
Bayesian Analysis (2007) 2, Number 4, pp. 783–816

A Simulation Approach to Bayesian Emulation

of Complex Dynamic Computer Models

Sourabh Bhattacharya∗

Abstract. In recent times, complex computer models have received wide attention
in scientific research. However, in order to make conventional statistical statements
regarding the scientific research, many expensive runs of the computer model are
usually needed. New statistical theories, making their appearances, hold promise
to alleviate the technical challenges. However, in cases where the underlying com-
plex system is evolving with time, an effective theory for statistical analyses is
lacking. In this paper, we propose a novel Bayesian methodology that extends the
existing methodologies to the case of complex dynamic systems. The approach
described in the paper exploits the recursive nature of dynamic simulation models
to give a more efficient and accurate emulator.

The motivating example, although not a real model for any physical process,
may be thought of as a proxy for a model representing climate change, where
it is of interest to predict, over time t, the four-dimensional proxy time series
y

t
= (temperature, ice melting rate, barren land, CO2 emission). Also available

are proxy observations on deforestation, recorded over time; hence treated as
known. The latter is known as forcing input, denoted by zt. The computer model
is treated as a black box.

Typically, Gaussian processes are used to model unknown computer models,
which we adopt in our article. In order to exploit the recursive nature of dynamic
computer models, we introduce a grid within the range of the unknown function
where the entire dynamic sequence is expected to lie. This grid essentially defines
a look-up table. Our proposed method then assumes that conditional on the
response surface on the grid, and the available training data, the future responses
are approximately independent. Exploiting the properties of Gaussian process,
we justify our proposal theoretically and with ample simulation studies. We also
apply our proposed methodology to the motivating example.

Key words: Gaussian process; Latin hypercube sampling; Markov property;
matrix normal; parallel computing; spatial interpolation

1 Introduction

In scientific studies, mathematical models are widely used to describe complex physical
processes. Actual implementation requires creating complex computer codes, which,
given an input, produce an output. In other words, if x denotes input to a computer
code denoted by η(·), then y = η(x) is the corresponding output. The function η(·) is
deterministic; that is, if xi = xj , then η(xi) = η(xj). The underlying mathematical

∗Bayesian and Interdisciplinary Research Unit, Indian Statistical Institute, Kolkata, India,

mailto:sourabh@isical.ac.in

c© 2007 International Society for Bayesian Analysis ba0008

mailto:sourabh@isical.ac.in

784 Dynamic Emulation

model may be highly complex; this may result in a code that is quite complicated, and
very expensive in terms of computer run-time. In such cases, it becomes a challeng-
ing task, sometimes infeasible, to run the code at many different input values, which
is often necessary for statistical analyses, such as sensitivity analysis (see Saltelli et al.
(2000)) and calibration (see Kennedy and O’Hagan (2001)). One way around the tech-
nical challenge is to reduce the number of runs necessary by means of sophisticated
Bayesian approaches. The essence of the idea, exploited in a series of papers, such
as Haylock and O’Hagan (1996), Kennedy and O’Hagan (2001), Oakley and O’Hagan
(2002), Oakley and O’Hagan (2004), is to regard the underlying code η(·) as unknown,
modeled as a Gaussian process with a specified mean and covariance function, obtain
training samples from the code by actually running the code at some pre-specified in-
puts points, and then obtain the posterior distribution of η(·) conditional on the training
data set. This posterior distribution is called the emulator of the computer code. Note
that, instead of running the actual computer code at all possible input values, it is
only needed to run at some pre-specified input points to obtain the training data set.
Outputs at other input values can be predicted using the posterior distribution, without
running the expensive computer code. Thus, using an emulator of the expensive com-
puter code in the form of the posterior distribution is many times more efficient than
running the actual computer code at all possible input values.

C.1 Dynamic computer code

However, success of the Bayesian approach so far seems to have been limited to computer
codes of the form y = η(x), where for each given input x, there is a fixed output y.
In reality, there are many examples of physical processes that evolve with time. In
other words, the output from the code at time t may become an input to the code
at time t + 1; hence the computer model is dynamic in nature. Moreover, apart from
the standard inputs, there may be “forcing inputs”, describing external influences on
the system and varying with time, and a “constant input”, invariant with respect to
time, and describing fundamental features of the underlying mathematical model. The
constant input and the forcing inputs will be assumed to be recorded over time, or
known. Denoting the forcing inputs at time t by wt, the constant input by c and
writing zt = (c, wt), we note that in these situations, rather than the standard model
y = η(x), the dynamic model of the form yt = η(zt, yt−1) is more appropriate. As an
example, consider a dynamic vegetation model representing forest growth. The input
for the vegetation model includes the biomass, height and leaf of the vegetation, the
availability of water and nutrients, etc. These variables are assumed to be time varying
and unknown, and it is of interest to predict the variables over time. The external forcing
inputs at any time step comprise the weather conditions at that time, for example,
temperature, precipitation, humidity, sunlight. Clearly, these influence the system,
and are also time-varying. However, these are assumed recorded over time, unlike the
variables of interest, biomass, height and leaf of the vegetation, which are not recorded
and need to be predicted. Constants in this model include topographical data, soil
characteristics and parameters of the model equations. One can treat these as invariant
with respect to time. Here yt = (biomass, height, leaf, availability of water, nutrients)t

S. Bhattacharya 785

are the variables of interest that need to be predicted over time, the fixed constants
c = (topographical data, soil characteristics, other parameters), and the forcing inputs,
wt = (temperature, precipitation, humidity, sunlight)t, are assumed recorded over time.
We write, zt = (c,wt). Based on the current input vector, the forcing inputs, and the
constants, a single cycle of the code updates the input vector for the next cycle.

Apart from a suggestion in Kennedy and O’Hagan (2001) there seems to be no ma-
terial available in the current statistical literature associated with dynamic computer
codes. Moreover, the Kennedy-O’Hagan suggestion ignores forcing inputs and further-
more implies a restrictive correlation structure. In this paper we propose an approach
that promises to deal appropriately and effectively with the problem of dynamic com-
puter emulators. But before providing details of our theory for dynamic computer code
emulation we briefly review the theory for emulation of non-dynamic computer models
in Section 2.

2 Available Bayesian approach for non-dynamic computer
code emulation

As indicated in Section 1, the computer code is treated as unknown (rather, as a black
box), and statistically modeled as a Gaussian process with a specified mean and co-
variance structure. By assuming a model for the computer code, we are acknowledging
the uncertainty about it, and the underlying Gaussian process model is expected to
quantify the uncertainty accurately. It is usually assumed that η(·) is a Gaussian pro-
cess with mean function h(·)′β (in particular, for any g, it is usually assumed that
h(g) = (1, g)′) and for any g1, g2 the covariance function is taken to be of the form
σ2c(g1, g2) where σ2 is the process variance, c(·, ·) is the correlation function, usually
taken as c(g1, g2) = exp{−b(g1 − g2)

2} (note that, for any g, c(g, g) = 1), and b is the
smoothness parameter, the latter being associated with the smoothness of the process re-
alizations. The above correaltion function implicitly assumes that the underlying model
for the computer code is infinitely smooth. For details on issues related to smoothness
of a random process and its connection to the associated smoothness parameter, see,
for example, Stein (1999).

Suppose that the computer code is actually run only at input (grid) points G =
(g1, . . . , gn)′ (n may be small for expensive codes) to obtain outputs (η(g1), . . . , η(gn))′.
This is the training data set, which we denote by D. Here we note that the outputs
in D are observed without error, since they arise from the true computer model, not
from the Gaussian process representation of the computer model. However, the actual
mathematical formulation of the problem treats even the training data set as a realiza-
tion from the Gaussian process. It will be explained subsequently why this assumption
makes good sense.

Now, if prediction of the output at any point g(new) is desired, then one simply
computes the posterior [η(g(new)) | D]. If AD is the n-dimensional correlation matrix
corresponding to the training data set D, where c(gi, gj) is the (i, j)th element, and

786 Dynamic Emulation

if the vector (c(·, g1), . . . , c(·, gn))′ is denoted by sD(·) and H′
D = (h(g1), . . . ,h(gn)),

then since (η(g(new)),D) is assumed to be a realisation from the Gaussian process, it is

jointly multivariate normal with mean vector

(

h(g(new))′β
HDβ

)

and covariance matrix

σ2

{(

1 sD(g(new))′

sD(g(new)) AD

)}

. Hence, it follows that the conditional distribution

[η(g(new)) | D] is normal with mean h(g(new))′β + (D − HDβ)′A−1
D sD(g(new)) and

variance σ2{1−sD(g(new))′A−1
D sD(g(new))}. This posterior is marginalised with respect

to posteriors of β and σ2 to arrive at a Student’s t distribution. It is only needed to
estimate the smoothness parameter b, which is usually done by maximum likelihood
methods; we provide details in Section 5. In other words, the posterior predictive
distribution is actually derived conditional on the maximum likelihood estimate of b.

Note that, conditioning on D forces the simulated function to pass through the
points in D. This is because, due to a well-known property of predictors in the case of
Gaussian processes (for a simple exposition, see, for example, pages 56–57 or page 93 of
Santner et al. (2003)), the conditional [η(g(new)) | D] has zero variance if g(new) equals
any input gi of D. So, since D is observed without error, forcing the simulated function
to pass through points in D makes sense. Experiments have indicated that compared to
the standard Monte Carlo approach, which requires many runs of the code, the Bayesian
approach described above is many times more efficient.

The remaining part of our paper is structured as follows. In Section 3 we provide
the motivation of our idea for dynamic computer code emulation using concepts related
to non-random functions. Extension of the concepts described in Section 3 for poste-
rior simulation of any one-dimensional random dynamic sequence, based on Gaussian
process, is outlined in Section 4. Further development, and illustration of the proposed
methodology with a one-dimensional function is detailed in Section 5. We provide
formal and complete details of general, possibly multivariate dynamic computer code
emulation in a Bayesian set up in Section 6. In Section 7 we assess the performance
of our proposed methodology on a real four dimensional dynamic computer model. We
conclude in Section 8.

