiles were set by the two points on the

graph. Since we were fitting a beta distribution, these points are not independent,

which occasionally caused some frustration for the expert, suggesting their prior for the

probability of occurrence didn’t necessarily match a beta distribution. We preferred to

force them to compromise, as the compromise would have been made later by choosing

the best beta distribution fit to their chosen points anyway. The expert also had the

option to adjust the parameters for the beta distribution directly, which automatically

updates the plot of the beta distribution. This was found to be often convenient for

either fine tuning their chosen distribution, or for quickly choosing specific distributions

such as the uniform distribution if they had no prior opinion for the point (which never

actually happened), or for the extremes (almost no chance of occurrence at that point,

or almost definitely present). Below the graph are the values of the four explanatory

variables and the detailed description of the geology.

Figure 9: Beta distribution elicitation dialog.

The expert can accept this distribution if they are satisfied it matches their prior

belief, or cancel and move to another point.

Once a minimum number of points have been selected the expert is able to view
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the univariate response curves (Figure 10) created by fitting a logistic regression model

to the design points provided by the expert. These curves show the univariate rela-

tionship between the probability of presence and each of the explanatory variables in

turn. They are created plotting the predicted probability of occurrence over a range of

values for a particular variable, with all other variables fixed at some value, typically

the mean. A categorical variable such as geology, is represented by boxplots rather

than a curve. Many ecologists use these curves both as an aid to understanding the

relationship a species has with a particular environmental gradient, and also as a check

that a statistical model makes sense from a physical point of view.

Figure 10: Univariate response curves

At each design point xi the expert has provided a prior for the probability of presence

of the species, p(pi) = Beta(αi, βi). Using the mean for the estimate of the probability

of presence, p̂i = αi

αi+βi
, we determine the pseudo observations and binomial sample size
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such that the binomial variance is approximately equivalent to the variance of p(pi),

n̂i =
p̂i(1 − p̂i)(αi + βi)

2(αi + βi + 1)

αiβi
(4)

ŷi = n̂ip̂i (5)

This approach is equivalent to a weighted logistic regression, with each design point

weighted by the variance of p(pi).

The expert is now able to add and review design points. The response curves dis-

played are interactive, in that the user may click on any point, which will zoom the map

to that point and display the beta fitting form. The user can then modify p(pi), and

immediately see the effect the adjustment has on the response curves. The expert also

has the option of reviewing those points which are influential, or appear to be outliers.

An interactive graph shows a plot of the residuals, and a plot of Cook’s distances (Fig-

ure 11). Again the expert can click on a point and review the design point. The graphs

are linked, so that a selected point in one graph will cause the corresponding point in

each of the other graphs to be highlighted.

Figure 11: Diagnostics can be displayed and queried. The graph is linked both to the

design point and to the response curves, so any change in the value of the expert’s p(pi)

will automatically update all graphs.

The expert continues the procedure, getting feedback from the response curves until

the data they have provided matches what they believe is the relationship between the

species and its environment.
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Each elicitation procedure took approximately one hour, and resulted in 10 design

points from expert J and 13 from expert P. Ideally more points would have been se-

lected, but due to time constraints the elicitation exercise finished when each expert was

satisfied with the agreement between their virtual field sites and the response curves.

Once the expert has provided a prior distribution for each design point, we convert

these into a prior for the regression parameter β. This could be done using the same

weighted regression approach using Equation 5, but we prefer to use a simulation based

approach. While this takes a little more computational time, it makes no assumptions to

derive pseudo sample sizes, or asymptotic normality assumptions in the GLM estimation

stage.

At each j iteration and for each of the expert’s design points, we sample a probability

of occurrence p̃ij from the distribution chosen by the expert, that is Beta(αi, βi). We

then fit a linear regression model to the logit of these observations, using least squares

to estimate bj in

logit(p̃ij) = b0j + b1jxslope,ib2jxmind,i + b3jx
2
mind,i

+

b4jxaspect,i + b5jx
2
aspect,i

b6jxgeol1,i + b7jxgeol2,i + b8jxgeol3,i.

Here the subscript i represents the ith design point provided by the expert, and j the

jth simulated value. bj is thus one draw from the expert’s prior for β. This sample from

the prior can then be used in a subsequent Bayesian analysis when the analysis employs

a Markov Chain Monte Carlo estimation step. Alternatively, we can summarise the

prior by assuming it comes from a known multivariate distribution, such as multivariate

normal.

