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Bayesian Inference for Shape Mixtures of
Skewed Distributions, with Application to
Regression Analysis

Reinaldo B. Arellano-Valle*, Luis M. Castrof, Marc G. Genton*
and Héctor W. Gémez®

Abstract. We introduce a class of shape mixtures of skewed distributions and
study some of its main properties. We discuss a Bayesian interpretation and some
invariance results of the proposed class. We develop a Bayesian analysis of the
skew-normal, skew-generalized-normal, skew-normal-¢ and skew-¢t-normal linear re-
gression models under some special prior specifications for the model parameters.
In particular, we show that the full posterior of the skew-normal regression model
parameters is proper under an arbitrary proper prior for the shape parameter and
noninformative prior for the other parameters. We implement a convenient hierar-
chical representation in order to obtain the corresponding posterior analysis. We
illustrate our approach with an application to a real dataset on characteristics of
Australian male athletes.

Keywords: Posterior analysis, regression model, shape parameter, skewness, skew-
normal distribution, symmetry.

1 Introduction

The construction of flexible parametric non-Gaussian multivariate distributions has seen
a growing interest in recent years because distributions of many datasets exhibit skew-
ness as well as tails that are lighter or heavier than those of the normal distribution.
Several proposals have been put forward in the literature, an overview of which can
be found in the book edited by Genton (2004), in Azzalini (2005), in Arellano-Valle
and Azzalini (2006), and from a unified point of view in Arellano-Valle, Branco and
Genton (2006).

A fairly large class of such distributions introduced by Wang, Boyer and Genton (2004)
consists of skew-symmetric (55) distributions with probability density function (pdf)
of the form

2f(2)Q(z),  zeR", (1)
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514 Bayesian Shape Mixtures of Skewed Distributions

where f : R — R, is a continuous pdf, symmetric around zero, i.e., f(—z) = f(z)
for all z € R™, and Q : R" — [0,1] is a skewing function satisfying Q(—z) + Q(z) =1
for all z € R™. A random vector Z with pdf (1) is denoted by Z ~ SS,(f, Q). When
f is the pdf of an elliptically contoured distribution, the family (1) defines generalized
skew-elliptical distributions studied by Genton and Loperfido (2005). As noted by Ma
and Genton (2004) and Azzalini and Capitanio (2003), any continuous skewing function
Q can be written as Q(z) = G(w(z)), where G : R — [0, 1] is the cumulative distribution
function (cdf) of a continuous random variable symmetric around zero, and w : R — R
is an odd continuous function, i.e., w(—z) = —w(z) for all z € R™. A popular choice in
the literature is

Q(z) = G(a’z), z € R", (2)

where the shape vector a« € R™ controls skewness and o = 0 corresponds to a symmet-
ric pdf in (1). A random vector Z with pdf (1) and skewing function (2) is denoted by
Z ~ SS,(f,G,a). In particular, when f(z) = ¢,(2|0,1,,), the pdf of the n-dimensional
multivariate normal distribution N, (0,1I,) with mean vector 0 and covariance matrix
I, the identity, and G = ®, the standard normal cdf, the resulting pdf (1) is from
the standard multivariate skew-normal distribution SN,(0,1L,,a) = SN, (a) defined
by Azzalini and Dalla Valle (1996). For n = 1, it reduces to the univariate standard
skew-normal distribution of Azzalini (1985). Note that location and scales can be in-
troduced by means of Y = p + »1/%z throughout, where »1/2 i5 the symmetric square
root of 33, thus yielding for example SN, (u, 2, ) and SS,, (u, X, f, G, ) distributions.
The use of odd polynomials for the function w has been proposed by Ma and Genton
(2004) and leads to flexible skew-symmetric distributions that, in addition, can exhibit
multimodality.

In this paper, we consider alternative choices to linear or odd polynomials for the skewing
function Q. For illustration, consider the univariate case of (1) defined by setting n = 1.
An interesting generalization of (2) results from the choice

a1z

w(z) W, z € R, (3)
where a; € R and ag > 0. The particular case of f = ¢, the standard normal pdf, and
G = @, has been studied by Arellano-Valle, Gémez and Quintana (2004), leading to
a so-called skew-generalized-normal distribution, denoted by SGN (a1, az). They have
shown that this distribution can be represented as a shape mixture of the skew-normal
distribution, where the mixing distribution is normal. Specifically, if Z ~ SGN(ay, az),
then there is a shape random variable S such that

[Z]S =s] ~SN(s) and S~ N(ay,az). 4)

In other words, this representation allows to identify the function w(z) within the class
defined by (1) when f = ¢ and G = ®. Another important example arises when we
consider both scale and shape mixtures of the skew-normal distribution. For example,
consider the class defined by