3 Motivation of the proposed simulation idea for dynamic

computer code emulation

To gain the necessary intuition, let us first consider a known function f(·). Here we use
a notation different from η(·) to emphasize that unlike η(·), which is a random function,
f(·) is a completely known function. In order to obtain a dynamic sequence of length
T , which is of the form x1 = f(x0), x2 = f(x1), . . . , xT = f(xT−1), starting with x0

(here again we use a different notation x instead of y to denote non-random dynamic
sequence), two methods can be envisaged –

(a) Simply use the formula xt = f(xt−1), and

(b) Evaluate first x1 = f(x0); then evaluate f(x) for all x 6= x0. This yields a complete

S. Bhattacharya 787

look-up table of the form {x, f(x)}. Then, since x1 has been obtained, one can simply
find x1 in the first column of the look-up table. Then, the corresponding row of the
second column of the look-up table is the required x2 = f(x1). One simlarly obtains
x3 = f(x2). Thus, in principle, this procedure can be repeated to obtain the entire
dynamic sequence. This can be achieved exactly in practice if the input-output space is
discrete and finite. For continuous input-output spaces the function can not be evaluated
at all possible points. However, it is possible to evaluate the function on a fine grid and
interpolate within the resulting look-up table to obtain an approximate version of the
dynamic sequence. The accuracy of the approximation depends upon how fine the grid
is. Observe that in both cases (a) and (b), given xt−1 and the function f , xt depends
only upon xt−1. Intuitively, this seems to suggest Markov property for corresponding
dynamic emulators based on random processes.

In this paper, we are interested in situations where the true, deterministic function
is unknown (treated as a black box), or too complicated to evaluate at many input
values. As a result, uncertainty regarding the unknown function is quantified by a
random process η(·); as assumed in the literature for modeling computer output, in this
methodological paper we also assume that η(·) is a Gaussian process. Although method
(a) described above does not seem to provide the mathematical intuition necessary for
generating random dynamic sequences from η(·) (since η(·) is random, we can not use
the formula yt = η(yt−1) analogous to xt = f(xt−1)), it will be demonstrated that
method (b) can be generalized in the case of random η(·) to generate random dynamic
sequences of the form y1 = η(y0), y2 = η(y1), . . . , yT = η(yT−1). In this case, since η(·)
is modeled as continuous Gaussian process, a grid will be necessary. Although it may
apparently seem that this will increase a lot of computational burden and may give rise
to a lot of numerical problems, it will be demonstrated that our proposed methodology is
remarkably stable numerically, and not much additional computational cost is involved.
In addition, the methodology we propose is very much amenable to parallel computing.

4 Dynamic simulation in the random function case given
the training data set D

As before, we assume that η(·) is a Gaussian process with mean function h(·)′β and
covariance function σ2c(g1, g2), where c(g1, g2) = exp{−b(g1 − g2)

2}. Given a training
data set D from the true, unknown function, and an initial input value y0, it is necessary
to simulate the dynamic sequence y1 = η(y0), y2 = η(y1), y3 = η(y2), . . . , yT = η(yT−1).
In other words, simulation from the joint posterior distribution [y1 = η(y0), y2 =
η(y1), y3 = η(y2), . . . , yT = η(yT−1) | D] is needed. In order to clarify the key idea
we initially assume that values of all the parameters, namely, β, σ2 and b, are known.

Analogically, as in the case of method (b), we will first simulate the first random vari-
able of the sequence y1 = η(y0), given D. The theory reviewed in Section 2 shows that
the conditional distribution [η(y0) | D] is normal with mean h(y0)

′β + s(y0)
′A−1

D (D −
HDβ) and variance σ2{1−s(y0)

′A−1
D s(y0)}, where the notation is as before. Hence, the

distribution of the first random variable of the dynamic sequence is completely known.

788 Dynamic Emulation

To proceed with simulation of the remaining dynamic sequence, we first need to con-
struct a grid G∗ = (g∗1 , . . . , g∗N)′ which is fine enough (the term ‘fine’ is arbitrary at this
moment; we will return to this subsequently) to approximate the input space. On the
grid G∗ we define a vector of latent random variables D∗ = (η(g∗1), . . . , η(g∗N))′ . Evi-
dently, due to the Gaussian process assumption, D∗ is jointly distributed as multivariate
normal.

Given y1 = η(y0), we simulate D∗ from [D∗ | η(y0) = y1,D]. This is an N -variate
normal distribution with mean vector

E[D∗ | η(y0) = y1,D] = HD∗β + A
(12)
(D∗,D)

{

A
(22)
(D∗,D)

}−1
{(

D

y1

)

−
(

HDβ

h(y0)
′β

)}

(C.1)
and covariance matrix

var[D∗ | η(y0) = y1,D] = σ2

{

A
(11)
(D∗,D) −A

(12)
(D∗,D)

(

A
(22)
(D∗,D)

)−1

A
(21)
(D∗,D)

}

(C.2)

In the above,

A
(11)
(D∗,D) = AD∗ , (C.3)

A
(22)
(D∗,D) =

(

AD s(y0)
s(y0)

′ 1

)

, (C.4)

A
(12)
(D∗,D) =











c(g∗1 , g1) c(g∗1 , g2) . . . c(g∗1 , gn) c(g∗1 , y0)
c(g∗2 , g1) c(g∗2 , g2) . . . c(g∗2 , gn) c(g∗2 , y0)

...
...

...
...

...
c(g∗N , g1) c(g∗N , g2) . . . c(g∗N , gn) c(g∗N , y0)











(C.5)

Note that the above conditional distribution follows from the fact that the joint dis-

tribution of (D∗,D, η(y0)) is multivariate normal with mean vector





HD∗β

HDβ

h(y0)
′β



 and

covariance matrix σ2A(D∗,D) where

A(D∗,D) =

(

A
(11)
(D∗,D) A

(12)
(D∗,D)

A
(21)
(D∗,D) A

(22)
(D∗,D)

)

(C.6)

Once a realization of D∗ is obtained from the above conditional, we then simulate
yt+1 from [η(yt) | D∗,D, yt], which, for each t = 1, . . . , T − 1, is a univariate normal
distribution with mean and variance given, respectively, by

µt = h(yt)
′β + (Dn+N −H(D∗,D)β)′A−1

(D∗,D)s(D∗,D)(yt) (C.7)

σ2
t = σ2{1− s(D∗,D)(yt)

′A−1
(D∗,D)s(D∗,D)(yt)} (C.8)

In the above, Dn+N =

(

D

D∗

)

is the augmented matrix,

H′
(D∗,D) = [h(g1), . . . ,h(gn),h(g∗1), . . . ,h(g∗N)],

s(D∗,D)(·) = [c(·, g1), . . . , c(·, gn), c(·, g∗1), . . . , c(·, g∗N)]′

S. Bhattacharya 789

The resulting sequence is an approximate realization from the posterior distribution
[y1 = η(y0), y2 = η(y1), . . . , yT = η(yT−1) | D], as required. The procedure must be
repeated many times to generate as many random sequences as desired to learn the
posterior distribution of the dynamic sequence. Obviously, each random sequence is
independent of each other. A very important computational property follows, thanks
to this independence of the random sequences. The independence renders our dynamic
emulator parallelisable, that is, the random sequences can be generated in independent
parallel processors, although the original dynamic computer code may not be parallelis-
able. This completes the basic formulation of the problem and our methodology.

As already indicated in Section 2, note here that, if the grid G∗ already contains
yt, then D∗ contains η(yt) and [η(yt) | D∗, yt] = δη(yt), where δx denotes point mass
at x. In other words, the conditional gives point mass to η(yt). However, since yt is a
continuous random variable and G∗ is a set of discrete points, yt /∈ G∗ with probability
1, and a simulation from [η(yt) | D∗, yt] can be viewed as spatial interpolation within
the set D∗; see, for example, Cressie (1993), Stein (1999). By making G∗ more and
more fine the above conditional can be made to approach δη(yt).

In keeping with the motivation obtained from deterministic methods (a) and (b)
of obtaining the true dynamic sequence, we assume that, given D∗, simulation of the
dynamic sequence exhibits Markov property. In other words, we assume that simulation
of yt+1 = η(yt) given function values D∗ and the training data set D depends only
upon yt. That is, [η(yt) | D∗,D, yt = η(yt−1), yt−1 = η(yt−2), . . . , y1 = η(y0)] = [η(yt) |
D∗,D, yt]. Although this is an assumption associated with our methodology, it will
be shown that our proposal yields very accurate predictions. We remark that, D∗

may also be interpreted as a set of latent/auxiliary variables brought in to facililate
simulation. However, marginalization over D∗ does not preserve this Markov property,
and computation becomes difficult and unstable. Details are provided in the Appendix.

So far we have assumed that the parameters, β, σ2 and the smoothness parameter b,
are known. Moreover, we have not yet described how the forcing inputs zt are related to
our proposed methodology, or the cases where the random function of interest is mul-
tidimensional. In Section 5 we illustrate our methodology, providing further necessary
methodological details, on a simple one-dimensional function, with one-dimensional in-
put space. In Section 6 we extend the methodology to the case of multidimensional
functions, with multidimensional input space. Forcing inputs (which may also be mul-
tidimensional) are incorporated within the general methodology that we develop in
Section 6.

5 Assessment of the performance of the proposed method

using a one-dimensional function with a single input

In this section we assume that the true function is given by f(x) = cos(x + sin(x)),
and that starting with an initial value, prediction of the dynamic sequence induced by
the above function is needed. This function has been used by SenGupta and Ugwuowo

790 Dynamic Emulation

(2006) in the context of circular-linear regression modeling. Observe that this function
is differentiable of all orders (analytic), and hence, infinitely smooth. This example
thus fits our assumption, and with this we demonstrate our approach, clarifying further
methodological details as we proceed.