The results of the elicitation exercise indicated that in general P’s prior was less

disperse than J’s, although both priors include 0 in the 95% credible interval. Table 2

and Figure 12 compare the two priors.

To investigate the effect on the posterior, we summarised the prior from the ex-

perts by assuming they were multivariate normally distributed, and used the function

MCMClogit from the R package MCMCpack (Martin et al., 2003) to generate the posteriors.

The priors elicited from the expert were reasonably informative, with the poste-

riors using these priors clearly different from the posterior using a uniform improper

prior. This is particularly noticeable with the geology variable. Figure 13 illustrates

the differences.

The reason for the large effect of geology can be seen by examining how the observa-

tions fall into each of the geology classes. As shown in the table below, only two groups

had observed absences, which explains the large negative coefficients for these param-

eters in the posterior with the non-informative priors. Both experts were surprised at

this effect, and this is shown in their posteriors for that parameter (see Figure 13). To

investigate this a little further, we regenerated the priors and posteriors, omitting the
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Figure 12: Comparison of priors for J (blue line) and P (red line).
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Prior/Posterior Summaries: Justine
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Figure 13: Informative prior (broken red line), posterior using the informative prior

(solid red line), and posterior using a non-informative prior (solid green line), for expert

J (top) and expert P (bottom). Note the discrepancies for the geology parameters.
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Expert J Expert P

b0 −10.08 (−46.28,25.33) −25.67 (−56.49,3.27)

b1 0.02 (−0.29, 0.33) 0.07 (−0.05,0.19)

b2 30.79 (−96.76, 159.69) 61.70 (−25.28,148.70)

b3 −23.66 (−129.95, 80.79) −46.80 (−107.30,13.19)

b4 −0.06 (−0.20, 0.07) −0.002 (−0.04,0.05)

b5 1.48e-4 (−2.07e-4,6.04e-4) 5.57e-4 (−1.53e-04,1.23e-04)

b6 3.61 (−14.04, 21.78) 1.69 (−1.86,4.82)

b7 2.20 (−5.81, 10.36) 3.01 (−1.83,7.88)

b8 3.89 (−12.19, 20.59) 2.61 (−1.45,6.82)

Table 2: Comparison of the median values of each expert’s prior, with a 95% credible

interval.

geology variable. From Figure 15 we see that the two experts’ priors become much more

similar, with only a noticeable difference for the aspect parameter. Expert J had fairly

firm beliefs that a northerly aspect would increase the probability of occurrence. This

is reflected in the posterior response curve for that variable (Figure 14). The posterior

response curve is constructed in the same manner as the response curves used in the

elicitation procedure (see Section 5).

This is at odds with the posterior from the non-informative prior, which suggests

higher probabilities at sites with southerly aspects. Although expert P agreed with

expert J with respect to the relationship between aspect and species presence, his prior

was not sufficiently informative to overwhelm the data. The nature of the response

curves become a clearer in the absence of the geology variable. From Figure 16, we

see that both experts expect to see an increase in probability of occurrence as slope

increases. This is not supported by the data with a non-informative prior.

Posterior Response Curves for Aspect
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Figure 14: Expert J expressed a belief that a northerly aspect would increase the prob-

ability of occurrence. This is reflected in the posterior, but is not apparent when a

non-informative prior is used. Although Expert P agreed with expert J in the na-

ture of the response between aspect and probability of occurrence, their prior was not

sufficiently informative to reverse the trend suggested by the data.
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Figure 15: Comparison of priors for J (blue line) and P (red line), with the variable

geology omitted
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Figure 16: Response curves for the model omitting geology. Note that both models with

informative priors suggest an increase in probability as slope increases. The posterior

using the non-informative prior does not support this.
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Geology class Absence Presence

alluviums 0 3

arenites/

sedimentaries

7 13

basalts 0 6

felsites/granites 2 7

Table 3: Distribution of observed presences and absences into each of the four broad

geology groups used in the model.

6 Discussion

This paper addresses the problem of eliciting expert information in the context of geo-

graphic data by proposing a new combination approach that acknowledges the different

structural and predictive skills of experts and their different needs in the elicitation

process. Specialist software was developed that complements familiar workplace GIS

tools used for geographic data. The proposed methodology was used in two quite dif-

ferent experimental situations and statistical models. Although the case studies are

admittedly limited in generality, the strong indication in both experiments was that the

exploitation of the experts’ skills in geographic thinking, and the combination of both

structural and predictive elicitation, was beneficial in terms of ease of use by the experts,

timeliness of elicitation, feedback and satisfaction with the resultant quantification of

information.

