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Combining multiple maps of line features to

infer true position

Jarrett J. Barber∗ and Steven D. Prager†

Abstract. Map positional error refers to the difference between a feature’s coor-
dinate pair on a map and the corresponding true, unknown coordinate pair. In
a geographic information system (GIS), this error is propagated through all op-
erations that are functions of position, so that lengths, areas, etc., are uncertain.
Often, a map’s metadata provides a nominal statement on the positional error
of a map, and such information has frequently been used to study the propaga-
tion of error through such operations. This article presents a statistical model for
map positional error, incorporating positional error metadata as prior information,
along with map coordinates, and, in particular, the information contained in the
linearity of features. We demonstrate that information in the linearity of features
can greatly improve the precision of true location predictions.
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1 Introduction

1.1 Positional error problem

The development of automated mapping, geographic information systems (GIS), remote sens-
ing technology, and various other automated data collection and spatially aware communication
devices has allowed us to amass and readily access an enormous amount of spatially referenced
data. Our data collection proficiency has been accompanied by the concomitant develop-
ment of a vast enterprise of management and science of geographic information (Longley et al.
1999b,a). Even so, the subject of spatial data quality—specifically, the uncertainty associ-
ated with positional information—is a relatively small part of this enterprise. At the same
time, in spite of numerous approaches to understanding the role of uncertainty in affecting the
quality of geographic information, there remains a lack of understanding with regard to best
practices for reconciling positional information from multiple sources (Goodchild and Gopal
1989; Thapa and Bossler 1992; Guptill and Morrison 1995; Veregin 1999; Lowell and Jaton
1999; Mowrer and Congalton 1999; Shi et al. 2002; Zhang and Goodchild 2002). Given the
increasing prevalence of geographic information originating from multiple sources and the com-
mensurate lack of robust techniques for reconciling such information, new approaches are re-
quired. In this paper we thus focus on characterizing the uncertainty associated with feature
positions reported from multiple data sources.

Many of the more statistically refined approaches to assessing spatial data uncertainty are
based primarily on geostatistical methods applied to measured attributes recorded at locations,
which are nearly always assumed to be known (Cressie 1993; Atkinson 1999; Banerjee et al.
2004). In the geographic information science (GIScience) literature, Goodchild (2004) and Le-
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ung, Ma and Goodchild (2004a; 2004b; 2004c; 2004d) contribute recent work on positional error
modeling: borrowing from the map survey community (Wolf and Ghilani 1997), their “approx-
imate law of error propagation” is an application of Taylor series approximation to (non–linear)
transformations of positions, i.e., the delta method (Casella and Berger 2002). Even so, the
majority of the work on positional error in the GIScience community does not occur within a
statistical inference framework, and little effort has been directed toward estimation of posi-
tional error models or toward the prediction of true position using positional data and ancillary
information. In the few instances within the statistical literature where positional error is dis-
cussed, the effort generally is to assess the effect on spatial prediction (Gabrosek and Cressie
2003; Cressie and Kornak 2003) or on attribute classification (Arbia et al. 2003). Only recently
has the problem of positional error and prediction of true location caught the attention of the
statistical community (Barber et al. 2006; Barber 2007).

Our approach to reconciling positional uncertainty across multiple “maps,” i.e., geographic
data layers, represents a substantial and novel step toward understanding how to use infor-
mation in multiple, potentially disparate sources of positional information. In particular, our
models of positional error that we present in this paper account for the linearity of map fea-
tures, resulting in remarkably improved inference for true position compared to models that
ignore feature linearity. The incorporation of map metadata into our models is important and
calls naturally for a Bayesian approach.

In the process, we extend the earlier notion of the epsilon–band characterization of po-
sitional uncertainty in line segments (Perkal 1966; Chrisman 1982; Blakemore 1984; Veregin
1999) as well as the more recent, closely related refinements by various authors in the GI-
Science community (Caspary and Scheuring 1993; Leung and Yan 1998; Shi 1998; Shi and Liu
2000; Leung et al. 2004a). Our approach differs substantially from that of Barber et al. (2006)
and does not require their model averaging (Raftery et al. 1997) approach. Our work may
be viewed simply as an improved basis for inference of true position or functions thereof; as
progress toward a fully model–based development of error propagation studies (Heuvelink et al.
1989; Heuvelink 1999); or as a precursor to future work that synthesizes geographic information
theory with varied sources of data and information for improved inference of true position.

1.2 The modeling problem

Barber et al. (2006) provide a discussion of various potential approaches to modeling posi-
tional error, defined as—up to a change in sign—the difference between observed position on
a map and unobserved true position. These modeling approaches adopt a GIS map registra-
tion perspective whereby one source of positional information is viewed as the best map or
as the “target”, e.g., GPS ground truth coordinates, toward which other sources are to be
adjusted in some way. In our current effort, we depart from the map registration perspective.
GPS locations or control points are viewed and modeled in a manner analogous to other types
of positional data so that both GPS and other types of observed locations may simply be
considered as different sources of positional information.

We view observed location as arising from and varying about latent true location, and we
model each source of positional data as arising conditionally independent of other sources given
the truth and possibly given other model parameters. Generically, for an observed coordinate
pair yyy and corresponding unobserved true coordinate pair xxx, we have yyy = xxx + eee where eee may
be thought of as a positional error vector (Figure 1). This approach may be viewed as a
measurement–error model in the response (Carroll et al. 1995; Fuller 1987) as opposed to a
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Berkson error model, wherein, instead, truth varies about observed. Barber et al. (2006) take
the latter approach and offer more discussion on modeling approaches in a map context. The
latent–truth approach is consistent with the measurement error (ME) model advocated by
Goodchild (2004) and Leung, Ma and Goodchild (2004a; 2004b; 2004c; 2004d) in the context
of measurement–based GIS (MBGIS) (Goodchild 1999) and is related to their approximate
law of error propagation through transformations of position. However, they do not develop
the specification of prior information, they do not consider the synthesis of multiple sources of
positional data, and they do not incorporate feature linearity. We do.

Figure 1: Suggestive diagram of positional error.

A process model for linear features

A simple but novel and remarkable development in this paper is the improvement of inference
for true position obtained by incorporating feature linearity into a model of position. In
particular, we model latent true coordinates as arising from one or more latent true lines as
we might do for points along roads that are, practically speaking, straight, and that may be
intersected by other straight line features. Feature linearity may be considered as a simple but
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informative latent process. In the instance of road networks, the underlying line model may be
considered to represent the process of designing, surveying, and constructing straight roads.

We have presented the notion that observed map points arise from underlying latent true
points. If two map points are observed to be connected by a line segment, then there is the
corresponding notion of an underlying true line segment. A collection of successive, observed
line segments may depict a curvilinear feature, e.g., a stream or a beltway, conjuring the
notion of a corresponding true curvilinear feature. We focus here on the special case of a
linear feature comprised of a related set of connected segments that are considered collectively
to depict a straight feature. Just as observed points are not true points, observed segments
are not true segments, and we cannot expect the observed segments to lie perfectly along a
line, though we may believe that the observed segments are intended collectively to depict an
essentially straight feature. We associate each true linear feature with the equation of a line,
and, throughout, we use “linear feature” and “line” interchangeably, and risk confusion that
might arise from, say, the possibility that different linear features might fall on the same line
or that linear features may not intersect while their associated lines do.

We note that it is not necessary to consider explicitly a line specification for a linear feature
consisting of a single line segment since such a feature is determined by the segment’s endpoints,
which will have their own model specification. But, a linear feature depicted by two or more
segments—associated with three or more points—is more than a set of connected points, and
the points must be associated explicitly with a line equation if we are to gain information from
the knowledge that the feature on which the points lie is truely straight.

Above, we alluded to the first, or data, stage of our model wherein observed coordinates
vary about truth; we give more details in Section 2.3. In Section 2.4, we discuss details of a
model for true coordinates and true linear features or, more precisely, for true line intercept
and slope parameters. The model for true coordinates and lines may be considered as the
second stage in a hierarchical development, with the particular network of intersecting lines
and points thereon dictating stochastic and deterministic model components. See Section 2.4
and Appendix 4. Also in Section 2.4, we will consider an exchangeable model structure for
line slopes at a third stage for the case when line features occur in a grid, as in an orthogonal
street network. We illustrate our approach using several sources of positional information for
a residential neighborhood in Durham, North Carolina, USA (Section 3) and conclude with a
discussion of our approach (Section 4).

2 Model

2.1 Notation

Consider M different sources of map information or other positional data. In the following
development, it is not necessary to assume that maps depict the same region, although, in
practice, maps will typically be associated with a common region of interest X that, for this
article, will be taken to be a subset of a 2-dimensional, orthogonal coordinate system. For
each coordinate pair on each data source, we consider a corresponding unobserved true coor-
dinate pair. In general, there exists a one–to–many relationship between true coordinates and
map coordinates as more than one map may depict the same feature. For example, a road
intersection may be reported with different coordinate pairs on different maps, but these pairs
correspond to the same true coordinates of the intersection. We work with M = 4 different
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sources of positional data and denote each source with m ∈ {1, 2, 3, 4} or m ∈ {C, D, G, S},
where the latter designation is suggestive of the particular sources to be described in Sections
2.2 and 3.

Let xxx ≡ (x1, x2)
T ∈ X denote a generic true coordinate pair where x1 and x2 may be

thought of, respectively, as the east–west (EW) coordinate and the north–south (NS) coor-
dinate. Throughout, we use subscript q = 1, 2 to denote the components of xxx, similarly for
other coordinate pair vectors introduced below. Following the first–stage modeling introduc-
tion in Section 1.2 and using function notation, we denote yyym(xxx) ≡ (ym1(xxx), ym2(xxx))T as the
corresponding generic coordinate pair on a map m = 1, . . . , M . In our development, yyym(xxx)
is observed for at least one map but may be missing for some maps. Assuming xxx and yyym(xxx)
are in a common reference system (e.g., WGS 84 UTM meters), we define for map m the true
positional error vector, yyym(xxx) − xxx. Upon translation, the resulting vector may be viewed as a
random vector emanating from truth and extending to observed (Figure 1).