[Z|Sl = Sl,SQ = 82] ~ SN(O,S;l,Sl_l/QOél), (5)
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where S; and Ss are non-negative and independent random variables. Any model of the
form 2 f(2)G(a12), for which both f and G are scale mixtures of the normal distribution,
belong to the class defined by (5). In particular, the skew-t distribution in the form intro-
duced by Azzalini and Capitanio (2003) with pdf 2¢t(z; v)T (Vv + 1lar1z/Vv + 22, v+ 1),
where t(z;v) and T(z;v) are the Student-t pdf and cdf, respectively, is obtained with
Sy ~ Gamma(v/2,v/2) and S1 = 1; see also Azzalini and Genton (2008) for additional
properties. Further examples that arise from (5) are the so-called skew-normal-t and
skew-t-normal distributions, with pdf’s of the form 2¢(z)T(a12) and 2t(z;v)®(a;2),
and denoted by SNT (a1,v) and STN(ay,v), respectively. These distributions were
studied by Nadarajah and Kotz (2003) and Gémez, Venegas and Bolfarine (2007), and
can be obtained from (5) with S1 ~ Gamma(v/2,v/2) and Sz = 1, and Sy = S; ~
Gamma(v/2,v/2), respectively.

The representations in (4) and (5) are particularly important in a Bayesian framework,
since they provide hierarchical formulations of the respective location-scale versions of
(1). Moreover, they can be interpreted as Bayesian specifications of the SN model with
the prior considerations for the shape/scale parameter indicated above. For instance,
(4) can be applied in the Bayesian specification of the SN model for a random sample
Yi,...,Y, of Y = p+0Z, where [Z|S = s] ~ SN(s), with a normal prior for the shape
parameter S. Hence, only a prior for the location-scale parameters (11, 02) needs to be
elicited to complete the model specification.

This article is concerned with the subclass of skewed distributions that can be rep-
resented as shape mixtures of the family defined by (1) and (2). In particular, the
representation (4) is extended to all the classes of distributions with pdf given by (1)
with (3), and extensions to the multivariate setting. The rest of the article is orga-
nized as follows. For simplicity of exposition, we begin in Section 2 by considering the
univariate case, where consequences from the use of symmetric location-scale mixing
distributions are discussed. Next, in Section 3, the idea of shape mixtures in order to
identify skewing functions for the multivariate skew-symmetric class (1) is considered.
The procedure is illustrated with the multivariate SN distribution. In Sections 4 and
5, a Bayesian posterior analysis for the skew-normal, skew-generalized-normal, skew-
normal-¢, and skew-t-normal linear regression models is developed under some special
prior specifications. In particular, we show that the full posterior of the skew-normal
regression model parameters is proper under an arbitrary proper prior for the shape pa-
rameter and noninformative prior for the other parameters. An application to a dataset
of Australian male athletes is presented Section 6.

2 Shape Mixtures of Univariate Skewed Distributions

2.1 Definition and properties

The shape mixtures of univariate skewed distributions form an important subclass of
the skew-symmetric family of distributions defined by (1) with n = 1, because it allows
for the specification of the skewing function @ starting from the much simpler class
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based on (2). This subclass is obtained as a mixture of the skewed distribution defined
by (1) and (2) on the shape parameter . Consequently, the resulting subclass contains
distributions that are more flexible than the original ones.

Definition 1. The distribution of a random variable Y is a shape mixture of skew-
symmetric (SMSS) distributions if there exists a random variable S such that the
conditional distribution [Y|S = s] ~ SS(u, 02, f, G, s) for some symmetric pdf f (which
can depend on s) and cdf G (which can depend on z = (y — p)/o and/or on s).

When f = ¢, the distribution of the random variable Y is a shape mixture of skew-
normal (SMSN) distributions. It follows from Definition 1 that the conditional pdf of
Y given S = s is of the form (1) with (2). The following result yields the unconditional
distribution of Y.

Proposition 1. Let [Y|S = s] ~ SS(u,02, f,G,s), s € R, where the pdf f does not
depend on s and S has cdf H. Then, Y ~ SS(u,0?, f,Q), i.e., its pdf is of the skew-
symmetric form (1), where the skewing function @ is given by

oo

Q(z) = E[G(z9)] = / G(zs)dH (s). (6)

— 00

Moreover, if H is absolutely continuous with density h = H’, then the conditional pdf
of S given Y = y depends on (y, u, o) through z = (y — ) /o only and is given by

h(s)G(zs)
= . 7
f(sl2) I3 h(s)G(zs)ds (@)
Proof. The proof is immediate from Definition 1 and Bayes’ theorem. O

Note that any random variable Y ~ SS(u, 02, f,Q) can be represented as Y’ 4 w+oZ,

where Z ~ 55(0,1, f,Q) and 2 denotes equality in distribution, and thus its properties
can be analyzed under this “standardized” version. The mixing cdf H can be chosen
arbitrarily. Therefore, a subfamily of particular importance is obtained with a discrete
distribution H. It yields finite shape mixtures with skewing functions of the form

K
Q=) = Y wiClag2). ®)
k=1

where wy, > 0, for all k = 1,..., K, with Zszl wr = 1, and a € R. Skewing functions
of the form (8) can be used to obtain approximations of those of the form (6) with H
continuous that cannot be computed explicitly.