C.1 Training data set

Using Latin hypercube sampling, we obtain n = 6 inputs required for creating the
training data set D of size n = 6. These are g1 = −0.258, g2 = 0.066, g3 = 0.223, g4 =
0.393, g5 = 0.781, g6 = 0.960. Corresponding to these inputs, the outputs obtained
by directly evaluating the true function f(·) at the input values are cos(g1 + sin(g1)) =
0.871, cos(g2+sin(g2)) = 0.991, cos(g3+sin(g3)) = 0.903, cos(g4+sin(g4)) = 0.714, cos(g5+
sin(g5)) = 0.085, cos(g6 +sin(g6)) = −0.207. Hence, the training data set D is observed
without error.

We now assume that, starting with the initial value y0, we need to predict the dy-
namic sequence yt = f(yt−1), pretending that the function f(·) is unknown. As before,
we denote by η(·) the Gaussian process model for the unknown function. The Gaussian
process has mean function h(·)′β (where h(g) = (1, g)′ for any g) and covariance func-
tion of the form σ2c(gi, gj), where c(gi, gj) = exp

{

−b(gi − gj)
2
}

for any i, j, and b is
the smoothness parameter.

C.2 Formulation of the problem

With the above set up, the likelihood of the unknown parameters (β, σ2, b), given the
training data set D corresponds to an n-variate Gaussian density, the logarithm of which
is, up to a constant, given by

`(β, σ2, b) = −n log(σ2) − log(|R|) − (D −HDβ)′R−1(D −HDβ)/σ2 (C.9)

In the above equation, R depends upon the smoothness parameter b.

Since it is generally extremely difficult to elicit meaningful prior information about
the unknown parameters (β, σ2), the prior distribution is chosen to be non-informative.
Specifically, we choose the prior as

π(β, σ2) ∝ 1

σ2
(C.10)

Marginalizing the conditional [η(y0) | D, β, σ2, b] with respect to posteriors of β and
σ2, we obtain, [η(y0) | D, b] ∼ T1(µ2(y0), c2(y0, y0)σ̂

2
GLS , n − 2), a univariate Student’s

t distribution where the parameters are given by

µ2(y0) = h(y0)
′
β̂GLS + (D −HDβ̂GLS)′A−1

D sD(y0) (C.11)

c2(y0, y0) = 1 − sD(y0)A
−1
D s(y0)

+ [h(y0) −H′
DA−1

D sD(y0)]
′(H′

DA−1
D HD)−1

[h(y0) −H′
DA−1

D sD(y0)] (C.12)

S. Bhattacharya 791

In the above,

β̂GLS = (H′
DA−1

D HD)−1(H′
DA−1

D D)

and

(n − 2)σ̂2
GLS = (D −HDβ̂GLS)′A−1

D (D −HDβ̂GLS).

As estimate of b can be obtained by maximizing (C.9) with respect to b after sub-

stituting β = β̂GLS and σ2 = σ̂2
GLS in (C.9). As a result of the substitutions, the

log-likelihood takes the simplified form

`(b) = −n log(σ̂2
GLS) − log(|R|) (C.13)

This form has been recommended by Santner et al. (2003). Note again, that both σ̂2
GLS

and R depend upon the smoothness parameter b.

Letting D∗ = (η(g∗1), . . . , η(g∗N))′, we note that the conditional distribution of [D∗ |
b,D, η(y0)] is multivariate Student’s t distribution. It is easy to describe this multivari-
ate distribution using univariate conditional distributions, which are one-dimensional
analogues of the multivariate version presented in Section C.4. In other words, we need
the conditional distribution of [η(g∗

j) | b,D, η(y0), η(g∗1), . . . , η(g∗j−1)], for j = 1, . . . , N(=
10). Define

D
((n+j)×1)
j = (η(g1), . . . , η(gn), η(y0), η(g∗1), . . . , η(g∗j−1))

′ (C.14)

H′
j,D = [h(g1), . . . ,h(gn),h(y0),h(g∗1), . . . ,h(g∗j−1)] (C.15)

s(j,D)(·) = [c(·, g1), . . . , c(·, gn), c(·, y0), c(·, g∗1), . . . , c(·, g∗j−1)]
′ (C.16)

A(j,D) =

























c(g1, g1) . . . c(g1, gn) c(g1, y0) c(g1, g
∗
1) . . . c(g1, g

∗
j−1)

...
...

...
...

...
...

...
c(gn, g1) . . . c(gn, gn) c(gn, y0) c(gn, g∗1) . . . c(gn, g∗j−1)
c(y0, g1) . . . c(y0, gn) c(y0, y0) c(y0, g

∗
1) . . . c(y0, g

∗
j−1)

c(g∗1 , g1) . . . c(g∗1 , gn) c(g∗1 , y0) c(g∗1 , g∗1) . . . c(g∗1 , g∗j−1)
...

...
...

...
...

...
...

c(g∗j−1, g1) . . . c(g∗j−1, gn) c(g∗j−1, y0) c(g∗j−1, g
∗
1) . . . c(g∗j−1, g

∗
j−1)

























(C.17)

Then it follows that

[η(g∗j) | b,D, η(y0), η(g∗1), . . . , η(g∗j−1)] ∼ T1

(

µ2,j(g
∗
j), c2,j(g

∗
j , g∗j)σ̂2

GLS,j ; n + j − 2
)

(C.18)
which is a univariate Student’s t distribution with location parameter µ2,j(g

∗
j), scale pa-

rameter c2,j(g
∗
j , g∗j)σ̂2

GLS,j , and n+j−2 degrees of freedom. The form of the parameters

792 Dynamic Emulation

are given below.

µ2,j(·) = h(·)′β̂GLS,j + (Dj −Hj,Dβ̂GLS,j)
′A−1

j,Dsj,D(·) (C.19)

c2,j(g1, g2) = c1,j(g1, g2) + [h(g1) −H′
j,DA−1

j,Dsj,D(g1)]
′(H′

j,DA−1
j,DH)−1

[h(g2) −H′
j,DA−1

j,Dsj,D(g2)] (C.20)

In the above, c1,j(g1, g2) = c(g1, g2) − s(j,D)(g1)
′
A−1

(j,D)s(j,D)(g2), and

β̂GLS,j = (H′
j,DA−1

j,DHj,D)−1(H′
j,DA−1

j,DDj) (C.21)

(n + j − 2)σ̂2
GLS,j = (Dj −Hj,Dβ̂GLS,j)

′A−1
j,D(Dj −Hj,Dβ̂GLS,j) (C.22)

In fact, the distribution of [D∗ | b,D, η(y0)] is a multivariate Student’s t distribution,
and it is possible to simulate directly from any multivariate Student’s t distribution,
instead of simulating successively from the conditionals (C.18). However, our intention
is to generalize, in a straightforward manner, this methodology of simulating dynamic
sequences from one-dimensional functions to simulating dynamic sequences from multi-
dimensional functions, which we provide in Section 6. In the latter case, the Student’s t
distribution will be matrix-variate, and there it is easy to simulate from the successive
conditionals, which are multivariate Student’s t distributions.

For t = 2, . . . , T , one can show, by marginalizing the conditional distribution [η(yt−1) |
D∗,D, β, σ2, b] with respect to the posterior [β, σ2 | D,D∗, b] that,

[η(yt−1) | b,D,D∗] ∼ T1

(

µ2,n+N(·), c2,n+N (·, ·)σ̂2
GLS,n+N ; n + N − 2

)

(C.23)

In the above,

µ2,n+N (·) = h(·)′β̂GLS,n+N + (Dn+N −H(D∗,D)β̂GLS,n+N)′A−1
(D∗,D)s(D∗,D)(·)

(C.24)

c2,n+N(g1, g2) = c1,n+N (g1, g2) + [h(g1) −H′
(D∗,D)A

−1
(D∗,D)s(D∗,D)(g1)]

′

(H′
(D∗,D)A

−1
(D∗,D)H(D∗,D))

−1[h(g2) −H′
(D∗,D)A

−1
(D∗,D)s(D∗,D)(g2)]

(C.25)

In (C.25), c1,n+N (g1, g2) = c(g1, g2) − s(D∗,D)(g1)
′
A−1

(D∗,D)s(D∗,D)(g2).

β̂GLS,n+N =

(H′
(D∗,D)A

−1
(D∗,D)H(D∗,D))

−1(H′
(D∗,D)A

−1
(D∗,D)Dn+N) (C.26)

(n + N − 2)σ̂2
GLS,n+N =

(Dn+N −H(D∗,D)β̂GLS,n+N)′A−1
(D∗,D)(Dn+N −H(D∗,D)β̂GLS,n+N) (C.27)

S. Bhattacharya 793

C.3 Implementation and results

We return to the univariate example where the true function is f(x) = cos(x + sin(x)),
which yielded the training data set D. We now need to predict dynamic sequences
corresponding to this function using the Gaussian process based statistical methodology
developed above, without using the function f(x) = cos(x + sin(x)) any further. Note
that, in order to implement our methodology, we need to estimate the smoothness
parameter b. In fact, it is possible to compute a posterior distribution of b, but it is
computationally convenient to estimate b using maximum likelihood methods, and then
treat the estimated value, denoted by b̂ as a fixed constant. Kennedy and O’Hagan
(2001) found that the uncertainty in the smoothness parameter b is not very important.

The log-likelihood (C.13) is shown in Figure 1. We chose as the maximum likelihood
estimate of b the value which approximately maximizes the log-likelihood, and also
avoids numerical instabilities. The choice b̂ = 50 seems to meet these requirements.
However, we have also experimented with many other plausible choices of b; the results
were quite robust to these choices.