Though a map depicts an uncountable set of locations, the representation of positional
information associated with discrete geographic features is comprised of a finite set of coordinate
pairs or “points”. Hence, we are led to consider the jth true point, xxxj ≡ (xj1, xj2)

T , j =
1, . . . , N < ∞, associated with a point observed on map m for at least one m. That is, the set of
N true points under consideration is the union of all true points represented by observed points
on one or more of the M maps. The number of points observed on map m may be less than N ,
and the set of map points {yyym(xxxj) = (ym1(xxxj), ym2(xxxj))

T : j = 1, . . . , N} may include points
that are missing on map m but observed on map m′ for at least one m′ 6= m. With occasion
to distinguish observed from unobserved map points, we let {jm(k) : k = 1, . . . , nm ≤ N} be
a subset of {j : j = 1, . . . , N} such that yyym(xxxjm(k)) = (ym1(xxxjm(k)), ym2(xxxjm(k)))

T is observed
on map m.

As mentioned in Section 1.2, we also explicitly consider latent true lines, l = 1, . . . , L,
which are associated with a linear feature defined by three or more true points. In principle
and without loss of generality, we may consider each of these lines parameterized as x2 =
al + blx1. In Section 4, we discuss briefly implementation issues that may arise regarding line
parameterization.

All distributions herein follow parameterizations in Gelman et al. (2003).

2.2 Prior information

In our application, Section 3, we combine four sources of positional data into a model to infer
true position. Here, we discuss prior information on postitional error that we use for prior
model specifications, which we discuss in Sections 2.3 and 3.1.

Three sources are extracted from data layers stored within a GIS. Such data layers are
typically accompanied by metadata that can be used to specify prior distributions for the
positional error variance components of the corresponding layer. For example, we use a large–
scale (1:24000) USGS Digital Line Graph (DLG) (U.S. Geological Survey 2004, 1999) (m =
D) which is accompanied by one such measure of positional error, root mean square error
(RMSE). In particular, locations on large–scale Digital Line Graphs (DLGs) produced by the
US Geological Survey (USGS)

...shall be less than or equal to 0.003 inches standard error in both the x and y component
directions, relative to the source that was digitized,
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the “standard error” simply being the square root of the mean squared differences between
coordinates—EW or NS—on the DLG and the corresponding source map coordinates
(U.S. Geological Survey 1999, Sections 2.3.4 and 2.4.2).

The source maps of most large–scale DLGs are USGS 7.5 minute topographic quadrangle
maps with a map scale of 1:24000. These quadrangle maps are produced to comply with
National Map Accuracy Standards so that

...not more than 10 percent of the points tested shall be in error by more than 1/30 inch,
measured on the publication scale; for maps on publication scales of 1:20,000 or smaller,
1/50 inch (U.S. Bureau of the Budget 1947).

At a map scale of 1:24000, this means that 90% of tested map points fall within 40 ft of
corresponding reference points that are effectively considered “truth.” If we assume a bivariate
Gaussian distribution for the positional error vector having uncorrelated components with
common scale, this corresponds to the 90% error circle of N(000, (18.64 ft)2III2), III2 being the
2 × 2 identity matrix. At the same map scale, the DLG production process discussed above
nominally introduces a standard error less than 6 ft. Thus, if we assume positional error vector
components to be uncorrelated normal variates with common variance, and if we assume the
DLG production process to be independent of the production of quadrangle maps, then we
should conclude that a large–scale DLG has total a priori positional error variance less than
about 202 ft2 (18.642+62) or about 62 m2. We denote this value as σ2

t,m, m ∈ {C, D, G, S}, e.g.,
σ2

t,D = 62 m2 for the DLG. We consider σ2
t,m to refer to the positional error vector, yyym(xxx)−xxx.

That is, σ2
t,m is considered an a priori value for the diagonals of Var(yyym(xxx)−xxx |xxx). We qualify

yyym(xxx)−xxx as the total positional error vector to distinguish it from another error vector arising
from subsequent modeling efforts. Hence, we refer to σ2

t,m as the a priori total positional error
variance; we offer further discussion in Section 2.3. Prior information for two other sources of
positional data used here may be specified in a manner similar to that discussed for the DLG.

The remaining, fourth set of coordinate pairs used here was obtained by means of a global
positional system (GPS) (m = G). Each of these GPS points is, more precisely, an average
of approximately 200 differentially corrected GPS position fixes. It is straightforward to use
directly the nG sets of 200 corrected GPS fixes, and, in this case, these sets of points may be
used to estimate a 2×2 covariance matrix for GPS (Soler and Marshall 2002), i.e., to estimate
the entries in Var(yyyG(xxx) −xxx |xxx).

We choose instead to use the averages and, furthermore, to use additional, post–processing
information (Trimble Navigation 1997a,b, 2003) to specify “prior” distributions for the GPS
positional error variance components in Var(yyyG(xxx)−xxx |xxx). We take this approach because the
averages typically are used in practice, not the raw fixes, and the additional post–processing
information should, in good practice, accompany the point averages as metadata. Hence,
we consider GPS post–processing information to be a priori information analogous to the
previously discussed positional sources’ metadata—though it should be clear that, for GPS,
such information strictly may not be considered as “prior” information since it is obtained from
the raw fixes via the GPS post–processing procedure.

This discussion of prior information is focused on the use of a positional data source’s meta-
data to specify an informative prior distribution for variance parameters associated with the
components of the positional error vector, and we utilize such information in our application.
While we do not have prior information to help specify our line models—we use non–informative
priors for slopes and intercepts—it seems reasonable that an expert knowledge of surveying
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and constructing linear features, e.g., roads, may be useful for such specifications.

We give further details on priors in Sections 2.3 and 3.1.

2.3 Positional data source model

A point–wise specification

Following the discussion in Section 1.2, the model for the jm(k)th observed point on source m
is

yyym(xxxjm(k)) = µµµm(xxxjm(k);βββm) + εεεm(xxxjm(k)),

where µµµm(xxx;βββm) is some function of true location xxx and parameter βββm, and, using function
notation similar to yyym(xxx), εεεm(xxx) is a bivariate Gaussian error vector with mean 000. Though we
can write, generically, (yyy(xxx)−xxx) = (µµµ(xxx)−xxx) +εεε(xxx), we resist referring to εεε(xxx) as a positional
error error or, even less attractively, as a positional error vector error vector! Obviously, if
µµµ(xxx) = xxx, then εεε(xxx) is a what we have referred to as a total positional error vector (Section
2.2). Otherwise, if µµµ(xxx) 6= xxx, then εεε(xxx) is, strictly speaking, different. In any case, we see little
harm in referring to εεε(xxx) as error, positional error, or (residual) postional error vector, at least
until it is necessary to use the total qualifier as we do in Section 2.3 below.

In our application, we consider the error vectors εεεm(xxxj) to be conditionally independent
across m = 1, . . . , M , j = 1, . . . , N , and q = 1, 2, given the true points xxxj . In the following
model development, however, we maintain some generality for the covariance structure of the
εεεm(xxx), but maintain independence across m throughout. We define the conditional variance
matrix for εεεm(xxx), given xxx, to be

VVV m ≡

(

σ2
m1 σm

σm σ2
m2

)

≡ Var(εεεm(xxx)), (A.1)

allowing for separate positional error vector component variances, σ2
m1 and σ2

m2, and covariance
σm.

In principle, we may use any function µµµm(xxx) for the mean of observed positions on source m.
Here, we consider a six–parameter affine transformation, a common large–scale transformation
in map registration procedures, that allows for shifting, scaling, and rotating of one set of
points relative to another—observed relative to true in our case. See, e.g., Dowman (1999) or
Barber et al. (2006). The affine transformation for µµµm(xxx) ≡ (µm1(xxx), µm2(xxx))T is

µm1(xxx) ≡ βm10 + βm11x1 + βm12x2

µm2(xxx) ≡ βm20 + βm21x1 + βm22x2.
(A.2)

Using the point–wise probability specification,

p(yyym(xxx)) = N(µµµm(xxx;βββm),VVV m),

we may write the observed likelihood as

M
∏

m=1

nm
∏

k=1

p(yyym(xxxjm(k))), (A.3)
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where βββm ≡ (βm10, βm20, βm11, βm21, βm12, βm22)
T . For a conditionally independent coordinate–

wise specification, that is, when, additionally, σm = 0, the analogous coordinate–wise expres-
sion is obvious, and we omit it.

The above specification results in a multivariate Gaussian distribution, jointly for all ob-
served source coordinates conditional on true locations. We describe this distribution in more
generality next. We actually implement the coordinate–wise independent specification and
discuss priors in this context in Sections 2.3 and 3.1.

A matrix specification

Stack observed coordinate pairs to get

ỹ̃ỹym ≡ (yyyT
m(xxxjm(1)), . . . , yyy

T
m(xxxjm(nm)))

T (A.4)

for each m, and define ΣΣΣm ≡ Cov(ỹ̃ỹym) = Cov(ε̃̃ε̃εm), where ε̃̃ε̃εm is defined analogously to ỹ̃ỹym.
Thus, ΣΣΣm describes the covariance structure among the coordinates of positional source m.
Again, for the moment, we consider a general covariance structure for ΣΣΣm and return to this
issue in the Discussion. Define the augmented matrix of true coordinates

XXX ≡











1 x11 x12

1 x21 x22

...
...