2.2 Symmetric location-scale mixing distributions

Another interesting subfamily of shape mixtures of skewed distributions is obtained
when the skewing function (6) is computed with a symmetric location-scale mixing
cdf H.
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To characterize this subfamily, consider first the following general situation. Let (Xg, Zo, S)
be a random vector such that conditionally on S, the random variable W = Xy — SZ
has a symmetric distribution, implying that for each value s of S

PW<0|S=s) = / P(Xo < 52|12y = 2,8 = 5) fz,)5=s(2)dz

— 00

/ Fixy |z 5—a(52) F 205 (2)d2

— 00

1/2,
and therefore the function

f(z]s) = 2F x| zy=2,5=5(52) f2y5=5(2), 2 ER, 9)

defines a pdf for any value of s. Note under this general setting that the conditional
cdf Fxyzo=2,5=s = G(2,s), say, and the conditional pdf fz s—s = f(s), say, are not
necessarily symmetric and can depend on (z,s) and s, respectively. Nevertheless, if
they are symmetric, i.e., f(5)(=y) = f(s)(¥) and G(; o (—y) = 1 = G2 5 (y), for all y and
each value of (z,5), and G(_. _g) = G(_.5) = G(z,—s) = G for all (z,s), then (9)
becomes the pdf of an SS(f(s), G(.,s),s) distribution. Note also that

G(z,s) (SZ) = FX0|Zo:z,S:s(Sz) = FW\Zg:z,S:s(O)~

Consider now the random variable defined by Z 4 [Zo | W < 0], and note that f(z|s)
in (9) is simply the conditional pdf of Z given S = s, i.e., the pdf of Z, 4 [Z|S=s]=
[Zo | W <0,S = s]. Hence, the pdf of Z < [Zo | W < 0] is given by

fZ(Z) = / f(Z|S)dF5(S) = / 2FX0\Z0:z,S:s(Sz)on|S:s(Z)dFS(S)ﬂ
so that Zy £ [Z | S = s] ~ S5(f(s),G(z)»8) When [Zo | S = 5] ~ fi) and
[Xo0|Zo = 2,8 = 5] ~ G, are symmetric. If, in addition, we assume that Z, and
S are independent, then f) = fz,)s=s = fz, = f, say, which does not depend on s.
Therefore, it follows that the pdf of Z reduces to

fz(z) =2f(2) /00 G (2,5)(82)dFs(s) = 2f(2) Fyy|z,=-(0).

That is, if Zy and S are assumed to be independent, then the symmetry assumption
on Zy ~ f and [Xo|Zo = 2,8 = 5] ~ G, for all (z,s), implies that [Z|S = s] ~
SS(f,G(,s)) and also that Z ~ SS(f,Q), with

Q(2) = Fy|z,=-(0) = /_OO G (2,5)(s2)dH(s).

In addition, this symmetry assumption implies that conditionally on S = s, the random
variable W = Xy — SZ; is also symmetric whatever the distribution of S. Thus, we
have the following results.
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Proposition 2. Let (Xo, Zp, S) be a random vector such that Zy ~ f is independent of
S ~ H, where f is a symmetric pdf around zero. Let G(. s = Fx,|z,=2,5=s be the
conditional cdf of X¢ given Zy = z and S = s. Suppose that G, o (=y) = 1 = G (. 5 (y)
and G(_. _5)(y) = G(—..5)(y) = Go.—5)(y) = G 5 (y) for all y and each value of (z,s).
Let also Z be a random variable such that Z < [Zo|W < 0], where W = Xy —S5Zj. Then
[Z]S = s] ~ SS(f,G(.5),5) and therefore Z ~ SS(f,Q), with Q(2) = Fy|z,--(0) =
ffooo G(z,5)(52)dH (s).

Corollary 1. Under the conditions of Proposition 2, we have the following byproducts:

(i) If Xy is independent of Zy, then [Z|S = s] ~ SS(f,G(y,s) and so Z ~ SS(f,Q),
with G(S) = FXO\S:S and Q(Z) = FW|Z0:Z(O) = ffooo G(S) (SZ)dH(S)

(ii) If Xo ~ G, Zy ~ f and S ~ H are independent random variables, with f(—z) =
f(z) and G(—z) = 1 — G(x) for all x, then [Z|S = s] ~ SS(f,G,s) and Z ~
SS(f,Q), with Q(2) = Fwz,--(0) = ffooo G(sz)dH(s).

Under the assumptions of Proposition 2, we have that both Xy and Zj are symmetric
(around zero) random variables, and that Zy and S are independent. This implies that
the random variable W = Xy — SZ; is also symmetric whatever the distribution of
S (and the same holds conditionally on S). In particular, if S is also assumed to be
symmetric (around zero), then conditionally on Zj, the random variable W = Xy — 57,
will also be symmetric, i.e., ffooo G (z,5)(82)dH (s) = Fyy|z,=-(0) = 1/2 for all z, and so
Q(z) =1/2, for all z. This yields the following corollary.