We describe implementation of our methodology with two dynamic sequences ob-
tained from the same function f(x) = cos(x + sin(x)), started with two different initial
values of y0.

To obtain the grid G∗, we fix the grid size N = 20, and again use Latin hypercube
sampling to obtain G∗ = {−0.291,−0.179,−0.125,−0.066,−0.032, 0.080, 0.102, 0.186,
0.224, 0.340, 0.352, 0.468, 0.483, 0.549, 0.668, 0.722, 0.786, 0.813, 0.890, 0.999}.

We also experimented with grid size N varying between 20 and 30, with different
sets G∗ of increasing size, but the final prediction results remained almost exactly the
same as those obtained with N = 20 and the particular choice of G∗ as given above.
We conclude that N = 20 is adequate for this experiment.

Starting with the initial value y0 = 0.55 we simulated 500 dynamic sequences,
following our proposal. The true sequence obtained by directly using the formula
yt = cos(yt−1 + sin(yt−1)) is compared with the summaries of the dynamic posterior
simulation. The results, for length of the dynamic sequence T = 20, are displayed in
Figure 2. In the figure, the thin, solid line stands for the true dynamic sequence. The
dotted line denotes the mean posterior dynamic sequence, and the thick, black lines are
the approximate 95% credible intervals. Clearly, the entire true sequence falls within
the approximate 95% credible intervals, with the mean posterior sequence estimating
the true sequence quite accurately. In fact, although we have shown results for T = 20
time points only, this is due to clarity of visualization. We have obtained results for
T = 100 (in fact, could have obtained predictions for any value of T , however large)
and the results have been as ecouraging as the first 20 time points. We also attempted
to predict the dynamic sequence after analytically integrating out D∗, and using the
simplified form of the marginal posterior corresponding to (C.67), as provided in the
Appendix. However, just after T = 6, numerical problems appear and the methodology
completely breaks down. Also, we could not produce more than 100 posterior dynamic
sequences due to numerical problems. Figure 3 shows the predictions of the first 6 values

794 Dynamic Emulation

of the dynamic sequence, based on 100 simulations. We note, after comparing Figures 2
and 3, that, as discussed in the Appendix, the posterior predictions obtained after inte-
grating out D∗, although limited, are very much similar to those obtained by retaining
D∗. However, since integrating out D∗ seems to be useless for practical purposes, we
shall not pursue the corresponding methodology any further.

We now consider a second experiment, with a dynamic sequence starting at y0 = 1.4.
Figure 4 shows the results of this experiment, with T = 20 (again, we had conducted
the experiment for T = 100, but just for the sake of visualization, we chose to display
results corresponding to 20 time points only). Somewhat surprisingly, the predictions
this time are very inaccurate, with most part of the true dynamic sequence not falling
within the approximate 95% credible intervals. An investigation of this phenomenon
led to some important observations.

For both the experiments, we plotted the training data as well as the true dynamic
sequence on the true function f(x) = cos(x+sin(x)). The function and the training data
set are certainly the same in both cases, but the dynamic sequences in the two cases
are different, due to the different initial values. The diagrams corresponding to initial
values y0 = 0.55 and y0 = 1.4 are shown in Figures 5 and 6 respectively. The circles in
the graphs indicate the plots of yt; t = 2, . . . , T against the corresponding input values
yt; t = 1, . . . , T −1. The plus signs denote the plots of the training data f(g1), . . . , f(gn)
against the corresponding input values g1, . . . , gn. From Figure 5, which corresponds
to y0 = 0.55, it is clear that the training data provides a lot of information about the
dynamic sequence, in that both the training data and the true dynamic sequence come
from the same part of the function, and they are evenly distributed on the function. In
other words, the (spatial) interpolation is likely to be quite accurate. Hence, it is not
surprising that the prediction of the dynamic sequence with initial value y0 = 0.55 has
been very encouraging.

On the other hand, Figure 6 tells a different story. The dynamic sequence started at
y0 = 1.4 mainly forms two widely separated clusters, disallowing any scope for interpo-
lation. There is however, some additional subtlety inolved, which is quite important. It
is to be noted that in the case of y0 = 0.55, the range of the training data set includes y0,
while in the case of y0 = 1.4, the training data set excludes y0 from its range. Prediction
of η(y0), given D is an interpolation problem in the former case, while it is a problem
of extrapolation in the latter situation. The mean square error of prediction, when in-
terpolating, must be no bigger than when extrapolating, so that interpolating is easier
in this sense (Stein (1999), page 76). Hence, in the case of extrapolation, if y1 = η(y0)
is predicted inaccurately (which is likely, as discussed in details by Stein (1999)), then
the predictions of yt = η(yt−1); t = 2, . . . , T are also likely to be inaccurate, due to
their successive dependence on the previous predictions. It can be seen from Figure
4 that indeed η(y0) has been predicted inaccurately. This probably explains the poor
performance of the dynamic simulation method when y0 = 1.4 with G excluding it from
its range.

It is to be noted that, due to sample path continuity of the smooth Gaussian process,
the dynamic sequences are expected to be closely clustered together, occupying a very

S. Bhattacharya 795

small part of the function. Hence, it is natural for the user to select a training data
set from a small region where the dynamic sequence is expected to lie. However, if the
training data is chosen such that it excludes a part of the function where the initial value
lies, then the prediction is likely to be unreliable. We do not view this as a drawback
of our proposed methodology; indeed, it is obviously a simple task to select a training
data set that comes from, say, a neighborhood of the initial value. We demonstrate this
next.

We select G = {−0.651,−0.102, 0.334, 0.499, 1.074, 1.450}; hence D = {0.309, 0.979,
0.789, 0.560,−0.374,−0.765}. These 6 training data points are plotted on the true func-
tion cos(x + sin(x)), along with the dynamic sequence; see Figure 7. The training data
set does seem to be informative about the true dynamic sequence to be predicted. Hence,
as expected, our proposed methodology predicts the true sequence quite accurately; see
Figure 8 for details. We also experimented by taking a larger training data set consisting
of 10 training data points, G = {−0.686,−0.414,−0.110, 0.153, 0.302, 0.451, 0.670, 0.929,
1.26, 1.365} and hence D = {0.250, 0.685, 0.976, 0.954, 0.825, 0.631, 0.277,−0.158,−0.597,
−0.698}. Figure 9, which shows plots of these points on the function cos(x + sin(x))
along with the true dynamic sequence, indicates that the training data set is expected
to predict the true dynamic sequence very accurately. Indeed, Figure 10, which shows
the prediction of the dynamic sequence with the above 10 training data points, suggest
that the expectation is quite justified.

We now generalize the methodology provided in the case of one-dimensional functions
with one-dimensional input space, to multidimensional functions with multidimensional
input space, and also show how to take forcing inputs into account.

6 Complete methodological details for general dynamic
computer code emulation

For t = 1, . . . , T , let us denote by yt a p-dimensional uncertain (random) output cor-
responding to a p-dimensional function treated as a black box, and let zt be the q-
dimensional non-random forcing input at time t. Recall that, the forcing inputs consist
of constant inputs as well as time-varying inputs; but since both are assumed to be
completely recorded over time, they will be treated as non-random. Then we have the
relationship

yt = η(zt,yt−1) = η(vt) (C.28)

where vt
′ = (zt

′,yt−1
′) and η(·) = (η1(·), . . . , ηp(·))′ is the unknown p-dimensional

random function, represented as a p-variate Gaussian process where the mean function
is given by

E [η(·)] = B′h(·) (C.29)

and, for any (p + q) dimensional input vectors g1,g2, the covariance function is given
by

cov(η(g1), η(g2)) = c(g1,g2)Σ

= exp{−(g1 − g2)
′R(g1 − g2)}Σ (C.30)

796 Dynamic Emulation

In (C.29) and (C.30), B = (β1, . . . , βp), where, for j = 1, . . . , p, βj is an m-dimensional

column vector. Hence, B is a matrix with m rows and p columns; h(m×1)(·) =
(h1(·), . . . , hm(·))′, where, for i = 1, . . . , m, hi(·) could be any function. For exam-
ple, choosing m = 2, we may take, h1(g) = 1 and h2(g) = g for all g. In (C.30) R is a
diagonal matrix consisting of (p + q) smoothness parameters.

C.1 The training data set

The computer code is run on a pre-selected design set G = (g′
1, . . . ,g

′
n)′ (here we write

g
{(p+q)×1}
k

′
= (u

(p×1)
1k

′
,u

(q×1)
2k

′
), which is of the same form and dimensionality as vt

′),
to obtain the training data matrix D = [ηj(gk)]. In other words, D is given by

D(n×p) =









η1(g1) η2(g1) · · · ηp(g1)
η1(g2) η2(g2) · · · ηp(g2)
· · · · · · · · · · · ·

η1(gn) η2(gn) · · · ηp(gn)









The objective is to obtain, for each t = 1, . . . , T , the posterior distribution of yt, given
D.

Writing H
(m×n)
D

′
= [h(m×1)(g1), . . . ,h

(m×1)(gn)] and A
(n×n)
D = [c(gr,g`)], it follows

from the Gaussian process assumption of η(·) that D is matrix normal, given by

[D | B, Σ,R] ∼ Nn,p(HDB,AD,Σ) (C.31)

By the above notation we mean that HDB is the mean matrix of D, AD is the left
covariance matrix, and Σ is the right covariance matrix. The r-th row of D is multi-
variate normal with mean being the corresponding row of the mean matrix HDB and
covariance matrix Σ. Rows r and ` of D has covariance matrix c(gr,g`)Σ. Similarly,
the `-th column of D is distributed as multivariate normal with mean being the `-th
column of HDB and with covariance matrix σ2

` AD, where σ2
` denotes the `-th diagonal

element of Σ. More generally, we define the (r, `)-th element by σr,`, with σ`,` = σ2
` .