...
1 xN1 xN2











,

and let HHHm be the nm ×N indicator matrix with a one in the jth column of row k if jm(k) = j,
zero otherwise. Thus, a 1 in element (k, jm(k)) of HHHm indicates that observed point yyym(xxxjm(k))
on source m corresponds to true point xxxjm(k). Since {jm(k) : k = 1, . . . , nm ≤ N} is a subset of
{j : j = 1, . . . , N}, then HHHm has a single value of 1 in each row, zeros elsewhere. For example,
if nm = 2 and N = 3 with jm(1) = 1 and jm(2) = 3, then

HHHm =

(

1 0 0
0 0 1

)

.

Stacking consecutively the observation vectors (A.4) of each source, define ỹ̃ỹy ≡ (ỹ̃ỹyT
1 , . . . , ỹ̃ỹyT

M )T ,
and, likewise, stack to get ε̃̃ε̃ε ≡ (ε̃̃ε̃εT

1 , . . . , ε̃̃ε̃εT
M )T and β̃̃β̃β ≡ (βββT

1 , . . . ,βββT
M )T . Then, the likelihood for

all M sources follows from

ỹ̃ỹy = Diag(HHH1XXX ⊗ III2, . . . ,HHHMXXX ⊗ III2)β̃̃β̃β + ε̃̃ε̃ε

≡ X̃̃X̃Xβ̃̃β̃β + ε̃̃ε̃ε and

ε̃̃ε̃ε ∼ N(0, Diag(ΣΣΣ1, . . . ,ΣΣΣM )) ,

where Diag returns a block–diagonal matrix.

From prior information to model specification

Here, we make a transition from prior information (Section 2.2) to the specification of prior
distributions for the parameters of the coordinate–wise source model of Section 2.3. To facilitate
the transition, we introduce, shortly, a sort of a priori source model analogous to that of Section
2.3, but whose development is motivated by the a priori considerations of Section 2.2. Both the
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notions of accuracy and precision are relevant, and we discuss these briefly before specifying
priors. Particular numerical values of prior distribution parameters are given in Section 3.1.

A map’s observed points may be accurate in the sense that µµµm(xxx) = xxx, or inaccurate on the
contrary. Either case may occur with either high or low precision as allowed for by the error
variance components σ2

m1 and σ2
m2. While a map may be (in)accurate in the above sense, it

may retain relative positional accuracy in that, for example, distances, angles, and directions
may be accurate, which may occur with high or low precision. We may refer to the former
notion of accuracy as absolute positional accuracy. We do not see a clear distinction between
absolute positional precision and relative positional precision. The typical “target analogy” of
accuracy and precision is obvious.

The sources of positional data that we use here are either from a well–established production
series of source maps or from a GPS (Section 2.2). In either case, the assumption of a priori

absolute accuracy seems eminently reasonable. This assumption implies that our a priori model
is yyym(xxx) = xxx + εεεm(xxx), and this model seems to be implicit in metadata statements of “map
accuracy,” such as those given in Section 2.2, though, according to our usage, these statements
seem to refer to precision, with accuracy implied. More precisely, we assume such statements
refer to the total positional error vector yyym(xxx)−xxx = εεεm(xxx), given xxx, and are meant to refer to
the entire production series—a sort of map series production standard.

In our experience, such a priori information rarely helps to draw a distinction between the
components of the error vector or to suggest how they are related. Thus, the following a priori

variance model seems reasonable:

yyym(xxx) = xxx + εεεm(xxx)

with

VVV m =

(

σ2
t,m 0
0 σ2

t,m

)

,

using the previously discussed a priori total positional error variance component σ2
t,m in place

of σ2
m1 and σ2

m2 in (A.1). Assuming accuracy holds, then zero covariance is reasonable and is
supported by results reported by Barber et al. (2006).

While the above discussion suggests that an entire production series is accurate in some
overall, a priori sense, particular maps in a series often exhibit what may be characterized
as systematic variation from (a source known to be much closer to) truth. This suggests
the use of a mean other than µµµm(xxx) = xxx. Using the affine model (A.2) as an example, we
note that βββm = (0, 0, 1, 0, 0, 1)T corresponds to a priori accuracy. Of course, we specify a
prior distribution for βββm, and we acknowledge a priori accuracy by centering the prior at
E(βββm) = (0, 0, 1, 0, 0, 1)T . A flat, improper prior suggests that we have no a priori notion of
accuracy, but an improper prior on βββm results in an improper posterior if true coordinates are
specified stochastically, which they are (Section 2.4). In the interest of propriety, we choose
independent bounded uniform priors for the elements of βββm, m ∈ {C, D, S}, with prior mean
(0, 0, 1, 0, 0, 1)T .

However, for βββG, we specify a point mass prior at (0, 0, 1, 0, 0, 1)T . In other words, ac-
cording to (A.2), xxx is the mean of yyyG(xxx), i.e., we assume GPS to be accurate. Furthermore,
we incorporate the precision of GPS points via informative priors on the σ2

Gq , to be discussed
shortly. These informative specifications of accuracy and precision are sufficient to alleviate
non–identifiability that may otherwise arise in absense of other information. Indeed, the in-
corporation of informative specifications in a Bayesian framework is an important aspect of
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our approach. Thus, in this article, GPS may be considered as the “gold standard” relative
to the other sources used here. In other instances, a few highly precise and accurate survey
measurements may serve as the gold standard.

Denoting the above marginal priors as p(βmqr), m = 1, . . . , M , q = 1, 2, r = 0, 1, 2, and
borrowing the β̃̃β̃β notation from Section 2.3, we use p(β̃̃β̃β) =

∏

m

∏

q

∏

r p(βmqr) to denote the
joint prior for all beta parameters.

With the beta parameters having the aforementioned a priori accuracy, then σ2
m1 = σ2

m2 =
σ2

t,m corresponds to a priori precision, and we specify independent scaled inverse–χ2(νm, s2
m)

priors for the σ2
mq , each centered at mean E(σ2

mq) = νm

(νm−2)
s2

m
set
= σ2

t,m, m ∈ {C, D, G, S},

q = 1, 2, with degrees of freedom νm. Using p(σ2
mq), m = 1, . . . , m, q = 1, 2, to denote these

independent marginals, we write the joint prior as p(σσσ2) =
∏

m

∏

q
p(σ2

mq), where σσσ2 collects

all of the σ2
mq into a vector.

2.4 True points and lines

Points

In the previous section, observed source points are modeled conditionally on true points. As
alluded to in Section 1.2, true coordinates may be stochastic or may be determined, depending
on the network of intersecting true lines and the points thereon. The specification for points
is simple if we condition on lines.

First, consider a point that does not fall on a line. In this case, both point’s coordinates
receive a stochastic specification; there are no lines to determine such points. For a point
xxxj = (xj1, xj2)

T falling on only one line, say line l, we have xj2 = al + blxj1, so that the
coordinate xj2 is determined but xj1 is “free” and requires a stochastic specification; we consider
line parameter specification shortly. In the case that a point falls on two and only two lines,
i.e., it is the point of intersection of two lines, say, without loss of generality, lines 1 and 2,
then we have xj2 = a1 + b1xj1 and xj2 = a2 + blxj2, which leads to

xj1 =
a2 − a1

b1 − b2
and

xj2 =
a2b1 − a1b2

b1 − b2
,

thus determining both point’s coordinates, given line parameters.

More generally, if a point falls on more than two lines, in principle we may choose any
two of the lines comprising the intersection to determine the coordinates in the above manner.
However, in some scenarios, it turns out that the ease of line model specification may depend
on which two lines are chosen. See Section 2.4 and Appendix 4. It should be clear that a
true map consisting of a regular grid of streets—that are modeled as straight—may have very
few coordinates, perhaps none, that require stochastic specification. In our application, all but
three points are determined as points of line intersections, and the remaining three points fall
on only a single line so that only one coordinate for each of these points requires a stochastic
specification; see Figure 2.

It would be convenient to assign a flat, improper prior to all such stochastic true coor-
dinates, but this would result in an improper posterior when using a stochastic specification
for β̃̃β̃β, which we do. Instead, we assign all undetermined EW coordinates xj1, j = 1, . . . , N ,
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to have independent and identical uniform priors supported by an interval encompassing all
plausible true EW coordinates associated with all maps under consideration, where plausibility
is aided by the maps’ a priori total positional error variances σ2

t,m, m ∈ {C, D, G, S}. Similarly,
we assign all undetermined NS coordinates xj2, j = 1, . . . , N to have independent and iden-
tical uniform priors supported by an interval encompassing all plausible true NS coordinates.
Collecting true coordinates in x̃̃x̃x, analogous to ỹ̃ỹy, above, we denote the product of all of the
independent uniform priors for true coordinates as p(x̃̃x̃x), though in doing so we risk confusion
with the fact that, when some points lie on one or more lines, not all true coordinates in x̃̃x̃x
have a stochastic specification. In addition, for simplicity of notation, conditioning on lines is
suppressed when points fall on lines.

In the case that points do not fall on lines or if lines are not modeled, we now have everything
we need to specify a full probability model for all quantities. Using the above established prior
notation and the point–wise likelihood (A.3), this points–only model is

(

M
∏

m=1

nm
∏

k=1

p(yyym(xxxjm(k)))

)

p(β̃̃β̃β)p(σσσ2)p(x̃̃x̃x). (A.5)

In Section 3, we conduct a comparison among models including this “points–only” model and
the line models described and enumerated below.

Lines

The data, i.e., source, model of Section 2.3 is conditional on true coordinates, among other
parameters, and its specification is straightforward. And, there is no difficulty with regard
to model specification for true coordinates given true lines—stochastic or deterministic as the
case may be. But, a course of action for a true line model is not immediately obvious in the
general case. However, most map applications will consist of true points that are associated
with at most two true lines. In this case, the specification for line parameters is simple: all
line parameters receive a stochastic specification. Again, this is the case for our application.