Corollary 2. Let Z 4 [Zo| X0 — SZy < 0], where Xy, Zy and S are symmetric (around
zero) random variables, with Zy and S independent. Then, Z has the same symmetric

distribution as Zo, i.c., [Zo|Xo — SZo < 0] £ Zy ~ f.

2.3 SMSS based on symmetric location-scale mixing distributions

In this section, we characterize the SMSS subfamily obtained when the skewing func-
tion (6) is computed by means of a symmetric location-scale mixing cdf H, i.e., by
taking

H(s)=Ho((s—n)/7), with neR and 7>0,

where Hy is a standardized symmetric (around zero) cdf, i.e., the cdf of So = (S —n)/7.
In such a case, the skewing function (6) can be rewritten as

Q(2) = E[G(r=S0 + =n)] = / G ({0 + n})dHo(s0). (10)
Two important properties of this skewing function are:

(a) If 7 = 0 and G does not depend on sg, then Q(z) = G(nz) and (1) with (2) and
a = n follows.
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(b) If n = 0, then Q(z) = E[G(27Sy)] = 1/2, for any values of z and 7, which is a
consequence of the symmetry (around zero) of G and Hy, see Corollary 2.

On the other hand, the results in Proposition 2 provide a more general and convenient
expression to obtain the skewing function in (10) as indicated next. In fact, let

. W +nZy _XQ_TSQZO
VI+7222 \J1+7222°

0

which is a standardized symmetric version of W = Xy — SZy where S = n+ 75 is a
symmetric location-scale random variable. Note that W = /1 + 7222 Wy — nZp, and

so 72 [Zo|Wo <nZo/+\/1+ 72ZZ], whose pdf is given by (see, e.g., Arellano-Valle, del
Pino and San Martin, 2002)
nZo _
P(Wo < |20 = 2)

nZo ’
(o< )
where P(Wy < \/%;223) = P(W < 0) = 1/2. This result is stated in the following

proposition.

Proposition 3. Let (Xo, Zyp, S) be a random vector satisfying the same conditions as in
Proposition 2. Suppose that S = n + 75, where n € R and 7 > 0 are location and
scale parameters, respectively, and Sy is a standardized symmetric random variable.

Then, the random variable Z < [Z0| X0 — SZp < 0] has an SS(f, Q) distribution with
Q(2) = Fwy|zy=» (n2/V1+1222) , .., with pdf given by

(o) = 20 Pz s ). ()

where W, = Xo=r9%0 ig 4 gtandardized symmetric random variable.
272
A/ 147 Zo

Note that if Wy is independent of Zy, then Fyy,z,—. = Fw, = Go, say, and so (11)
reduces to (1) with (3).

We discuss next two interesting consequences of the assumption that the mixing cdf H
is symmetric around zero, i.e., H(—s) = 1— H(s), for all s. The first one is related to the
property (b) above (see also Corollary 2) and establishes that the marginal distribution
of Zy is unaffected by the choice of a symmetric cdf for the mixing random variable
S. The second consequence is that the conditional distribution of the mixing random
variable S given Zy = z belongs also to the class of the skew-symmetric distributions
when H is absolutely continuous, i.e., when H has a pdf h = H’. Both results are very
relevant from a Bayesian point of view and are summarized in the following proposition,
whose proof follows directly from (11) and Bayes’ theorem.

Proposition 4. Let [Z|S = s] ~ SS(f, G, s), where f does not depend on s, and S ~ H.
If H is the cdf of a symmetric distribution around zero, then the marginal distribution
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of Z is symmetric around zero and has pdf f. Moreover, if H has a pdf h = H’, then
[S|Z = 2] ~ SS(h,G, 2).

For example, consider a simple location-scale model Y; = p+0Z;, i =1,...,n, with a
prior 7(p, o) for (u,0) and [Z;|S; = «y] o SS(f,G,a;), i =1,...,n, independent of
(u,0). We can conclude from Proposition 4 that Bayesian inference on (u, o) will be
the same as that obtained under the symmetric location-scale model o =1 f((y — u)/0o)
for the data Y;’s when a common symmetric (at zero) prior, H say, is considered for the
shape parameters a;’s; see also Remark 1 in Section 4.1.

2.4 Shape mixtures of univariate SN distributions

An interesting example of the previous results is the skew-generalized-normal distri-
bution defined by (1) and (3). As indicated in (4), this model can be specified as
a shape mixture of the skew-normal distribution by taking a normal mixing distribu-
tion for the shape parameter, see Arellano-Valle, Gémez and Quintana (2004). From
Proposition 1, this is equivalent to considering ¥ = p 4 ¢4, and supposing that
[Z]|S = s] ~ SS(f,G,s) and S ~ H, with f(t) = ¢(t), G(t) = ®(¢) and H(t) = fIJ(t_T"),
that is, [Z]S = s] ~ SN(s) and S ~ N(n,72). Since Sy = =7 ~ N(0, 1), then by (10)
it follows that (see also Ellison, 1964)