The covariance between columns r and ` is given by the matrix σr,`AD. For further
details regarding matrix normal distributions, see Dawid (1981), Carvalho and West
(2007), and the references therein.

C.2 Posterior predictive distribution of the output given the data

Letting now sD(·) = [c(·,g1), . . . , c(·,gn)]′ it follows that [η(·) | B,Σ,R,D] is a p-variate
normal distribution with mean function

µ1(·) = B′h(·) + (D −HDB)′A−1
D sD(·) (C.32)

and the covariance function, for any (p + q)-dimensional g1,g2, is given by c1(g1,g2)Σ,
where

c1(g1,g2) = c(g1,g2) − sD(g1)
′
A−1

D sD(g2) (C.33)

S. Bhattacharya 797

C.3 Posterior predictive distribution of η(·) after marginalizing with
respect to nuisance parameters B and Σ

Using the prior π(B,Σ) ∝| Σ |−(p+1)/2, it follows that

[B | Σ,R,D] ∼ Nm,p(B̂GLS, (H′
DA−1

D HD)−1,Σ) (C.34)

In the above, B̂GLS = (H′
DA−1

D HD)−1(H′
DA−1

D D); note that this can be interpreted
as the generalized least square (GLS) estimate. Marginalizing the conditional [η(·) |
B,Σ,R,D] with respect to (C.34) it can be shown that [η(·) | Σ,R,D] is a p-variate
normal distribution given by

[η(·) | Σ,R,D] ∼ Np(µ2(·), c2(·, ·)Σ) (C.35)

where

µ2(·) = B̂
′

GLSh(·) + (D −HDB̂GLS)′A−1
D sD(·) (C.36)

c2(g1,g2) = c1(g1,g2) + [h(g1) −H′
DA−1

D sD(g1)]
′(H′

DA−1
D HD)−1

[h(g2) −H′
DA−1

D sD(g2)] (C.37)

Writing (n − m)Σ̂GLS = (D − HDB̂GLS)′A−1
D (D − HDB̂GLS) (equivalently, (n −

m)Σ̂GLS = D′MD, with M = A−1
D −A−1

D HD(H′
DADHD)−1H′

DA−1
D), it can be shown

that the posterior distribution of Σ, given R and D is inverse Wishart with parameters
(n − m)Σ̂GLS and n − m (degrees of freedom). Integrating (C.35) with respect to the
posterior of Σ, we obtain the following p-variate Student’s t distribution

[η(·) | R,D] ∼ Tp

(

µ2(·), c2(·, ·)Σ̂GLS; n − m
)

(C.38)

The smoothness parameters, the diagonal elements of R, are estimated by maximum
likelihood methods, and subsequent calculations are carried out conditional on this
estimated value, as the form of (C.38) suggests.

C.4 Simulation of the set of latent variables D∗ in the general set up

From (C.38) it is clear that for posterior simulation of the first value of the random
sequence {y1 = η(v1),y2 = η(v2), . . . ,yT = η(vT)}, we must simulate y1 = η(v1)

from Tp

(

µ2(v1), c2(v1,v1)Σ̂GLS ; n − m
)

. We next need to simulate D∗ from [D∗ |
R,D, η(v1)], given G∗ = (g∗

1, . . . ,g
∗
N)′, where, for j = 1, . . . , N , input g∗

j is of di-
mensionality p + q. Note that the above conditional is a matrix-variate Student’s t
distribution; it will be convenient to simulate D∗ by successively simulating from the
conditional distribution [η(g∗

j) | R,D, η(v1), η(g∗
1), . . . , η(g∗

j−1)], for j = 1, . . . , N . Be-
fore providing the explicit form of this p-variate Student’s t distribution, let us first

798 Dynamic Emulation

define

D
((n+j)×p)
j =

























η1(g1) η2(g1) · · · ηp(g1)
...

...
...

...
η1(gn) η2(gn) · · · ηp(gn)
η1(v1) η2(v1) · · · ηp(v1)
η1(g

∗
1) η2(g

∗
1) · · · ηp(g

∗
1)

...
...

...
...

η1(g
∗
j−1) η2(g

∗
j−1) · · · ηp(g

∗
j−1)

























(C.39)

H′
j,D = [h(g1), . . . ,h(gn),h(v1),h(g∗

1), . . . ,h(g∗
j−1)] (C.40)

s(j,D)(·) = [c(·,g1), . . . , c(·,gn), c(·,v1), c(·,g∗
1), . . . , c(·,g∗

j−1)]
′ (C.41)

A(j,D) =

























c(g1,g1) . . . c(g1,gn) c(g1,v1) c(g1,g
∗
1) . . . c(g1,g

∗
j−1)

...
...

...
...

...
...

...
c(gn,g1) . . . c(gn,gn) c(gn,v1) c(gn,g∗

1) . . . c(gn,g∗
j−1)

c(v1,g1) . . . c(v1,gn) c(v1,v1) c(v1,g
∗
1) . . . c(v1,g

∗
j−1)

c(g∗
1,g1) . . . c(g∗

1,gn) c(g∗
1,v1) c(g∗

1,g
∗
1) . . . c(g∗

1,g
∗
j−1)

...
...

...
...

...
...

...
c(g∗

j−1,g1) . . . c(g∗
j−1,gn) c(g∗

j−1,v1) c(g∗
j−1,g

∗
1) . . . c(g∗

j−1,g
∗
j−1)

























(C.42)

Then it follows that

[η(g∗
j) | R,D, η(v1), η(g∗

1), . . . , η(g∗
j−1)] ∼ Tp

(

µ2,j(·), c2,j(·, ·)Σ̂GLS,j; n + j − m
)

(C.43)
where

µ2,j(·) = B̂
′

GLS,jh(·) + (Dj −Hj,DB̂GLS,j)
′A−1

j,Dsj,D(·) (C.44)

c2,j(g1,g2) = c1,j(g1,g2) + [h(g1) −H′
j,DA−1

j,Dsj,D(g1)]
′(H′

j,DA−1
j,DH)−1

[h(g2) −H′
j,DA−1

j,Dsj,D(g2)] (C.45)

In the above, c1,j(g1,g2) = c(g1,g2) − s(j,D)(g1)
′
A−1

(j,D)s(j,D)(g2), and

B̂GLS,j = (H′
j,DA−1

j,DHj,D)−1(H′
j,DA−1

j,DDj) (C.46)

(n + j − m)Σ̂GLS,j = (Dj −Hj,DB̂GLS,j)
′A−1

j,D(Dj −Hj,DB̂GLS,j) (C.47)

It is clear from the above expressions that for simulation of each successive η(gj), it is
only necessary to successively augment the quantities (C.39), (C.40), (C.41), (C.42),
(C.44), (C.45), (C.46), (C.47) with the immediately preceding simulation η(gj−1).
Hence, simulation of D∗ is computationally efficient.

S. Bhattacharya 799

C.5 Simulation of the posterior dynamic sequence given D and D∗

Once we have obtained a realization of D∗, we can then proceed to simulate yt from

[η(vt) | R,D,D∗]. We let Dn+N =

(

D

D∗

)

be the augmented matrix,

H′
(D∗,D) = [h(g1), . . . ,h(gn),h(g∗

1), . . . ,h(g∗
N)],

s(D∗,D)(·) = [c(·,g1), . . . , c(·,gn), c(·,g∗
1), . . . , c(·,g∗

N)]′, and

A(D∗,D) =

(

A
(11)
(D∗,D) A

(12)
(D∗,D)

A
(21)
(D∗,D) A

(22)
(D∗,D)

)

In the above, A
(11)
(D∗,D) = AD, A

(22)
(D∗,D) = AD∗ , and the (i, j)-th element of A

(12)
(D∗,D) =

A
(21)
(D∗,D)

′
is c(gi,g

∗
j), for i = 1, . . . , n and j = 1, . . . , N . It follows that, for t = 2, . . . , T ,

[η(vt) | R,D,D∗] ∼ Tp

(

µ2,n+N (·), c2,n+N (·, ·)Σ̂GLS,n+N ; n + N − m
)

(C.48)

In the above,

µ2,n+N (·) = B̂
′

GLS,n+Nh(·) + (Dn+N −H(D∗,D)B̂GLS,n+N)′A−1
(D∗,D)s(D∗,D)(·)

(C.49)

c2,n+N (g1,g2) = c1,n+N (g1,g2) + [h(g1) −H′
(D∗,D)A

−1
(D∗,D)s(D∗,D)(g1)]

′

(H′
(D∗,D)A

−1
(D∗,D)H(D∗,D))

−1[h(g2) −H′
(D∗,D)A

−1
(D∗,D)s(D∗,D)(g2)]

(C.50)

In (C.50), c1,n+N (g1,g2) = c(g1,g2) − s(D∗,D)(g1)
′
A−1

(D∗,D)s(D∗,D)(g2). In (C.49) and

(C.48), B̂GLS,n+N and Σ̂GLS,n+N are given by the following:

B̂GLS,n+N =

(H′
(D∗,D)A

−1
(D∗,D)H(D∗,D))

−1(H′
(D∗,D)A

−1
(D∗,D)Dn+N) (C.51)

(n + N − m)Σ̂GLS,n+N =

(Dn+N −H(D∗,D)B̂GLS,n+N)′A−1
(D∗,D)(Dn+N −H(D∗,D)B̂GLS,n+N) (C.52)

Using the above expressions, one can easily simulate an approximate realization
from the posterior distribution of the dynamic sequence. Obviously, the simulation
method must be repeated, starting with a new realization of [η(v1) | R,D], to obtain
the approximate joint posterior distribution of the dynamic sequence (and certainly the
marginal posterior distributions as well).