Cases involving more than two lines intersecting at the same point may lead to complica-
tions with regard to line parameter specification and identifiability. Because most applications
do not fit this scenario, including our own application, we do not treat this scenario systemat-
ically. However, we do present a toy problem that introduces complications that may arise in
the more general case (Appendix 4). Appendix 4 may help also to elucidate the simpler cases.

Thus, in most cases, point coordinate and line parameter specification is straightforward,
and we note the reduction in required stochastic specifications for point coordinates when lines
are modeled. For example, in our application, we have N = 44 true points, 41 of which are
determined by line intersections, with only one coordinate from each of the remaining three
points requiring stochastic specification. Since we have L = 14 lines in a simple configuration,
we require 28 stochastic specifications for the slopes and intercepts. Thus, a total of 31 true
line or point quantities require stochastic specification compared to 88 in a points–only model.

Again, for simplicity in notation, we denote the models for line intercepts and slopes as
p(aaa) and p(bbb), where aaa and bbb collect intercepts and slopes, respectively, and we hide possible
determinedness of some parameters, though none are determined in our application.

A natural vague prior for a slope is uniform(−π/2, π/2), on the radian scale, which, by
transformation, results in a standard Cauchy prior on the original slope “rise–over–run” scale.
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Thus, assuming a priori independence, p(bbb) may be specified as the product of Cauchy den-
sities. For intercepts, we appeal to the point–slope form, (xj2 − xl

02) = bl(xj1 − xl
01), where

(xl
01, x

l
02) is the “point,” l = 1, . . . , L. We specify independent uniform priors for all such point

coordinates xl
0q l = 1, . . . , L, q = 1, 2, whose independence from slopes seems natural. In the

Application, Section 3, we give particular bounds on the prior support of these coordinates
that are appropriate to the source maps used there.

This specification for the point–slope form implies, a priori, that lines occur randomly over
a region containing the maps of interest. Note that the points in the point–slope form are not
identifiable in the sense that a given line l passes through an uncountable number of such points
that would suffice in the point–slope form. But, this is not a problem since any such point
on line l, together with the slope, bl, uniquely determines the intercept, al = −blx

l
01 + xl

02,
l = 1, . . . , L. We retain notationally p(aaa) as the (induced) prior on intercepts.

Using the above model development and the point–wise likelihood (A.3), we can write a
full–probability model for all observed and unobserved quantities as

(

M
∏

m=1

nm
∏

k=1

p(yyym(xxxjm(k)))

)

p(β̃̃β̃β)p(σσσ2)p(x̃̃x̃x)p(aaa)p(bbb), (A.6)

and, again, we remind the reader that our notation favors brevity at risk of hiding the possible
determinedness of some true coordinates and of some line parameters. In the application of
this line model (A.6) in Section 3, none of the lines’ parameters are determined, and all but
three coordinates are determined. This is true also for the other line models described below.

So far, we have the “points–only” model (A.5) and refer to the current line model (A.6) as
the “lines model”. We introduce the “parallel lines” model (A.7) and “orthogonal lines” model
(A.8) below.

Borrowing strength. Here, we investigate the cases of parallel lines and orthogonal
lines. Figure 2 in Section 3 suggests that streets appearing to run nearly NS were intended to
have the same slope and similarly for the streets that appear to run nearly EW. In this case,
we replace the model, p(bbb), in the lines model (A.6) with one of two other model specifications,
which we now describe.

In general, there may be several sets of lines, each line in a set sharing approximately the
same slope as the other lines in the same set. For example, Figure 2 suggests an EW set
and an NS set. There are L = 14 line features—streets—indexed by l ∈ {1, 2, . . . , 14}, which
we divide into an EW set, {lEW (k) : k = 1, . . . , LEW ≤ L} = {1, 2, 3, 4, 5}, and an NS set,
{lNS(k) : k = 1, . . . , LNS ≤ L} = {6, 7, . . . , 14}.

In the lines model (A.6), we indicated independent standard Cauchy priors for the slopes,
uniforms on the radian scale. Here, to borrow strength amongst slopes in the same set, we
specify independent Cauchy priors for the means, µEW and µNS , of two parent distributions,

then specify blEW (k)
iid
∼ N(µEW , σ2

EW ), k = 1, . . . , LEW , and blNS(k)
iid
∼ N(µNS , σ2

NS), k =
1, . . . , LNS , where σ2

EW = (1 + µEW )2σ2
b and σ2

NS = (1 + µNS)2σ2
b . Modeling the variance

in this fashion gives an approximately contant variance on the radian scale by way of a first
order Taylor approximation. That is, if b ∼ N(µ, (1 + µ)2σ2), and θ = g(b) = arctan(b), then
Var(θ) ≈ σ2

b .

It should be clear that it is on the radian scale that we should expect constant variance,
not on the rise–over–run scale; a change of one unit for b centered at zero would tend to be
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a much larger change in angle than a change of one unit for b centered at 100, but, certainly,
we should not expect that the precision of the process of constructing straight streets depends
on direction in this way! We could have given each parent slope distribution its own, separate
variance, but, with a relatively small number of lines in each set, we chose to use all lines to
estimate σ2

b in the weighted variance terms of both parents.

The common scale parameter, σb, may be assigned an improper distribution p(σb) ∝
uniform(0,∞), giving a folded–noncentral–t full–conditional (Gelman 2006), but we specify,
instead, a relatively large finite upper bound, and use WinBUGS (Lunn et al. 2000) for sam-
pling.

Using, by now, familiar notation, we may write the parallel lines model as
(

M
∏

m=1

nm
∏

k=1

p(yyym(xxxjm(k)))

)

p(β̃̃β̃β)p(σσσ2)p(x̃̃x̃x)p(aaa)p(bbbNS)p(bbbEW )p(µNS)p(µEW )p(σb), (A.7)

and, once again, we remind the reader that p(bbbNS) and p(bbbEW ) may hide determineness, similar
to our previous notation.

In an obvious extension, we consider an orthogonal street network or “grid,” wherein lines
share approximately the same slope, or slopes are approximately negative inverses of each other.
In this case, we specify slopes or negative inverse slopes as arising independently from a single
Gaussian parent, N(µO, σ2

O), and denote the resulting joint distribution as p(bbbO) where bbbO

collects slopes and negative inverse slopes. In Section 3, bbbO consists of the slopes of near–EW
lines and the negative inverse slopes of near–NS lines. Though we have no problem with more
general cases—using some combination of model components already presented—we assume,
for simplicity, that all slopes or negative inverse slopes belong to this one parent, which is the
case in our application, and we use a standard Cauchy prior, p(µO), for the mean and assign
a bounded uniform prior, p(σO), to the standard deviation. The full–probability distribution
for this orthogonal lines model may now be written as

(

M
∏

m=1

nm
∏

k=1

p(yyym(xxxjm(k)))

)

p(β̃̃β̃β)p(σσσ2)p(x̃̃x̃x)p(aaa)p(bbbO)p(µO)p(σO). (A.8)

3 Application

In addition to a set of differentially corrected GPS points (m = G) and a large–scale (1:24000)
USGS Digital Line Graph (DLG) (m = D) (U.S. Geological Survey 1999, 2004), each discussed
in Section 2.2, we also use a Census 2000 TIGER/line file (m = C) (U.S. Census Bureau
2000a,b) and a StreetMap USA file (m = S)
(Environmental Systems Research Institute 2003)—an “enhanced” version of the
TIGER/line file. (TIGER is an acronym for Topologically Integrated Geographic Encoding
and Referencing system.) Each source depicts a residential neighborhood in Durham, North
Carolina, USA (Figure 2). Each has 44 points that represent the same 44 residential street
intersections, 41 of which are depicted as intersections in the figure; along Watts Street (l = 14),
three streets falling outside the boundaries of our maps create three points of intersection that
are not depicted as such here, but are nonetheless point features that fall on line feature l = 14.
All sources are in the same reference system, WGS 84 UTM Zone 17 meters. On–site inspection
of the streets strongly suggests that they were intended to fall along straight lines. We have no
instances of intersections involving three or more lines, hence no line parameters are determined
in any of our line models (A.6), (A.7), or (A.8); see Section 2.4 and Appendix 4.
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To better illustrate the effectiveness of the line model specification (A.6) compared to
the points–only model (A.5) for inferring true position, we initially use only the Census 2000
TIGER/line file (m = C) and GPS points (m = G). To illustrate the effects of borrowing
strength among slopes in line models, we use all four sources. In all illustrations, we use only
nG = 16 of the 44 available GPS points for model fitting, the remaining 28 GPS points being
used for model checking; when using other sources, we always use all nm = N = 44 observed
points, m ∈ {C, D, S}. See Figure 2.

We use WinBUGS version 1.4.1 (Lunn et al. 2000) for all of the computations here unless
noted otherwise.

3.1 Specifying prior distribution parameters

In Sections 2.2 and 2.3, we provided some discussion for specifying prior distributions. Here,
we supply numerical values for prior hyperparameters that are particular to our application.

Source metadata suggests that, aside from GPS (m = G), the DLG (m = D) has the lowest
positional uncertainty, while the Census 2000 TIGER/line file (m = C) and the StreetMap
USA file (m = S) have similar uncertainties. (The StreetMap USA files are derived from
the TIGER/line files.) As discussed in Section 2.2, the DLG has an a priori uncertainty
corresponding to a total a priori positional error variance σ2

t,D ≈ 62 m2. We can derive a total
a priori positional error variance for the TIGER/line file in a similar manner.