Q=) = E[®(2S0 + )] = © (%) |

implying the following marginal pdf for the random variable Z:

nz
fz(z) =2¢(2)® (m) , z€R (12)
This is the skew-generalized-normal distribution mentioned in the introduction, and
denoted by Z ~ SGN(n, 7). Note that SGN(0,7) = N(0,1), for any 7, SGN(n,00) =
N(0,1), for any 7, and SGN(n,0) = SN(n). A special case is obtained by letting
T = \/77_2, which is called curved skew-normal distribution. Further properties and
applications of this model are considered in Arellano-Valle, Gémez and Quintana (2004).
For instance, we note that if Z ~ SGN(n,7), then —Z ~ SGN(—n,7), Z? ~ x? and

d s 1

= + V, 13
Trs?' | T (13)

where S ~ N(n,72) is independent of U and V', which are independent and identically

distributed (i.i.d.) N(0,1) random variables. The latter representation is useful from a

computational point of view, because it implies that if Z ~ SGN(n, 7), then there exist

random variables S and T mutually independent such that:

215 = s]

st 1
i) (s =sT =0~ N ().

(i) S~ N(n,7?),
(iii) T ~ HN(0,1),
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where HN(0,1) is the half-normal distribution. This hierarchical specification can be
used to implement MCMC methods (from a Bayesian approach) or the EM algorithm
(from a classical approach), in order to make inference about (7, 7) based on a random
sample Z1,...,Z, from Z ~ SGN(n, 7).

As mentioned in the introduction, further examples belonging to the class 2f(2)G(az)
arise by letting S = W, for some non-negative random variable W. Moreover, the
subclass of scale and shape mixtures of the skew-normal distribution can be introduced
by considering (5). Hence, this is a representation of the subclass 2f(2)G(az) where f
and G are the pdf and cdf of a distribution which is a scale mixture of the normal one.

3 Shape Mixtures of Multivariate SN Distributions

Some multivariate extensions of the skew-generalized-normal pdf in (12) are given next.
In all these cases, the shape mixture idea discussed in the previous sections is adapted
to independent and dependent multivariate skew-normal distributions. The resulting
distributions can be interpreted as a Bayesian modeling of these independent and de-
pendent skew-normal observations when a normal prior specification for the shape pa-
rameters is considered. Thus, as established in the following propositions, both the
predictive function and the posterior pdf associated with the shape parameters define
multivariate skew-generalized-normal pdf’s.

For any n-dimensional vector w, denote by D(w) the nxn diagonal matrix formed by the
components wy, ..., w, of w. Then, for any two n-dimensional vectors s and z, we have
D(s)z = D(z)s = (s121,---,5,2n) . Denote by ¢, (y|p, X) and by @, (y|u, X) the pdf
and the cdf of the multivariate N, (u, X)) distribution, respectively. When g = 0 these
functions are denoted by ¢, (y|X) and ®,,(y|3). The proof of the next propositions are
based on the following well-known result, see, e.g., Arellano-Valle and Genton (2005).
If U ~ Ni(c,C) is a non-singular normal random vector, then for any vectors a € R¥
and n X k matrix B, we have that

E[®,(BU +a| d,D)] = ®,(a|Bc + d,D + BCBT). (14)

Proposition 5. Suppose that [Z;|S = s] oad- SN(s;), i = 1,...,n, where the shape
S = (S1,...,5.)T ~ N,(n,Q). Then, the marginal pdf of Z = (Z1,...,Z,)T is given
by

f(zn, Q) = 2"¢,(2)®n(D(n)z[I, + D(2)2D(z)),
which contains the N,(0,I;) pdf for n = 0 and the independent multivariate skew-

normal pdf given by 2"¢,(z)®,(D(n)z) for @ = O, the zero matrix. Moreover, the
conditional pdf of S given Z = z is given by

Pn(sn, )P, (D(z)s)
®,,(D(n)z[1, + D(z)2D(z))

Proposition 6. Suppose that [Z|S = s] ~ SN, (s), i.e., its pdf is 2¢,(z)®(sTz), z € R",
where S = (S1,...,5,)7 ~ N, (n,Q). Then, the marginal pdf of Z = (Zy,...,7Z,)7 is

f(S|Zv n, Q) =
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given by

T
n'z
zln, Q) =2¢,(2)0 | ——— |,
Tt ) = 20,00 ()
which contains the N, (0,I;) pdf for n = 0 and the dependent multivariate skew-normal
pdf 2¢,,(z)®(nT'z) for @ = O. Moreover, the conditional pdf of S given Z = z is given
by

Oulsln, R)B("s)

f(slz,m, Q) =
o D=
(\/ 1+ZTQZ>

Some particular cases of the above multivariate skew-generalized-normal distributions
are obtained when we assume that:

(i) S1,...,8, are iid. N(n,72?) random variables, i.e., n = n1,, and Q = 721,; or
(ii) S; ind- N(ni,72),i=1,...,n, so that Q = diag{7Z,...,72}; or
(iii) Si,..., Sy are exchangeable normal random variables, which is equivalent to con-
sidering n = 01, and Q = 72{(1 — p)I,, + p1,11}, where p € [0,1).
Note that (i) is a particular case of (ii), as well as of (iii).