At the first glance, the simulation method, particularly in the general set up, may
seem computationally burdensome because of the complicated looks of the expressions.
We assure, however, that this is not actually the case. Note that, since the smoothness

800 Dynamic Emulation

parameters in R are held fixed, the matrix A(D∗,D) remains fixed as well. This implies
that simulation from [η(vt) | R,D,D∗] requires inversion of the matrix A(D∗,D) only

once, before even beginning the implementation of the simulation algorithm. Thus
there is no need to recompute the inverse of the matrix for each simulation, easing
computational burden remarkably. Clearly, the computation remains efficient even if the
matrix A(D∗,D) is of large size (which will be the case if N is large). Moreover, since the
grid G∗ = (d∗

1, . . . ,d
∗
N)′ is discrete, and will be chosen by the implementor, numerical

difficulties associated with the inversion of the matrix can be very easily avoided, unless
the implementor chooses to select an arbitrarily fine grid. In this context, it is useful
to remark that selecting an arbitrarily fine grid does not necessarily result in more
accuracy as compared to a relatively less fine, but judiciously chosen grid; this has
already been observed in the case of the one-dimensional example given in Section 5.
The same phenomenon will also be observed in the case of the 4-dimensional example
provided in Section 7. Indeed, there are formal approaches to selecting an optimal set
of design (input) points and there is no reason to consider an arbitrarily fine grid; see
Santner et al. (2003) and the references therein for details regarding choice of optimal
design. Recently, Tokdar (2007) provides another criterion for selecting design points.

Thus, it seems possible to efficiently compute the distributions of dynamic sequences
of long lengths with reasonable accuracy, without any numerical problem whatsoever!
We believe that any other methodology (if proposed in the future) for simulating dy-
namic sequences will fail to have this very important property. Thus, our proposed
methodology seems to be quite general and useful in practice.

We remark that in case the grid G, which corresponds to the training data set D,
is sufficiently fine, then it implies that, given D, the unknown function η(·) has already
been learned with sufficient accuracy. In such a case, we can obtain the dynamic se-
quence by simply simulating from [η(vt) | R,D]; hence simulation of D∗ is unnecessary
in that situation. However, in practice we can not expect to learn the computer model
so accurately; the code is always evaluated at a set of pre-selected design points only.

7 Application of the proposed methodology to a multi-
dimensional computer model with forcing inputs

We now demonstrate the performance of our proposed methodology with a real four-
variate dynamic computer code. However, this dynamic code is not a model for any real
physical process, but may be looked upon as a dynamic emulator for a toy climate model.
We present this example essentially as “proof of concept” in support of our methodology,
albeit, as clarified above, it is unrelated to any genuine physical process. Given an initial
input, this code can produce 99 dynamic outputs. Hence, including the initial input, a
time series consisting of 100 time points is produced by the black box. It is useful to
mention that this code is not expensive to run. This is important for evaluating our
methodology, since the exact answer can be obtained easily to make comparison with
the predictions obtained using our proposal. If the code were expensive to run, then the
exact answers would be difficult to obtain, precluding evaluation of our methodology.

S. Bhattacharya 801

It is also useful to mention that, of four components of the code, two components are
almost linear functions of the corresponding inputs, while the other two components
substantially deviate from linearity. We demonstrate that, dynamic outputs of all four
components are predicted satisfactorily by our methodology, irrespective of whether the
original input-output relationship is linear or not.

Likening our toy example to a climate change model, we denote the inputs of the
above-mentioned computer code at time t by the following

Temp(t) = Average global temperature at time t.
Melt(t) = Ice melting rate at time t.
Barren(t) = Area of barren land at time t.
Carb(t) = World’s total carbon emission at time t.

The forcing variable for this computer code is

Deforest(t) = Area of forest lost at time t.

For any t, the four dimensional input yt−1 = (Temp(t − 1), Melt(t − 1), Barren(t −
1), Carb(t − 1))′ together with the forcing input zt = Deforest(t) produce the four-
dimensional output yt = η(vt) = (Temp(t), Melt(t), Barren(t), Carb(t))′. For evalu-
ation of our proposed method we use the code in two ways. In one way we treat the
code as it is, and use the above multivariate (4-variate) Student’s t distribution for
simulation from [η(vt) | R,D∗,D]. In another way, we treat this code as four differ-
ent codes, and assume that in each code, except one variable, all others are forcing
inputs. That is, for the first code we assume that only Temp is the dynamic output,
and {Melt, Barren, Carb, Deforest} are all forcing inputs. In other words, we assume
that yt−1 = Temp(t− 1) and zt={Melt(t), Barren(t), Carb(t), Deforest(t)} produce
yt = η(vt) = Temp(t). Thus, in this set-up, [η(vt) | D∗,D] is one-dimensional. We do
the same in turn for Melt(t), Barren(t) and Carb(t).

The training data set D is obtained by first selecting a set of design points G from
the input space; the design is generated by Latin hypercube sampling (for details, see
Santner et al. (2003)). We chose 50 such points. Once the design points were chosen,
we then evaluated the computer code on the set of design points for a single time step
and stored the outputs along with the corresponding inputs (design points).

We also needed to choose the grid G∗ for the random set D∗. The grid points can
be selected efficiently if one has a priori knowledge of the region where all possible
simulations of dynamic sequences are expected to lie. From our experiences, and from
insight gained from the one-dimensional example already studied in Section 5, we can
expect the dynamic outputs to lie within a neighborhood of the specified initial input.
To form an idea regarding the neighborhood, we used a pilot run of our simulation
algorithm; this entails selecting a ‘trial grid’ G∗, which is coarse, consisting of a few
points, and then running our dynamic simulation method. The resulting ‘trial’ posterior
distribution of the dynamic sequence provided a good guess of the neighborhood where
the original dynamic sequence is expected to belong. We then selected a finer grid G∗,
consisting of 50 points from the neighborhood to improve simulation accuracy. The grid
points in the neighborhood are again selected by Latin hypercube sampling. However,

802 Dynamic Emulation

we also repeated the experiment with size of the grid G∗ being 60, 70, 80 and 100;
the results remained almost exactly the same as in the initial case where the size of
G∗ was 50. So, in this case, we conclude that 50 design points from an appropriate
neighborhood of the initial input are adequate. This again demonstrates that making
the grid arbitrarily fine does not necessarily result in significant improvement of accuracy
of the posterior simulation, and is, in fact, wasteful.

As in the case of the univariate example, in this multivariate situation as well we
obtain the posterior distributions of the dynamic sequence by simulating 500 random
sequences using our proposed methodology.

C.1 Results

Figure 11 shows the predictions of the dynamic output sequence when the original code
is treated as four individual codes. The solid line denotes the true output, which has
been obtained by actually running the dynamic code for comparison purpose. The
dashed line stands for the posterior mean, which we use as an estimate of the true
dynamic sequence. The dot-dashed lines are the approximate 95% credible intervals
of the posterior distributions. It is notable that all four outputs are predicted very
satisfactorily. In the case of Temp and Melt the posterior variances are so close to zero
that the posterior mean and the approximate 95% credible intervals seem to coincide.
The reason for this is that the original individual codes for Temp and Melt are very close
to linear. Since the simulated function must pass through all the points in the training
data set (G,D), and since those points exhibit a linear relationship, in our methodology,
the linear mean function of the Gaussian process dominates the calculations. Compared
to Temp and Melt, prediction of Barren and Carb are more interesting as the codes
in these cases substantially deviate from linearity. Hence, as expected, the figure shows
that the approximate 95% credible intervals are much wider than in the case of Temp
and Melt.

Figure 12 shows the predictions when the code is treated as it is, that is, when
the output is considered a 4-dimensional vector, as it should be. Clearly, again the
predictions of the four outputs turned out to be very satisfactory. The credible regions
are larger than the corresponding univariate case, but this is to be expected, since in the
univariate case except one variable, there is no uncertainty about the remaining three
variables.

As mentioned before, this example is essentially “proof of concept”. However, it
does succeed in revealing the potential of the proposed methodology. We anticipate
that our proposal will play a very vital role in the case of very highly complex dynamic
codes with great scientific importance. Models associated with future climate change
seem to be an important area of application of our dynamic emulation methodology.

S. Bhattacharya 803

8 Conclusion

In this paper we have proposed a novel and general methodology for emulation of
complex dynamic computer models. To our knowledge the statistical literature does
not contain any material on dynamic computer code emulation. We have provided
the theory for both one-dimensional and multidimensional cases, explained that our
methodology is computationally efficient, and demonstrated with two examples (one-
dimensional and 4-dimensional computer models) that our methodology is expected
to work in practice. An important computational aspect that deserves mention is the
parallelisability of our methodology discussed in Section 4.

However, issues regarding choice of optimal design points is important, and although
there is literature regarding this issue, there still does not seem to exist a generally
accepted method of choosing an optimal design.

Appendix

Demonstration that marginalization of D∗ increases computational
burden and causes numerical instability

We have indicated that the posterior dynamic sequence [y1 = η(y0), y2 = η(y1), . . . , yt =
η(yT−1) | D] can be simulated easily by introducing the set of latent variables D∗, and
the underlying procedure is to first simulate y1 from [η(y0) | D], the distribution of
which is known. Then D∗ must be simulated from the known conditional distribution
[D∗ | D, η(y0)]. Finally, the remaining part of the dynamic sequence can be simu-
lated by simulating yt+1 from the known conditional distributions [η(yt) | D, yt], for
t = 2, . . . , T − 1. At the first sight it seems that it is desirable to integrate out D∗

analytically to reduce the number of variables to be simulated (indeed, apart from sim-
ulation of y1, . . . , yT , we also need to simulate D∗). However, we show that integrating
out D∗ will require inversion of matrices of increasing size, which is linear in time t, at
each step of the resulting simulation procedure. Moreover, the elements of the matrices
are random, and hence, numerical instabilities can not be prevented by existing approx-
imation methods; in other words, one completely loses control over the dimensionality
and elements of the matrix. Hence computational burden and numerical instability
typically arises in this simulation method.