TIGER/line metadata states that each file

...at best meets the established National Map Accuracy Standards...where 1:100,000–scale
maps are the source...(U.S. Census Bureau 2000b).

This implies that TIGER/line source maps introduce a variance of about 242 m2, according to
National Map Accuracy Standards; see see Section 2.2. Though we do not know the standards
for producing TIGER/line files from such source maps, we assume, additionally, “0.003 inches
standard error” due to the production process from the source, the same as for production of
DLGs from their source maps (U.S. Bureau of the Budget 1947; U.S. Geological Survey 1999).
This implies a variance of about 82 m2 at a map scale of 1:100000. Together, these two variances
suggest a total a priori positional error variance, σ2

t,C ≈ 252 m2. Since StreetMap USA files
are derived from TIGER/line files, we assume also σ2

t,S ≈ 252 m2. The processing software
for GPS positions indicates a positional uncertainty corresponding to σ2

t,G ≈ 0.72 m2 (Trimble
Navigation 1997a, b, 2003).

Thus, following the discussion at the end of Section 2.3, we specify independent scaled
inverse–χ2(νm, s2

m) priors for σ2
mq , with each prior centered, respectively, at means given by

the aforementioned values of σ2
t,m, i.e., E(σ2

mq) = νm

(νm−2)
s2

m ≡ σ2
t,m, m ∈ {C, D, G, S}. For

m ∈ {C, D, S}, we assign degrees of freedom νm = 3, giving weakly informative specifications
in the sense that Var(σ2

mq) does not exist. Because GPS points are relatively precise compared
to the remaining sources of positional data, we might argue, as a practical approximation, that
σ2

Gq = σ2
t,G with probability one, q = 1, 2. But, we allow for some uncertainty in σ2

Gq and
specify νG = 10.

The map region X is contained approximately within a 1 km2 square area; see Figure 2. For
some uniform prior specifications, it is convenient to work with the centered region contained
approximately within [−500, 500]× [−500, 500], now using meters. The corresponding uniform
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prior specifications for the original region are simply shifted versions of the centered specifi-
cations. For each stochastic true coordinate, we specify an independent uniform(−625, 625),
allowing for five maximum a priori map standard deviations (σt,C ≈ 25 m) beyond the edges of
the centered region. The coordinates of the “points,” (xl

01, x
l
02), l = 1, . . . , L, in the point–slope

specification of lines, are assigned the same independent uniform priors. Recall (Section 2.4)
that intercepts follow from slopes and these points.

The remaining specifications are the same regardless of working with the centered region
or the original. The affine shift parameters βm10 and βm20, m ∈ {C, D, S} are each assigned an
independent uniform(−125, 125), which, again, allows for plus or minus five times the maximum
a priori map standard deviation (σt,C ≈ 25 m). The remaining affine parameters for m ∈
{C, D, S} are, independently, uniform(0, 2) for βm11 and βm22, and uniform(−1, 1) for βm21 and
βm12; these bounds allow for plausible scaling or rotating of the affine transformation. Thus,
we specify a priori accuracy in the sense that E(βββm) ≡ E(βm10, βm20, βm11, βm21, βm12, βm22)

T

= (0, 0, 1, 0, 0, 1)T (Section 2.3). As discussed in Section 2.3, we set βββG = (0, 0, 1, 0, 0, 1)T with
probability one.

For each of the slope scale parameters, σb of model (A.7) and σO of model (A.8), we
specify a uniform(0, 10), and we use parameter expansion (Gelman et al. 2003; Gelman 2006)
to alleviate “sticky” sampling behavior due to σb and σO being near zero.

3.2 Specifying initial values

Here, we give some details on how to obtain initial sample values for all stochastic quantities.
Our approach is fairly straightforward and intuitive, and is guided by the model specifications
given in Sections 2.3 and 2.4.

Recall that our source maps do not depict more than two lines intersecting at any one point,
so that all line parameters, al and bl, l = 1, . . . , L, are stochastic. Their initial values were
obtained in the following manner. We chose the coordinates of the nG = 16 GPS points, our
a priori best set of points, to serve as dependent variables in two regressions. One regression
used the nG = 16 NS coordinates as dependent variable, the other regression used the nG = 16
EW coordinates as dependent variable. We chose the next best set of points to be used as
regressors. For illustration purposes, assume this set consists of observed DLG (m = D)
points. (For some results, we use only the two sources m = G and m = C, in which case,
of course, the second best set would be those of source m = C.) In particular, we used the
corresponding 16 coordinate pairs of source m = D as regressors, with intercept. Thus, we
performed a sort of ad hoc estimation of affine parameters, but these should not be used as
intitial affine parameters as we explain below.

We used each of the above two coordinate regressions to predict N = 44 coordinate values
corresponding to all 44 observed regressor points of m = D. Together, the two sets of predicted
coordinates constitute 44 coordinate pairs that might be considered as estimates of true points
if only for the fact that the estimates are not necessarily arranged on lines, though we know
with which true line(s) each point is associated. To obtain initial values for the points and
slopes in the point–slope form of line l, l = 1, . . . , 14, we used the subset of the 44 predicted
points that is associated with line l. Regressing the values of one coordinate of subset l on
the values of the remaining coordinate in a simple linear regression gives slope and intercept
estimates that were used as initial values for the point and slope in the point–slope form of
line l. In models (A.7) and (A.8), which use a hierarchical specification of slopes, we used the
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estimated slopes from the simple linear regressions to obtain initial values for the parent means
µNS , µEW , and µO, and for the scale terms σb and σO.

In our application here, these true line parameter initial values determined lines whose
intersections determined estimates of 41 of the N = 44 true points. The remaining three true
points lie on a single line and, thus, only one coordinate of each of these points is determined,
each remaining coordinate having a stochastic—recall, uniform—specification, hence requiring
an initial value; see points 39, 40, and 42 on Watts Street in Figure 2. We simply predicted the
three necessary initial coordinates from the aforementioned simple linear regression for l = 14.

Now, these N = 44 true point estimates—only three coordinates of which are used as initial
values—can then be used to obtain initial values for the affine parameters βββm. For βm10, βm11,
and βm12, we regressed the EW coordinates of the nm = 44 observed points, m ∈ {C, D, S},
on both coordinates of the corresponding N = 44 estimated true points, as (A.2) suggests; for
βm20, βm21, and βm22, we used the nm = 44 NS coordinates as response. Initial values for
the data source variance components σ2

m,q, m ∈ {C, G, D, S}, q = 1, 2, were obtained from the
estimated regression standard errors.

For a solitary true point in line models (A.6–A.8)—we have no such points here—or for a
point in the points–only model (A.5), an initial coordinate value may be equated to the average
of corresponding observed coordinates or may be generated from a Gaussian distribution whose
mean is equal to the average of corresponding observed coordinates and whose variance is equal
to an average of σ2

t,m values.

Multiple sets of initial values were obtained by repeating the above sequence of steps, each
set beginning with slopes and intercepts generated from the bivariate Gaussians with means
given by the regression–estimated slope and intercept parameters, and variances given by the
estimated variance–covariance matrices for the slope and intercept parameter estimators.

3.3 Results

We computed three parallel Markov chains from initial values obtained via the procedure
outlined above. Generally speaking, convergence was achieved quickly, well within a few
hundred iterations, and mixing was excellent. More formally, we assessed convergence us-
ing the potential scale reduction factor (Gelman and Rubin 1992) and its multivariate version
(Brooks and Gelman 1997) as implemented in the CODA add–on package (Plummer et al.
2006) in the R Language and Environment for Statistical Computing (R Development Core Team
2006). Convergence was deemed to have occurred if each of the univariate factors and the mul-
tivariate version were less than 1.1. Each chain consisted of an initial burn–in set of 5000
iterations, which included any adapting phase, plus a subsequent set of 5000 iterations. We
used the latter 5000 iterations of one chain for each model to compute all results reported here.

We use the deviance information criterion (DIC) (Spiegelhalter et al. 2002) and posterior
predictive loss (Gelfand and Ghosh 1998) to compare models throughout. In particular, for
the latter, we compute the posterior mean of

∑

mkq

(

yrep
mq (xxxjm(k)) − ymq(xxxjm(k))

)2

2
∑

m

nm

,

where yrep
mq is the predicted value of the observed coordinate ymq , and the denominator puts

the result on a per–coordinate basis for convenience of interpretation. We refer to this as
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MSPE. We note that, while all DIC values reported here are associated with a positive overall
effective number of parameters, all but the very first and very last reported DIC values below
are associated with at least one factor in the likelihood that contributes a negative value for
the effective number of parameters (Spiegelhalter et al. 2002).

Point model versus line model

Results for the points–only model (A.5) are illustrated in Figure (3) (DIC = 793.7, MSPE =
119.5 m2). Recall that we used only sources m = G and m = C for this illustration. The figure
shows the 16 relatively accurate GPS points used in the model fitting (×) and the remaining 28
hold–out GPS points (�). The figure also depicts approximate 95% credible ellipses for selected
points separated by regular intervals along line segments connecting posterior mean estimates
of the N = 44 true points. Each such coordinate pair along a line segment can be expressed as
a convex combination of segment endpoints, giving a set of posterior draws for each point on a
line segment, and the posterior mean and covariance matrix for each such point was estimated
from these draws. Each ellipse is the 95% HPD credible region of an approximating bivariate
Gaussian distribution using the estimated posterior mean and covariance matrix.