In this approach, the structural feedback with the predictive questions suits both

types of experts, so that a pure physiologist will use the points as a means to get to the

curves he wants, a pure field ecologist will not really be interested in the curves at all,

since he has no opinion on the relationship between the species and its environment, he

just knows where it lives. Obviously, most people will be between these extremes, and

this approach caters for these. Moreover, it is better than just adjusting response curves,

since the predictive questions allows us to get a handle on the expert’s prior uncertainty.

It is also better than a solely predictive approach, since it has all the spatial context,

and avoids the expert having to answer questions on esoteric explanatory variables (but

the response curves allow them to check that their answers are consistent).

It is difficult to assess the quality of any elicitation procedure, since differences be-

tween procedures may merely reflect differences in opinions between experts, rather than

a differences due to the methodology. We also have no measurable way of determining

how close the quantification of opinion matches an expert’s true beliefs. Some work

has been done in the area of validation of elicitation procedures. Kadane and Wolfson

(1998) in their survey of the literature cite relevant measurements of reliability

(Wallsten and Budescu 1982), coherence (Lindley et al. 1979) and calibration

(Morgan and Henrion 1990).

In this paper, the aim of the case studies was not to create the most accurate

prediction of house prices or the distribution of the brush-tailed rock wallaby, but rather
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provide an example of how expert opinion can be combined with real data to produce

a statistical model that balances our prior beliefs with what the data tell us. Had

we wished to create an accurate map of either distribution, we may have needed to

spend a considerably longer time collecting data, educating experts and choosing and

organising a suite of explanatory variables. There are very real problems with the sets

of observations, and we have made no mention of how they were sampled, or their

representativeness. That said, the datasets are not atypical of the sort of data faced

in practice, especially by ecologists and particularly when the species in question is

rare or poorly studied. The challenge, then, is not to reject the data as inadequate,

but to make the best of the situation. This work, for example, shows that when the

data suggest a relationship between the response and the environmental variables which

does not make physical sense, the expert opinion can be used to force a compromise

between a believable model and a purely data driven model. The level of compromise

depends on the strength of the prior. When there is less conflict between the prior

and the likelihood, such as when we considered the model with geology omitted in the

species distribution study, then the informative prior acts to increase the precision of

the posterior.

We believe that one key advantage of the approach we have outlined in this paper

is that it allows the expert to make use of contextual, spatial information when ask-

ing questions about the response at various levels of the explanatory variables. The

usefulness of this contextual information depends largely on the expert. In our second

case study, for example, one expert, expert J, with extensive local knowledge, used this

contextual information extensively when developing her prior. Expert P, in contrast,

relied more heavily on the values of the explanatory variables. Our approach is designed

to allow the full spectrum of experts to use our GIS based approach.

O’Hagan (1998) and Craig et al. (1998) make the point that most elicitation exercises

will involve computer assistance, but also that if statisticians are required to write

specialist software each time they wish to elicit expert opinion, then elicitation will

remain a rarely used procedure. More work needs to be done in the development of

general purpose software to encourage others to conduct serious elicitation. The work

we show is in one respect fairly specialised, dealing only with logistic regression in a

spatial context, and showing how it works for one particular species and a given set of

explanatory variables, each of which have been coded in explicitly. We didn’t set out

to create a general tool, but we believe that it would be a suitable model for further,

more generalised approaches. It would be very simple, for example, to use the basis of

this example for different species and a different set of explanatory variable. There is

plenty of scope for further research here, notably how to make it flexible enough to deal

with different statistical models, more than a handful of explanatory variables (since

many variables will present problems for display and interpretation), but perhaps most

interestingly and challenging, how to include variable selection.

Throughout this paper we have referred to the problem as one of regression with

geographic data, rather than using the term spatial regression, since this implies a

model which takes into account the relationship nearby sites may have with each other.

Our description refers to a simpler regression model, where although the variables of
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interest are distributed throughout space we make no attempt to describe the spatial

autocorrelation. We have chosen the simpler model to illustrate an elicitation technique,

but there is no reason why this approach can not be applied to more complex regression

approaches, such as spatial regression.

A final remark, though, is that if expert opinion is going to be useful, then it implies

a limited amount of data, which also suggests that complex models would be unlikely

to be supported. We suggest that every effort be made to keep the model as simple as

possible. The expert model could be considered to be an early stage in the modelling of

the species’ distribution, useful for highlighting areas to collect more data or consider

other approaches. Our aim is to derive the most from our existing data, which includes

expert opinion.
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