All the above models are derived by assuming marginal skew-normal observations with
different shape parameters. The situation with a common shape parameter for all the
observations is considered next.

Proposition 7. Let [Z;|S = s] e SN(s),i=1,...,n, where S ~ N(n,7%). Then, the
marginal pdf of Z = (Z1,...,Z,)" is given by

f(Z|T], 7—2) = 2n¢n(z)q)n(77z|1n + T2ZZT),
and the conditional pdf of S given Z = z is given by

¢(s|n, 7%)Pn (2s)
,, (nz|L, + m2zz7)’

f(S|Z, 7777—) =

Proposition 8. Let [Z|S = s] ~ SNp(sl,), i.e. its pdf is 2¢,(z)®(nsz), where z =
n~tY" 2z and S ~ N(n,7%). Then, the marginal pdf of Z = (Z1,...,Z,)" is given
by

nnz
f(zn, 1) = 2¢,(z)® <W> ;

and the conditional pdf of S given Z = z is given by

(s|n, 7°)®(nzs)
fslz,n,7) = —F———"
? (Iriem)

nnz

itn2r2s7



Arellano-Valle, Castro, Genton and Gémez 523

An interesting fact is that the results in Propositions 7 and 8 can be obtained as par-
ticular cases of Propositions 5 and 6, respectively, when we consider the exchangeable
normal distribution described in (iii) with p = 1 for the shape variables Sy, ..., S,.

In all of the above cases, multivariate location-scale skew-generalized-normal distri-
butions for Z can be obtained through an affine linear transformation of the form
Y = p+ X/2Z, for a given location vector g € R” and non-singular scale matrix
3 € R™ ™. In Proposition 5, however, another possibility is to incorporate the scale
matrix 3 directly in the conditional distribution of Z given S = s. Thus, many other
multivariate families of skewed distributions can be obtained in the same way.

Finally, as was mentioned at the beginning of this section, Bayesian inference on the
shape (vector of) parameter(s) S can be obtained from the above results. In fact, if
we consider that Z = (Z1,..., Z,)T is an observed vector of data from an independent
or a dependent skew-normal distribution with shape parameter S, then the resulting
marginal and conditional pdf’s of Z and S given Z = z correspond to the predic-
tive and posterior distributions of S, respectively, when a normal prior for the shape
parameter is considered. Both of these distributions belong to the so-called unified
skew-normal (SUN) distributions discussed by Arellano-Valle and Azzalini (2006). Ex-
ploring these aspects in connection with the conjugacy theory can be an interesting topic
of investigation under the more general situations where an independent or a dependent
location-scale skew-normal model is considered.

4 Bayesian Inference for SN Regression Models

Inference on linear regression models and related problems have been approached from
a Bayesian point of view under the assumption that the error terms are symmetrically
distributed. Most of the research has been developed under a multivariate spherical
normal distribution for the error vector. However, there are some extensions of the
normal linear model to the spherical linear model (see, for example, Arellano-Valle, del
Pino and Iglesias, 2006, and references therein), where the attention is focused on the
robustness of the inferential normal theory. Moreover, Sahu, Dey and Branco (2003)
implemented a posterior regression analysis by considering skewed distributions for the
error terms. More recently, other authors have also been working on this subject in an
even more general context than a simple linear regression model; see, e.g., Ma, Genton
and Davidian (2004), Arellano-Valle, Bolfarine and Lachos (2007) and Ghosh, Branco
and Chakraborty (2007). In this section, we consider a Bayesian analysis of the linear
regression model for observations (Y, x;), x; € Rk i =1,...,n, when the error terms
are i.i.d. with a skew-normal distribution.

Consider the linear regression model
T .
Yi=x;B+o0e;, i=1,...,n,

where €1,...,e, are i.i.d. SN(a) random errors, 3 = (31,...,01)T, 02 and « are
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unknown parameters. That is, we consider the skew-normal linear regression model
Yi|8,0%, 0] % SN(xLB,02,a), i=1,...,n, (15)

whose likelihood function is

ripote) = 2 0 (Y o, (o (Y10 (16)

g g

T
X

where y = (y1,...,9n)T and X is the n x k matrix with rows x7, ...

In order to obtain posterior inferences on functions of (3,02, ), we assume that
all(B,0?), (17)

where the symbol 1L is used to indicate independence, and we consider the following
scenarios for the specifications of the prior distributions 7() and 7(3,0?) :

(i) w(B,0%) = arbitrary, o~ N(a,b?); (18)
(i1) 7(8,0%) %W o ~ N(a, b%); (19)
(i) 7(B,0°%) o %, m(a) = arbitrary. (20)

Even when a Gibbs sampling scheme based on the corresponding conditional distribu-
tions can be implemented (see Section 4.2) in order to obtain the required posterior
analysis, it is possible to use the results obtained in the previous sections to derive some
partial analytically tractable expressions under the above prior specifications.