Analogous results for the comparable lines model (A.6) are illustrated in Figure (4) (DIC =
650.3, MSPE = 68.5 m2). In this case, true points of intersection are estimated by the intersec-
tion of lines having posterior mean slope and mean intercept, the remaining three points fall
along line feature l = 14 and are determined using the appropriate posterior mean coordinate
in the equation for line l = 14. The differences in the precision of point–wise predictions of
true position are remarkable compared to the results of the points–only model (A.5). Many
lines’ approximate 95% point–wise credible ellipses are comparatively imperceptible, the ob-
vious exception being those for points along Broad Street, l = 7 in Figure 2, the second NS
street from the left. This is the only street that was not directly associated with relatively
precise GPS points; the relative imprecision of the Census 2000 TIGER/line file points is ob-
vious. Loosely speaking, the NS coordinates of the intersection points along Broad Street are
relatively constrained by their association with the EW streets, whose NS coordinates—as well
as EW—are “tied–down” by the relative precision of GPS points, indicated by × in Figure 4.
However, the association of Broad Street with EW streets appears to have comparatively little
effect on the precision of the EW coordinates of Broad, hence little effect on the precision of
the “EW location” of Broad. Still, we get a very noticeable improvement for this linear feature
compared to the points–only model.

As a predictive check, we determined that all of the 28 hold–out GPS points fall within
their respective 95% posterior predictive ellipses for the points–only model (A.5). For the lines
model (A.6), 27 out of 28 GPS hold–out points fall in their respective credible regions for an
observed coverage of 96.4%; GPS point 15 is not contained in its region. In each model, these
predictive ellipses are centered at posterior predictive mean GPS locations, which, according
to our model, are the same as the posterior mean true locations, but the predictive ellipses are
slightly larger than those of the true points to account for the added variability of GPS about
truth. Of course, we might expect one or two of these hold–out points to lie outside their
95% credible regions, and, as alluded to earlier, we do not believe that the points–only model
realistically characterizes the variability of points along lines because it does not incorporate
the linear process of linear features.

We note that an ellipse in Figures 3 or 4 characterizes the variability of an actual point
feature only when associated with one of the N = 44 true points. Otherwise, the ellipses at
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other locations along a line are a simple point–wise way to characterize variability of a line
feature; credible regions for lines can be visualized as outlines that circumscribe collections of
these point–wise ellipses. When using a line model, another way to express a credible region
for a line feature as a whole would be to plot an ensemble or “bundle” of true line feature
posterior draws such that the bundle consists of line features whose corresponding line’s slope
and intercept draws fall within the 95% HPD ellipse of an approximating bivariate Gaussian
distribution; the outline of the resulting bundle would indicate a true line feature’s approximate
95% credible region. In the current case, the ellipse approach and the bundle approach (not
shown) give credible regions that are very similar.

Borrowing strength

The previous section presented conclusive results favoring the lines model (A.6) over the points–
only model (A.5). Here, we look at the effect of borrowing strength among slopes in three
different line models: the lines model (A.6), no borrowing of strength; the parallel lines model
(A.7), two parent distributions for slopes; and the orthogonal lines model (A.8), one parent
distribution for slopes of near–EW streets grouped together with negative inverse slopes of
near–NS streets.

DIC for these three models is, respectively, 1634.3, 1632.2, and 1624.7, with corresponding
MSPE values 60.26 m2, 60.87 m2, and 60.85 m2. (Recall that we use all four sources for these
comparisons.) Thus, there is little practical difference among models according to MSPE, but
DIC strongly suggests that streets exist in an orthogonal grid according to model (A.8). This
conclusion is supported by the containment of zero in the 90% HPD credible interval of the
posterior mean of the difference µEW − (−1/µNS) from model (A.7): [−0.000854, 0.002945];
the posterior histogram was unimodal and symmetric. (Of course, we might argue, instead, for
a model with a single parameter—with standard Cauchy prior—for all slopes of EW streets
and all negative inverse slopes of NS streets: DIC = 1654.1, MSPE = 61.0 m2; details omitted.)

The observed coverage for the GPS hold–out points by their 95% predictive credible ellipses
are similar in each case: 27/28, 27/28, and 26/28, respectively; hold–out GPS point 15 was
not covered for models (A.6) and (A.7), and, additionally, GPS point 8 was not covered for
model (A.8). Thus, none of the three models indicate cause for concern regarding departure
from nominal coverage.

We get corresponding improvements in marginal posterior precision of model parameters

when comparing the models that borrow strength to the one that doesn’t (Tables 1–4). This is

apparent mostly for intercepts and slopes (Tables 1–2). And, we get improvements in posterior

precision for true points, with posterior standard deviations of true EW coordinates averaging

0.6218, 0.4255, 0.4109 for models (A.6)-(A.8), respectively, and, for NS coordinates, 0.6156,

0.5284, 0.5357.

4 Discussion

We have presented a novel approach to combining multiple sources of positional infor-
mation to infer true position. Moreover, we have shown how an accounting of feature
linearity provides a remarkable improvement in precision for these inferences. The
approach refines and extends the early notion of the epsilon–band characterization of
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positional uncertainty in line segments (Perkal 1966; Chrisman 1982; Blakemore 1984;
Veregin 1999) as well as the more recent, closely related refinements by various authors
in the GIScience community (Caspary and Scheuring 1993; Leung and Yan 1998; Shi
1998; Shi and Liu 2000; Leung et al. 2004a). And, our approach is conceptually consis-
tent with the measurement error (ME) model advocated by Goodchild (2004) and Leung,
Ma and Goodchild (2004a; 2004b; 2004c; 2004d) in the context of measurement–based
GIS (MBGIS) (Goodchild 1999), though our approach goes beyond this in its combining
of multiple sources of information and the use of the line process model within a fully
probabilistic framework.

Within the relatively large literature on spatial data analysis, to our knowledge, only
the current approach and that of Barber et al. (2006) address the issue of positional error
for the purpose of inferring true position. These approaches are important not only for
directly inferring position, but, more generally, for incorporating positional uncertainty
into functions of spatial coordinates, hence providing a model–based foundation of error
propagation studies (Heuvelink, Burrough & Stein 1989; Heuvelink 1999). Moreover,
the models may be relevant to some traditional spatial statistical analyses (Cressie 1993;
Banerjee et al. 2004) of attributes identified by uncertain locations.

We anticipate a few concerns regarding our approach in this paper. Specifically,
we attempt to discuss and allay concerns of identifiability and of comparability to the
approach of Barber et al. (2006), hereafter referred to as BGS.

The informative prior specifications on the source model variance components, σ2
mq ,

is important for identifying latent true positions. This, of course, may be viewed as
a virtue of the Bayesian approach to incorporating genuine prior information. BGS
address this specification of prior information in a manner similar to that presented here,
though their models generally are different from ours. A feature unique to our approach
is the line process specification, and, in going from the points–only model (A.5) to the
lines model (A.6), for example, we go from 88 true coordinates to 28 line parameters plus
three true coordinates. Furthermore, the considerations of model specification discussed
in Section 2.4 and Appendix 4 help to ensure that the model specification is identifiable.
Using the same data, BGS predict 88 true coordinates for each of their map models in
a model averaging approach to predicting true position. Each of their map models use
the corresponding observed map’s coordinates as covariates in a large–scale affine mean
model for each map, and this results in completely separate mean specifications across
map models, model averaging being used only to combine predictions of true position.
Here, we use the same true coordinates as covariates across maps, hence facilitating
learning across maps.

The BGS approach seems to offer an advantage with regard to the implementation
of spatial structure in the (residual) positional error vector, εεεm(xxx). If we were to spec-
ify a spatial process on each component of the positional error vector, then, evidently,
ΣΣΣm would be a function not only of the typical spatial correlation range or smooth-
ness parameters, but also of the unknown true positions. As BGS remark, this would
compound the practical problem of a typically weakly identifiable spatial correlation
structure. As an approximation, we might instead use the observed source coordinates
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as arguments of ΣΣΣm. Still, this approach would become computationally demanding for
sources with a large number of points unless other approximations are made. A similar
“big n” problem arises in the BGS approach. And, it seems that we would be forced to
use the unknown true coordinates in order to predict one or more unobserved yyym(xxxj)
points, that is, for predicting where a feature would exist on source m when the feature
is not originally depicted on that source.

Though we presented some expressions in terms of a general structure for source
model covariances, ΣΣΣm, we restricted our implementation to conditional independence
of source coordinates within and across sources. Using the same data as we do here, BGS
specify spatial structure within a different modeling framework, but their results suggest
little to no spatial correlation in either the EW or NS error compentents for any of the
sources they used and, furthermore, that the spatial processes within a source are not
correlated. This may not always be the case, but these results support our independence
assumption in the current case, and these results have important implications for the
use of such models in practice: independence allows for relatively quick computations,
which is critical to implementations involving more sources or sources with a large
number of observed positions. Though not reported here, we did specify a spatial
process for each coordinate of εεεm(xxx), m = 1 . . . , M , using observed coordinates in ΣΣΣm

as an approximation to truth, but the marginal posteriors for the spatial ranges of
correlation were highly sensitive to prior specifications, essentially mimicking the priors
and giving poor sampling performance when attempting to specify vague priors. These
observations are consistent with BGS results for these data.

Finally, in regard to BGS, we note that our points–only model (A.5) results are sim-
ilar to BGS results, but our line process models (A.6–A.8) are not directly comparable
to anything in the statistical or the GIScience literature.

Regarding MCMC sampling, we noticed poor behavior in some initial implementa-
tions of our models when near–NS linear features (see Figure 2) were parameterized as
x2 = al + blx1; evidently, slopes “near” infinity were problematic. Though we maintain
this parameterization throughout this article for clarity of presentation, we actually
implemented the alternative parameterization, x1 = a∗

l + b∗l x2, for near–NS features,
where a∗

l = −al/bl and b∗l = 1/bl, l = 6, . . . , 14, and as we present in Tables (1) and (2).