To avoid introducing more and messy notation and to avoid more complicated ex-
pressions, here we consider simulation from the prior dynamic sequence [y1 = η(y0), y2 =
η(y1), . . . , yt = η(yT−1)]. Conditioning this on the training data set D presents no new
issue, and can be safely avoided for the sake of clarity.

Note that,

804 Dynamic Emulation

[η(yt) | yt = η(yt−1), yt−1 = η(yt−2), . . . , y1 = η(y0)]

=

∫

[η(yt) | D∗, yt = η(yt−1), yt−1 = η(yt−2), . . . , y1 = η(y0)]

[D∗ | yt = η(yt−1), yt−1 = η(yt−2), . . . , y1 = η(y0)]dD
∗

(C.53)

=

∫

[η(yt) | D∗, yt][D
∗ | yt = η(yt−1), yt−1 = η(yt−2), . . . , y1 = η(y0)]dD

∗(C.54)

Equation (C.54) follows from (C.53) by the assumed Markov property. To compute
(C.54) we need the distribution of [D∗ | yt = η(yt−1), yt−1 = η(yt−2), . . . , y1 = η(y0)].
This is proportional to

[D∗][yt = η(yt−1), yt−1 = η(yt−2), . . . , y1 = η(y0) | D∗] (C.55)

= [D∗][y1 = η(y0) | D∗][y2 = η(y1) | D∗, y1 = η(y0)]

. . . [yt = η(yt−1) | D∗, yt−1 = η(yt−2), . . . , y1 = η(y0)] (C.56)

= [D∗][y1 = η(y0) | D∗][y2 = η(y1) | D∗, y1] . . . [yt = η(yt−1) | D∗, yt−1](C.57)

Step (C.57) again follows from step (C.56) due to the Markov property already assumed.
Now write

At =

t−1
∑

i=0

[

A−1
D∗

t
+

A−1
D∗sD∗(yi)sD∗(yi)

′A−1
D∗

1 − sD∗(yi)′A
−1sD∗(yi)

]

(C.58)

and

Bt = A−1
D∗

t−1
∑

i=0

{η(yi) − h(yi)
′β} sD∗(yi)

1 − sD∗(yi)′A
−1
D∗sD∗(yi)

(C.59)

It follows from (C.57) that

[D∗ | yt = η(yt−1), yt−1 = η(yt−2), . . . , y1 = η(y0)] ∼ NN (HD∗β + A−1
t Bt, σ

2A−1
t)
(C.60)

which is an N -dimensional normal distribution with mean vector HD∗β + A−1
t Bt and

covariance matrix σ2A−1
t . Integrating (C.60) with respect to the distribution of [η(yt) |

D∗, yt], which is a univariate normal distribution with mean

h(yt)
′β + sD∗(yt)

′A−1
D∗(D

∗ − HD∗β)

and variance

σ2{1− sD∗(yt)
′A−1

D∗sD∗(yt)},

we obtain

[η(yt) | yt = η(yt−1), yt−1 = η(yt−2), . . . , y1 = η(y0)] ∼ N (h(yt)
′β + B∗

t /A
∗
t , σ

2/A∗
t)

(C.61)

S. Bhattacharya 805

where

A∗
t =

1

1 − sD∗(yt)′A
−1
D∗sD∗(yt)

−
{

sD∗(yt)
′A−1

D∗

1 − sD∗(yt)′A
−1sD∗(yt)

}{

At +
A−1

D∗sD∗(yt)sD∗(yt)
′A−1

D∗

1 − sD∗(yt)′A
−1
D∗sD∗(yt)

}−1

{

A−1
D∗sD∗(yt)

1 − sD∗(yt)′A
−1sD∗(yt)

}

(C.62)

and

B∗
t = B′

t

{

At +
A−1

D∗sD∗(yt)sD∗(yt)
′A−1

D∗

1 − sD∗(yt)′A
−1
D∗sD∗(yt)

}−1{
A−1

D∗sD∗(yt)

1 − sD∗(yt)A
−1
D∗sD∗(yt)

}

(C.63)

We illustrate the distribution of [η(y1) | y1 = η(y0)] using the above expressions.

Prior distribution of η(y1) given y1 = η(y0), marginalised over D∗

For simplicity, we consider G∗ = {g∗} and D∗ = {η(g∗)}. Then A is reduced to the
scalar 1, sD∗(y1) = c(y1, g

∗), sD∗(y0) = c(g∗, y0), At = 1/{1 − c2(g∗, y0)}, and Bt =
c(g∗, y0){η(y0)−h(y0)

′β}/{1−c2(g∗, y0)}. It follows that A∗
t = 1/{1−c2(y1, g

∗)c2(g∗, y0)}
and B∗

t = c(y1, g
∗)c(g∗, y0){η(y0) − h(y0)

′β}/{1 − c2(y1, g
∗)c2(g∗, y0)}. Hence, with

G∗ = {g∗} and D∗ = {η(g∗)}, we obtain

[η(y1) | y1 = η(y0)] ∼

N
[

h(y1)
′β + c(y1, g

∗)c(g∗, y0){η(y0) − h(y0)
′β}, σ2{1− c2(y1, g

∗)c2(g∗, y0)}
]

(C.64)

If we plug in g∗ = y0 or g∗ = y1 in (C.64), then we obtain

[η(y1) | y1 = η(y0)] ∼ N
[

h(y1)
′β + c(y1, y0){η(y0) − h(y0)

′β}, σ2{1− c2(y1, y0)}
]

(C.65)
However, there arises a subtle question as to whether it is legitimate to plug in g∗ = y0 or
g∗ = y1. Note that the form of the conditional distribution (C.64) has been derived using
the fact that g∗ is a fixed constant, so that (η(g∗), η(y0)) and (η(y1), η(g∗)) given y1 =
η(y0) are distributed as bivariate normal. But the joint distribution of (η(y1), η(y0)),
given y1 = η(y0) is certainly not bivariate normal, since the second random variable
reduces to a constant. A direct consequence of this degeneracy seems to be the fact
that, if instead of substituting g∗ = y0 or g∗ = y1 in the final form (C.64), g∗ = y0

or g∗ = y1 is plugged directly into the original form of A∗
t or B∗

t given, as above,
by A∗

t = 1/{1− c2(y1, g
∗)c2(g∗, y0)} and B∗

t = c(y1, g
∗)c(g∗, y0){η(y0)− h(y0)

′β}/{1−
c2(y1, g

∗)c2(g∗, y0)}, then division by zero entails. Thus the theoretical validity of (C.65)
may be questioned; it will be argued that the simulations from conditionals of the form
(C.65) must encounter severe, and possibly insurmountable, instabilities. We conjecture,
from our past experiences, that the latter might stem from the incorrect derivation of
the conditionals, as demonstrated above. However, if we choose to assume legitimacy
of the substitution in the final form (C.64), then we can proceed further, as follows.

806 Dynamic Emulation

In order to derive (C.64), we assumed that G∗ and hence D∗ are singletons. Actually,
the same form (C.64) can be arrived at from a much more general point of view. Assume
that G∗ = {g∗1 , g∗2 , . . . , g∗N}, and correspondingly D∗ = {η(g∗

1), η(g∗2), . . . , η(g∗N)}. Then

[η(y1) | y1 = η(y0)] =

∫

[η(y1) | D∗, y1][D
∗ | y1 = η(y0)]dD

∗ (C.66)

It is easy to see that, if, for some k ∈ {1, . . . , N}, g∗
k = y1 or g∗k = y0, then D∗ contains

η(y1) or η(y0). Hence, either the first factor of the integrand, [η(y1) | D∗] = δη(y1) or the
second factor of the integrand [D∗ | y1 = η(y0)] = δη(y0). In either case, (C.66) yields
the conditional distribution (C.65). The same result can also be obviously obtained by
directly plugging in g∗

k = y1 or g∗k = y0 in the form implied by (C.61) in this case, but
derivation using (C.66) is probably more intuitively appealing and simpler, requiring no
linear algebraic manoevre.

Note that, if G∗ does not contain y1 or y0, but contains g∗’s which are close to y1

or y0, then the corresponding conditional distribution [η(y1) | y1 = η(y0)], will be close
to (C.66). The examples illustrated in this paper also support this.

Assuming legitimacy of the form of the conditional given by (C.65), one can obtain
more generally that

[η(yt) | η(yt−1) . . . η(y0)] ∼ N (h(yt)
′β+st(yt)

′A−1
t (Dt−Htβ), σ2{1−st(yt)

′A−1
t st(yt)})

(C.67)
In the above,

Dt = (η(yt−1), . . . , η(y0)), st(yt) = (c(yt, y0), . . . , c(yt, yt−1))
′, H′

t = [h(y0), . . . ,h(yt−1)],
and

At =





c(y0, y0) . . . c(y0, yt−1)
.

c(yt−1, y0) . . . c(yt−1, yt−1)





It is very important to note the difference between successive simulation of the dis-
tribution (C.61), marginalised over D∗, for t = 1, . . . , T , or the conditionals (again,
marginalised) given by (C.67), and successive simulation from the distribution [η(yt) |
D∗, yt] conditional on simulated D∗. In the latter case, the matrix AD∗ consists of non-
random, completely known elements, and needs to be inverted only once, even before
beginning to implement the simulation algorithm. Thus the algorithm is computation-
ally very fast and presents no numerical difficulties; see Section C.5 for details in the
general situation. On the other hand, simulation from (C.61) involves computation of
(C.62) and (C.63) for simulation of each point of the dynamic sequence, and at every

time t, the computations require inversion of the matrix At +
A

−1

D∗sD∗ (yt)sD∗ (yt)
′A

−1

D∗

1−sD∗ (yt)′A
−1

D∗sD∗ (yt)
.