4.1 The marginal likelihood function of (3,0?) when o ~ N(a, b?)

The main objective of this section is to obtain the marginal likelihood function of (3, 02)
under the prior specifications given by (17) and (18). As a byproduct of this result, we
show that under the particular prior specifications in (19) we obtain a proper predictive
function, which guarantees that the posterior distribution of (3,02, ) is also proper.

Proposition 9. Consider the skew-normal linear regression model in (15). Then, under
the prior specifications in (17) and (18), the marginal likelihood function of (3, 0?) is

" T
o= o (2o ( (5o (5 ()

Proof. Let Z = 3% and t = (y — Xf3) /0. Since o ~ N(a,b?), we have from (16) that
f(¥IB,0%) = 2% 6, (t)E[®,(bZ +a)], where a = at, b = bt and Z ~ N(0,1). Thus, the
proof follows from (14). O

Remark 1. An alternative marginal likelihood is obtained when in (15) the common
2), i =1,...,n, in (18) with

%

shape parameter « is replaced by a; and «a; nd N (a;, b
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(ai,...,a,) independent of (3,02). In this case, Proposition 5 yields [Y;|3,0?] ind-
SGN(xFB,02%,a;,b%),i=1,...,n, whose joint pdf is

%

f(yw,o?)_;%(ﬂ)nq) a; (2=2E8)

7l e (e’

Thus, the special prior specification «; ind- N(0,b?),i=1,...,n, is equivalent to con-
sidering the standard normal linear regression model for the conditional distribution of
Y1,...,Y, given (B,0%). An analogous result is obtained when b? — oo, i = 1,...,n,
which can be interpreted as a diffuse joint prior distribution for ay, ..., a,.

A consequence of Proposition 9 is given in the following corollary. It establishes the
propriety of predictive functions, and thus of the posterior distributions of 3, ¢2 and «,
when, in addition to the normal prior distribution for «, we consider also the usual non-

informative prior distribution for (3, 0?). We generalize this result in the next subsection
for an arbitrary proper prior distribution for the shape parameter «.

Corollary 3. If in Proposition 9 we consider the prior specifications in (19), then the
posterior distribution of (3,02, ) is proper.

Proof. By Proposition 9, we have under (19) that the predictive function is
[ (2
Rk JO O'n+2 " ag
-X -X -x8\"
o o o

2”/ / 1 S b <ﬂ) do?dg3

reJo  o"T o
w’

where we used the fact that this last integral corresponds to the predictive func-

f(y)

IN

tion under the standard symmetric normal linear regression model [Y7,...,Y,|8,0?] ~
N, (Xp,0°I,) and the usual noninformative prior distribution 7(3,0?) o 2, which is
well-known to be proper. O

4.2 A Gibbs sampling scheme for the SN regression model

In this section, we give the conditional distributions needed to implement a Gibbs
sampling procedure in order to obtain the required posterior analysis of the SN linear
regression model (15) when the prior specifications in (17) and (19) are considered. For
this objective, we note first that an appropriate use of the stochastic representation in
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(13), conditionally on S = «, yields the following equivalent specification of (15):

2
. ind. aT; g .
(Z) [Yvi|/870270477-i] ~ N(\/ﬁ +X?ﬁ,m) ,t=1,...,n,

(i) "KM HN(0,1) and 7 1L(8,02,a), i =1,...,n.

Then it is straightforward to obtain the required conditional distributions to implement

a Gibbs sampling scheme. In fact, considering the transformations w; = ¥7;, ¢ =
1,...,n, where 9 is a new scale parameter defined by
o
V= —— (21)

V1it+a?’

the above model representation can be rewritten as

wilv?] “KY HN(0,4?) and w; L (B,a), i=1,...,n. (23)

Moreover, it is easy to show from (17), (19) and (21) that the prior specification asso-
ciated with the parameters 3, 12 and « is such that

(B, 1?|a) o % and o~ N(a,b?). (24)

Therefore, in terms of the new parameterization (31, ..., Bk, %, a, w1, . ..,wy), the fol-
lowing conditional posterior distributions are necessary to implement a Gibbs sampling
procedure:

[ﬁi'ﬁ—i7w27a7wa}4; [¢2|/37a7waY]; [04|,87¢2,w,y]; [wi|/37¢27a7w—i7y];

where w = (w1, . ..,w,)? and for any vector u = (uy, ..., u,)T, the vector u_; is defined
T
by (’U,l, ey Ui—1, Ug41y - - ,up) .

Since under (24) the propriety of the marginal posterior distributions is guaranteed
by Corollary 3, the conditional posterior distributions necessary to implement a Gibbs
sampling procedure with the objective of obtaining the required posterior analysis are
established in the next proposition. The proof of this proposition follows from standard
algebraic manipulations, and therefore is omitted.

Proposition 10. Consider the conditional representation (22)-(23) of the SN linear re-
gression model (15), with the prior specifications in (24). Then,

Bl a0y~ Ne(Bly) - aBw) v*(XTX))

1—|—a2€’1—|—o¢2 "

[W|ﬁa¢27a7}’] ~ TNn (O, e 1/)2 I ) ,

_ 2 2
V28, a,w,y] ~ IG (n, Ile aw||2 + |lw]| > 7
b2wle + azj)z b21/)2
2 o~ N
ey, el + 32 Pl 13
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where B(z) = (XTX)"'XTz, e =y — X3, IG(a,7) is the Inverse Gamma distribution
and TN, (c; pu, X) denotes the N, (u,X) distribution truncated below at c.