The results obtained here are encouraging with regard to future work on positional
error modeling and inference for true position in GIS. In particular, map conflation
remains an outstanding problem. According to current GIS practice, we manually
identified points on different maps as corresponding to the same true point features.
Hence the relatively small size of our data sets! However, current results now motivate
investigation of automated, model–based map conflation for larger problems whereby
information in the sources and metadata may be used to decide which points/lines cor-
respond across maps. We might also attempt automation of the specification of linear
features, i.e., automated model selection, again using available positional information
to help decide which lines are straight and which are not, perhaps via DIC or some
other measure. Ultimately, we anticipate development of a “data–model integration”
approach to combining multiple sources of positional information with geospatial infor-
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mation theory.
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Appendix

The following examples should help to clarify model specification for true points and
true lines. The specification may be considered as a second stage in a hierarchical de-
velopment whose first stage (Section 2.3), conditional on true points, is straightforward.
The examples should also clarify that true points, conditional on true lines, are easy to
specify. And, in most map applications, illustrated by our own application in Section 3
and by Case (i), below, all line parameters may be specified using priors as discussed in
Section 2.4. However, Cases (ii) and (iii), below, illustrate that line modeling may be
helped or hindered in more complicated line feature configurations, depending on which
pairs of lines are chosen to determine true point intersections. Fortunately, these latter
two cases illustrate the exception rather than the rule for most map applications.

Consider the three configurations of “streets” shown in Figure 5. In total, there are
L = 7 or L = 8 true lines and N = 13 or N = 15 true points (×), all but one true
point (j = 13) occurring on at least two lines. There are three EW lines (l = 1, 2, 3)
and four NS lines (l = 4, 5, 6, 7) that intersect in a grid–like fashion as we might expect
to see in many street networks. Line l = 8 (middle and bottom configurations) is used
to illustrate complications that may arise with points of intersection consisting of more
than two lines.

Case (i): Line 8 absent (top configuration). The resulting configuration is very
similar to that in our application (Figure 2), and a model specification is straight-
forward. Given true lines, point coordinates are easily specified—deterministically or
stochastically—as previously discussed in Section 2.4; only one coordinate of one point
(13) is not determined in this case. Lines are not determined by other lines (see below)
and may be specified stochastically as in Section 2.4.

Case (ii): Line 8 passes through two or fewer 3–line (generally n–line n ≥ 3) inter-
sections (middle configuration intersections 1 and 5). In this case, a specification for
true points, again, is straightforward, given true lines. But, now, we have more than
one way to determine points 1 and 5. For example, we may use line pairs 1 and 4, and
2 and 5, respectively. That is, points 1 and 5 are functions of these lines’ parameters
as shown in Section 2.4. Then, because line 8 must be made to pass through these two
points, it is clear that line 8, given lines 1, 4, 2, and 5, is determined by these four lines,
though the dependence in WinBUGS can be made via the two true points; there is no
need to derive explicitly the equation of line 8 in terms of the other lines’ parameters.
Remaining lines are not determined by other lines and may be specified stochastically
as in Section 2.4.

Alternatively, we may choose to determine points 1 and 5 using line 8 with lines 1
and 2, respectively. In this case, given lines 1, 2, and 8, lines 4 and 5 are now partially
determined by these lines because lines 4 and 5 pass through points 1 and 5. Thus, we
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seem to have found a sensible specification for lines 4 and 5 via point–slope formulas;
the “points” (1 and 5) are determined, as we said, by other lines, but the slopes of
lines 4 and 5 are not determined by other lines, and these slopes may be specified
stochastically as in Section 2.4. Remaining lines are not determined by other lines and
may be specified stochastically as in Section 2.4.

Case (iii): Line 8 passes through more than two 3–line intersections (bottom config-
uration intersections 1, 5, and 9). As in Case (ii), point specification is easy, though we
must choose which line pairs to use to determine points 1, 5, and 9. We may determine
these points by lines 1 and 4, 2 and 5, and 3 and 6, respectively. But, then, similar to
Case (ii), line 8 is determined by these lines, and we are led to consider three equations
involving the parameters of line 8:

x12 = a8 + b8x11

x52 = a8 + b8x51

x92 = a8 + b8x51,

where xxx1 = (x11, x12)
T , xxx5 = (x51, x52)

T , and xxx9 = (x91, x92)
T have been determined by,

i.e., are functions of, other lines. Thus, given these other lines, we have three equations
and two unknowns so that a8 and b8 are over– determined. It is important to realize that
it is not appropriate simply to toss out one of these equations since there is information
to be had in the specification that line 8 passes through all three intersections; this is
part of the process model (Section 1.2).

It turns out that this particular case is not so bad, however, as we can arrive at a
clear, sensible specification by determining points using different line pairs. If we let
points 1, 5, and 9 be determined instead by line 8 and, say, lines 4, 5, and 6, respectively,
then there is no problem; assign a stochastic specification to these lines as in Section
2.4. Lines 1, 2, and 3 are now partially determined by other lines via points 1, 5,
and 9 respectively, and these lines may be specified in the same point–slope manner as
discussed in Case (ii).

In summary, points may be seen as easy to specify, given lines. But, in some cases,
the way in which points are determined, i.e., the pair of lines chosen to determine
a point, may help or hinder subsequent line specification. We suspect there to be a
systematic approach for handling such cases. Notice, in Case (iii), for example, we were
able to arrive at a sensible specification by reducing the determination of points 1, 5,
and 9 from using six lines—1 and 4, 2 and 5, 3 and 6, respectively—to using four—4,
5, 6, and 8. If this one instance can be used to speculate, perhaps a general rule is to
use as few lines as possible to determine points. But, this will remain speculation for
us because we do not pursue the matter further since such cases in the map context are
the exception rather than the rule.
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Figure 2: Map (m = G) of residential neighborhood streets in Durham, NC, USA,
defined by 44 enumerated points. × indicates GPS points used in model fits, and �

indicates GPS points used only for model checking. Corresponding 44 points of other
sources (not shown) are used in all model fits. Street numbers correspond to line
subscript, l.
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Figure 3: Points–only model (A.5) approximate 95% credible ellipses for selected points
along line segments connecting true point posterior means. × indicates a GPS point used
in the model fit, � indicates a GPS point only used for validation purposes. Compare
to Figure 4.
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Figure 4: Lines model (A.6) approximate 95% credible ellipses for selected points along
line segments connecting true point posterior means. × indicates a GPS point used in
the model fit, � indicates a GPS point only used for validation purposes. Compare to
Figure 3.
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mean sd 2.5% median 97.5%
Model (A.6)
a1 −382.5 0.5344 −383.5 −382.5 −381.4
a2 −182.1 0.4022 −182.9 −182..0 −181.3
a3 19.95 0.4355 19.14 19.92 20.84
a4 220.6 0.3894 219.8 220.6 221.4
a5 422.5 0.4333 421.7 422.5 423.4
a∗
6 −451.3 0.5518 −452.3 −451.3 −450.1

a∗
7 −337.0 1.904 −340.7 −337.0 −333.2

a∗
8 −232.2 0.5509 −233.0 −232.0 −230.8

a∗
9 −122.3 0.6493 −123.6 −122.3 −121.0

a∗
10 −12.87 0.5812 −14.14 −12.83 −11.84

a∗
11 96.64 0.5418 95.46 96.67 97.64

a∗
12 206.1 0.7408 204.5 206.1 207.5

a∗
13 315.6 0.5653 314.4 315.7 316.6

a∗
14 422.2 0.7731 420.8 422.1 423.9

Model (A.7)
a1 −382.5 0.4091 −383.3 −382.5 −381.7
a2 −182.0 0.3796 −182.8 −182.0 −181.3
a3 19.83 0.3914 19.12 19.81 20.65
a4 220.6 0.3653 219.9 220.6 221.3
a5 422.4 0.3954 421.6 422.4 423.1
a∗
6 −451.3 0.4556 −452.2 −451.3 −450.4

a∗
7 −337.2 1.833 −340.7 −337.2 −333.4

a∗
8 −232.0 0.4389 −232.8 −232.0 −231.1

a∗
9 −122.5 0.4741 −123.4 −122.5 −121.6

a∗
10 −12.76 0.4682 −13.76 −12.73 −11.91

a∗
11 96.73 0.4479 95.79 96.74 97.60

a∗
12 206.2 0.4917 205.2 206.2 207.1

a∗
13 315.7 0.4524 314.8 315.7 316.6

a∗
14 422.7 0.5217 421.7 422.6 423.8

Model (A.8)
a1 −382.6 0.4124 −383.3 −382.6 −381.7
a2 −182.0 0.3907 −182.9 −182.0 −181.3
a3 19.88 0.3806 19.15 19.88 20.66
a4 220.6 0.3636 219.9 220.6 221.3
a5 422.3 0.3999 421.5 422.3 423.1
a∗
6 −451.3 0.4481 −452.2 −451.3 −450.4

a∗
7 −337.2 1.812 −340.8 −337.2 −333.6

a∗
8 −232.0 0.4471 −232.9 −232.0 −231.1

a∗
9 −122.5 0.4618 −123.4 −122.6 −121.6

a∗
10 −12.74 0.456 −13.66 −12.74 −11.86

a∗
11 96.72 0.4458 95.79 96.74 97.58

a∗
12 206.3 0.4759 205.3 206.3 207.2

a∗
13 315.7 0.4553 314.8 315.8 316.6

a∗
14 422.6 0.4967 421.7 422.6 423.6

Table 1: Line intercepts posterior summary. Intercepts for near–NS features are re-
ported using the line parameterization x1 = a∗

l +b∗l x2, where a∗
l = −al/bl and b∗l = 1/bl,

l = 6, . . . , 14. Add 3987425 m to al and 687844 m to a∗
l to match the coordinate system