The situation is the same in the case of simulations from the conditionals of the form
(C.67). This is certainly computationally very burdensome. Moreover, and more im-
portantly, the elements of the matrix are random, where no control can be exercised,
and if yt’s are close, which is expected due to sample path continuity of η(·), the matrix

S. Bhattacharya 807

is very likely to become numerically singular, preventing inversion. In fact, we have per-
formed a lot of experiments, particularly to simulate successively from the conditionals
(C.67) (after conditioning on the training data set D), and in all cases, the methodol-
ogy broke down after just a few time points, due to numerical problems associated with
matrix inversions in each step. Indeed, when applied to each of the examples presented
in Sections 5 and 7, the simulation procedure using marginalized conditionals simply
failed to progress further than just a few steps, for each of the examples. On the other
hand, retaining the latent variables D∗ proved to be an excellent idea in all examples
(including those presented in this paper) we have come across. Hence we recommend
using the latent variables D∗ for efficient and reliable simulation.

References

Carvalho, C. M. and West, M. (2007). “Dynamic Matrix-Variate Graphical Models.”
Bayesian Analysis, 2(1): 69–98. 796

Conti, S., Anderson, C. W., Kennedy, M. C., and O’Hagan, A. (2004). “A
Bayesian Analysis of Complex Dynamic Computer Models.” Available online
at http://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-
39.pdf. 808

Conti, S., Gosling, J. P., Oakley, J. E., and O’Hagan, A. (2007). “Gaussian process
emulation of dynamic computer codes.” Technical Report 571/07, Department of
Probability and Statistics, University of Sheffield. Available online at http://j-p-
gosling.staff.shef.ac.uk/Pub/DynEm.pdf. 808

Conti, S. and O’Hagan, A. (2007). “Bayesian emulation of complex multi-
output and dynamic computer models.” Technical Report 569/07, Depart-
ment of Probability and Statistics, University of Sheffield. Available online at
http://tonyohagan.co.uk/academic/ps/multioutput.ps. 808

Cressie, N. A. C. (1993). Statistics for Spatial Data. New York: Wiley. 789

Dawid, A. P. (1981). “Some matrix-variate distribution theory: Notational considera-
tions and a Bayesian application.” Biometrika, 68: 265–274. 796

Haylock, R. G. and O’Hagan, A. (1996). “On inference for outputs of computationally
expensive algorithms with uncertainty on the inputs.” In Bernardo, J. M., Berger,
J. O., Dawid, A. P., and Smith, A. F. M. (eds.), Bayesian Statistics 5 , 629–637.
Oxford: New York. 784

Kennedy, M. C. and O’Hagan, A. (2001). “Bayesian calibration of computer models
(with discussion).” Journal of the Royal Statistical Society. Series B, 63(3): 425–464.
784, 785, 793

Oakley, J. E. and O’Hagan, A. (2002). “Bayesian inference for the uncertainty distri-
bution of computer model outputs.” Biometrika, 89(4): 769–784. 784

808 Dynamic Emulation

— (2004). “Probabilistic sensitivity analysis of complex models: a Bayesian approach.”
Journal of the Royal Statistical Society. Series B, 66(3): 751–769. 784

Saltelli, A., Tarantola, S., and Campolongo, F. (2000). “Sensitivity analysis as an
ingredient of modeling.” Statistical Science, 15: 377–395. 784

Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The design and analysis of

computer experiments. Springer Series in Statistics. New York, Inc.: Springer-Verlag.
786, 791, 800, 801

SenGupta, A. and Ugwuowo, F. L. (2006). “Asymmetric circular-linear multivariate
regression models with applications to environmental data.” Environmental and Eco-

logical Statistics, 13: 299–309. 789

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging . New
York, Inc: Springer-Verlag. 785, 789, 794

Tokdar, S. T. (2007). “Towards a Faster Implementation of Density Estimation with Lo-
gistic Gaussian Process Priors.” Journal of Computational and Graphical Statistics,
16(2): 1–23. 800

Acknowledgments

This work has benefitted from discussions with Prof. Tony O’Hagan, Dr. Jeremy Oakley,

Dr. Stefano Conti, Dr. John Paul Gosling and the illustration of some of their unpublished

works (Conti et al. (2004, 2007); Conti and O’Hagan (2007)), although the approach proposed

here differs from that of Conti et al. (2007) and the other aforementioned unpublished works..

The author thanks Dr. John Paul Gosling for writing and kindly providing the 4-dimensional

dynamic computer code of Section 7 on which performance of the proposed methodology is

demonstrated. Dr. Jeremy Oakley provided maximum likelihood estimates of the smoothness

parameters in the case of individual codes of Section 7. The author also expresses his gratitude

to Prof. Jayanta Ghosh for helpful discussions; to two anonymous referees and the Editor-

in-Chief of Bayesian Analysis, Prof. Bradley Carlin, for providing comments and suggestions

which helped improve the quality and presentation of this paper.

S. Bhattacharya 809

Figure 1: Plot of the log-likelihood of the smoothness parameter of the Gaussian process
model corresponding to training data obtained from the true, deterministic function
f(x) = cos(x + sin(x)).

810 Dynamic Emulation

Figure 2: Prediction of dynamic sequence corresponding to the function f(x) = cos(x+
sin(x)). The initial value is 0.55. The true, deterministic dynamic sequence is denoted
by the thin, solid line. The mean posterior dynamic sequence obtained by our Gaussian
process based methodology is denoted by the dotted line, with the corresponding 95%
credible intervals denoted by the solid, thick lines. In this case, the true, deterministic
dynamic sequence has been predicted accurately.

Figure 3: Prediction of the first 6 values of the dynamic sequence corresponding to the
function f(x) = cos(x + sin(x)) after integrating out D∗. The initial value is 0.55. 100
dynamic sequences are simulated. The true, deterministic dynamic sequence is denoted
by the thin, solid line. The mean posterior dynamic sequence obtained by our Gaussian
process based methodology is denoted by the dotted line, with the corresponding 95%
credible intervals denoted by the solid, thick lines.

S. Bhattacharya 811

Figure 4: Prediction of dynamic sequence corresponding to the function f(x) = cos(x+
sin(x)). The initial value is 1.4. The true, deterministic dynamic sequence is denoted
by the thin, solid line. The mean posterior dynamic sequence obtained by our Gaussian
process based methodology is denoted by the dotted line, with the corresponding 95%
credible intervals denoted by the solid, thick lines. In this case, prediction of the true,
deterministic dynamic sequence is inaccurate.

812 Dynamic Emulation

Figure 5: Plot of the function f(x) = cos(x + sin(x)).The circles on the graph are the
plots of the true, deterministic dynamic sequence y2, . . . , yT against the corresponding
inputs y1, . . . , yT−1; the initial value for this sequence is y0 = 0.55. The cross signs stand
for the observed training data set D. The training data seem to be quite informative
about the true dynamic sequence, and y0 is included within the range of G.

Figure 6: Plot of the function f(x) = cos(x + sin(x)).The circles on the graph are the
plots of the true, deterministic dynamic sequence y2, . . . , yT against the corresponding
inputs y1, . . . , yT−1; the initial value for this sequence is y0 = 1.4. The cross signs stand
for the observed training data set D. The training data do not seem to be informative
about the true dynamic sequence and y0 is not included within the range of G.

S. Bhattacharya 813

Figure 7: Plot of the function f(x) = cos(x + cos(x)).The circles on the graph are the
plots of the true, deterministic dynamic sequence y2, . . . , yT against the corresponding
inputs y1, . . . , yT−1; the initial value for this sequence is y0 = 1.4. The plus signs stand
for the observed training data set D of size 6. Points of the grid G are selected from a
neighborhood of y0 = 1.4.

Figure 8: Prediction of dynamic sequence corresponding to the function f(x) = cos(x+
sin(x)). The initial value is 1.4. 6 training data points used around 1.4. The true,
deterministic dynamic sequence is denoted by the thin, solid line. The mean posterior
dynamic sequence obtained by our Gaussian process based methodology is denoted by
the dotted line, with the corresponding 95% credible intervals denoted by the solid, thick
lines. In this case, prediction of the true, deterministic dynamic sequence is accurate.

814 Dynamic Emulation

Figure 9: Plot of the function f(x) = cos(x + cos(x)).The circles on the graph are the
plots of the true, deterministic dynamic sequence y2, . . . , yT against the corresponding
inputs y1, . . . , yT−1; the initial value for this sequence is y0 = 1.4. The plus signs stand
for the observed training data set D of size 10. Points of the grid G are selected from
a neighborhood of y0 = 1.4.

Figure 10: Prediction of dynamic sequence corresponding to the function f(x) = cos(x+
cos(x)). The initial value is 1.4. 10 training data points used around 1.4. The true,
deterministic dynamic sequence is denoted by the thin, solid line. The mean posterior
dynamic sequence obtained by our Gaussian process based methodology is denoted by
the dotted line, with the corresponding 95% credible intervals denoted by the solid,
thick lines. In this case, prediction of the true, deterministic dynamic sequence is very
accurate.

S. Bhattacharya 815

20 40 60 80
10

11

12

13

14

15

16

17

18
Temp

True Time Series

Predicted Time Series

95% Credible Intervals

1 99
1.6

1.8

2

2.2

2.4

2.6
Melt

1 99
24

24.5

25

25.5

26

26.5

27

27.5
Barren

1 99
5000

6000

7000

8000

9000

10000
Carb

Figure 11: Prediction of dynamic outputs using proposed theory assuming four individ-
ual dynamic codes.

1 99
10

11

12

13

14

15

16

17

18
Temp

True Time Series

Predicted Time Series

95% Credible Intervals

1 99
1.6

1.8

2

2.2

2.4

2.6
Melt

1 99
24

24.5

25

25.5

26

26.5

27

27.5

28
Barren

1 99
5000

6000

7000

8000

9000

10000
Carb

Figure 12: Prediction of dynamic outputs using proposed theory assuming that all four
outputs are dynamic.

816 Dynamic Emulation