in Figures 2–4. Subscripts refer to linear feature (street) number in Figure 2.
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mean sd 2.5% median 97.5%
Model (A.6)
b1 −0.02751 0.001864 −0.03089 −0.02759 −0.02353
b2 −0.02681 0.001454 −0.02972 −0.02682 −0.02397
b3 −0.02783 0.001473 −0.03082 −0.02778 −0.02508
b4 −0.02735 0.001664 −0.03076 −0.02726 −0.02422
b5 −0.02463 0.001469 −0.02740 −0.02465 −0.02155
b∗6 0.02764 0.001367 0.02479 0.02767 0.03032
b∗7 0.02710 0.005930 0.01602 0.02710 0.03907
b∗8 0.02999 0.002495 0.02534 0.02992 0.03532
b∗9 0.02930 0.002453 0.02464 0.02919 0.03455
b∗10 0.02811 0.001785 0.02478 0.02803 0.03192
b∗11 0.02753 0.001691 0.02425 0.02750 0.03104
b∗12 0.02788 0.002470 0.02336 0.02778 0.03309
b∗13 0.02945 0.002662 0.02391 0.02949 0.03482
b∗14 0.02369 0.002852 0.01792 0.02374 0.02936
Model (A.7)
b1 −0.02707 0.001000 −0.02915 −0.02703 −0.02523
b2 −0.02682 0.0009714 −0.02881 −0.02681 −0.02500
b3 −0.02706 0.0009748 −0.02917 −0.02702 −0.02528
b4 −0.02693 0.001033 −0.02907 −0.02692 −0.02497
b5 −0.02639 0.001046 −0.02827 −0.02644 −0.02410
b∗6 0.02788 0.0007946 0.02636 0.02787 0.02946
b∗7 0.02786 0.001113 0.02576 0.02781 0.03039
b∗8 0.02809 0.0009900 0.0264 0.02801 0.03040
b∗9 0.02791 0.0009612 0.02604 0.02791 0.02993
b∗10 0.02781 0.0008122 0.02621 0.02779 0.02950
b∗11 0.02772 0.0008399 0.02599 0.02775 0.02939
b∗12 0.02782 0.0009211 0.02604 0.02781 0.02974
b∗13 0.02796 0.0009907 0.02618 0.02791 0.03006
b∗14 0.02747 0.001037 0.02485 0.02756 0.02924
µEW −0.02682 0.0008936 −0.02857 −0.02681 −0.02510
µ∗

NS 0.02782 0.0007102 0.02647 0.02780 0.02929
Model (A.8)
b1 −0.02766 0.0008312 −0.02944 −0.02762 −0.02608
b2 −0.02741 0.0007141 −0.02879 −0.02744 −0.02592
b3 −0.02751 0.0007627 −0.02917 −0.02748 −0.02608
b4 −0.02742 0.0008235 −0.02913 −0.02742 −0.02573
b5 −0.02688 0.0009119 −0.02834 −0.02702 −0.02475
b∗6 0.02752 0.0006809 0.02618 0.02751 0.02893
b∗7 0.02744 0.0009340 0.02539 0.02745 0.02938
b∗8 0.02790 0.0009650 0.02636 0.02777 0.03024
b∗9 0.02775 0.0008415 0.02623 0.02769 0.02969
b∗10 0.02760 0.0007816 0.02614 0.02754 0.02933
b∗11 0.02743 0.0007423 0.02590 0.02743 0.02887
b∗12 0.02738 0.0008374 0.02553 0.02741 0.02907
b∗13 0.02759 0.0008847 0.02595 0.02753 0.02953
b∗14 0.02710 0.0009553 0.02475 0.02722 0.02871
µO −0.02745 0.0005367 −0.02849 −0.02746 −0.02640

Table 2: Line slopes posterior summary. Slopes for near–NS features are reported using
the line parameterization x1 = a∗

l +b∗l x2, where a∗
l = −al/bl and b∗l = 1/bl, l = 6, . . . , 14.

Similarly, µ∗
NS = 1/µNS. Numerical subscripts refer to linear feature (street) number

in Figure 2.
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mean sd 2.5% median 97.5%
Model (A.6)
β210 26.20 1.084 24.11 26.20 28.32
β211 1.011 0.003943 1.003 1.011 1.019
β212 0.0005256 0.004040 −0.007444 0.0005643 0.008524
β220 −7.182 1.141 −9.416 −7.184 −4.918
β221 0.008601 0.003959 0.0008044 0.008613 0.01642
β222 1.016 0.004178 1.008 1.016 1.024
β310 1.673 0.7706 0.1849 1.667 3.227
β311 1.002 0.002840 0.9965 1.002 1.008
β312 0.001247 0.002914 −0.004570 0.001196 0.007119
β320 1.300 0.3360 0.6354 1.300 1.949
β321 −0.001674 0.001263 −0.004226 −0.001646 0.0008307
β322 0.9966 0.001191 0.9942 0.9966 0.9990
β410 27.12 1.254 24.68 27.12 29.60
β411 1.006 0.004377 0.9970 1.006 1.014
β412 −0.0002720 0.004463 −0.009036 −0.0002844 0.008457
β420 −6.056 1.070 −8.220 −6.044 −3.938
β421 0.002162 0.003789 −0.005165 0.002202 0.009648
β422 1.011 0.003945 1.003 1.011 1.018
Model (A.7)
β210 26.22 1.100 24.09 26.22 28.39
β211 1.011 0.003857 1.003 1.011 1.018
β212 0.0006714 0.003922 −0.006846 0.0006488 0.008327
β220 −7.127 1.127 −9.356 −7.106 −4.915
β221 0.008565 0.003981 0.0005690 0.008564 0.01637
β222 1.016 0.004157 1.008 1.016 1.024
β310 1.687 0.7530 0.1925 1.692 3.147
β311 1.002 0.002701 0.9964 1.002 1.007
β312 0.001355 0.002660 −0.003890 0.001407 0.006536
β320 1.328 0.3239 0.6999 1.331 1.969
β321 −0.001797 0.001243 −0.004212 −0.001829 0.0007118
β322 0.9966 0.001164 0.9943 0.9966 0.9988
β410 27.10 1.217 24.68 27.09 29.53
β411 1.006 0.004376 0.9970 1.006 1.014
β412 −0.0001070 0.004491 −0.009018 −0.00001055 0.008487
β420 −6.033 1.045 −8.075 −6.033 −3.994
β421 0.001967 0.003812 −0.005652 0.001956 0.009418
β422 1.011 0.003972 1.003 1.011 1.019
Model (A.8)
β210 26.20 1.070 24.06 26.20 28.30
β211 1.011 0.003873 1.003 1.011 1.018
β212 0.0009734 0.003938 −0.006686 0.001070 0.008591
β220 −7.124 1.105 −9.274 −7.133 −4.880
β221 0.009021 0.003954 0.001079 0.009022 0.01652
β222 1.016 0.004108 1.008 1.016 1.024
β310 1.659 0.7556 0.1436 1.661 3.168
β311 1.002 0.002636 0.9966 1.002 1.007
β312 0.001625 0.002645 −0.003645 0.001648 0.006876
β320 1.326 0.3249 0.6746 1.331 1.946
β321 −0.001342 0.001099 −0.003472 −0.00135 0.0008238
β322 0.9965 0.001147 0.9943 0.9965 0.9988
β410 27.13 1.216 24.74 27.12 29.50
β411 1.006 0.004355 0.9972 1.006 1.014
β412 0.0001880 0.004424 −0.008442 0.0001630 0.008920
β420 −6.028 1.070 −8.123 −6.024 −3.930
β421 0.002376 0.003720 −0.005012 0.002393 0.009572
β422 1.011 0.003933 1.003 1.011 1.018

Table 3: Affine parameters posterior summary.
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mean sd 2.5% median 97.5%

Model (A.6)

σ2
11 0.7568 0.2216 0.4556 0.7134 1.307

σ2
12 0.7635 0.1808 0.4817 0.7389 1.178

σ2
21 6.889 0.7802 5.526 6.809 8.599

σ2
22 7.251 0.8205 5.882 7.175 9.108

σ2
31 4.692 0.5434 3.793 4.638 5.931

σ2
32 1.714 0.2173 1.348 1.694 2.185

σ2
41 7.870 0.8818 6.372 7.789 9.817

σ2
42 6.801 0.7665 5.510 6.728 8.495

Model (A.7)

σ2
11 0.6385 0.1333 0.4417 0.6171 0.9611

σ2
12 0.7136 0.1385 0.497 0.6959 1.040

σ2
21 6.966 0.7801 5.626 6.890 8.690

σ2
22 7.276 0.8125 5.889 7.214 9.106

σ2
31 4.636 0.5223 3.744 4.591 5.789

σ2
32 1.716 0.206 1.364 1.697 2.184

σ2
41 7.860 0.8648 6.379 7.790 9.725

σ2
42 6.842 0.7734 5.554 6.774 8.523

σ2
b 0.0006736 0.0005306 0.00002733 0.0005566 0.001972

Model (A.8)

σ2
11 0.6278 0.1295 0.4400 0.6074 0.9389

σ2
12 0.7187 0.1388 0.4988 0.7026 1.037

σ2
21 6.967 0.7892 5.666 6.887 8.719

σ2
22 7.235 0.7996 5.885 7.158 8.957

σ2
31 4.618 0.5205 3.747 4.567 5.785

σ2
32 1.710 0.2020 1.366 1.694 2.151

σ2
41 7.882 0.8829 6.390 7.801 9.826

σ2
42 6.848 0.7607 5.527 6.777 8.562

σ2
O 0.0006664 0.0005277 0.00002327 0.0005601 0.001968

Table 4: Standard deviation parameters posterior summary.
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Figure 5: Three configurations used to illustrate model specification for true points and
lines.