An application based on the results of Proposition 10 is given in Section 6.

4.3 Posterior analysis under an arbitrary proper prior for «

In this section, we consider a different approach for studying the posterior distributions
of B, 02 and «, based on the prior specifications given by (17) and (20), i.e., by con-
sidering that these parameters are independent with a noninformative prior for (3, 0?)
and an arbitrary proper prior for the shape parameter a. We note first that for a = 0,
the skew-normal likelihood in (16) reduces to the standard symmetric normal likelihood

function
y — XB )

g

Fipota=0) = Lo (25)

Consequently, under the noninformative prior distribution 7(3, 0?) o 0—12, we obtain the

following well-known posterior distributions for 3 and o2 :

3 -k —k)S?
[Bly, a = 0] ~ (8, 5*(X"X) ", n — k), [02|Y,oz_0]~IG<n2 ,(n 2) ),
where t,(u, 3, v) and IG(a,b) denote the p-variate Student-t and Inverse Gamma dis-

tributions, respectively, and

ly — X8|

B=(X"X)"'XTy and S%= ,
n—k

are the ordinary least squares estimators of B and o2, respectively. In the sequel, we
denote by 7(Bly,a = 0) and 7(o?|y,a = 0) the corresponding pdf of the conditional
posterior distributions above and by T,(z|p,X,v) = T,(z — p|%,v) the cdf of the
multivariate Student-t distribution ¢,(p, %, v). With these ingredients we obtain the
following results.

Proposition 11. Consider the skew-normal likelihood (16) and the prior specifications
(20). Then, the full posterior of (3,02, ) is proper.

Proof. Since (83,02, aly) « 0~ "2 ¢, (2)®,, (az)r(a), where z = o~ (y — X3), it is
straightforward to see that the marginal posterior of (3, 0?) is given by

ﬂ—(ﬁ7 0'2|Y) X W(,@, U2|y7 o= O)Ea{@n(az)}'
Here Eo{®,(az)} = [0 @, (az)m(e)do, and
(B, 0ly,a = 0) < 0", (e/0)dn (BB, 0*(XX") ),

where e = y — X3, is the posterior of (B, 02) under the noninformative prior 7(3, 0?)
0—12, which is known to be proper. Therefore, the proof follows by noting that 0 <
Eo{®,(az)} <1 for all z since 7(«) is proper. O
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Proposition 12. Under the skew-normal likelihood (16) and the prior specifications in
(20), it follows that

m(Bly,a) o« w(Bly, a = 0) T, (e | n™"|€]|*L,,n), (26)
n(c?y,a) x w(o?|y,a = 0) ®,(ce | (I, + *P)), (27)
m(aly) o< () T (ae | S*(I, + o*P),n — k), (28)

where e =y — X3, e =y — X8 and P = X(X7X)1X7.
Proof. Let e = y — X3. From (20) and (25), we have that

m(B,aly) « w(a) /OOO #qﬁn (5) D, (%) do?

_ €12 +)u)? +HuH2

- do*du.
[l<a€/ g2n+2
With the change of variable v = w in the first of the integrals above, we have
that
w(Bualy) sn(e) [ (el + )" (29
u<o

Then, it follows that w(Bly,a) o [,_.c{ll€l* + [[u]*}~"du, which yields (26) after
considering the following well-known relation:

lel” = lly = XBI* = |ly = XB|* + IX8 - XB||*. (30)

Now, letting t = u — e, where e =y — Xﬁ, we have from (29) that
wlaly) o) [ [ {llel+ e = aX(8 = B} gt
<ae

Thus, noting that (30) implies

lel®+t—aX(B=B)I* = (n—k)S*+t" (L, +0’P) 't +(1+a%)(8—b)" (X X)(B-b),

(31)
where b = ﬁ—i— Tra? (XTX)~1XT¢, and using the properties of the Student-¢ distribution
to solve the ﬁrst of the integrals above, we have that

nt+n—=k
2

(aly) & (1 + a2)—%w(a)/ {(n—k)S2 +t7(L, + ?P) 1t} 5 " a,

t<ae

from where (28) follows. Finally, taking again t = u — ae, we have from (20), (25) and
(31) that

(n—k)S?2

5 e~ 2.7 4T (I ta?P) "t (1+a2)(B- b)T<xTX><ﬁ b)
- 2
m(o?ly, a) x 5o e 20 e 202 d@Bds,
o t<ae R*
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from where we obtain (27). m|

According to Proposition 11, from (26) to (28) we can implement an MCMC scheme
based on the substitution procedure for any given proper prior distribution 7(«).

5 Bayesian Inference for SMSN Regression Models

In this section, we present a Bayesian specification of three models that have been
considered in the literature, by considering the shape mixture representation discussed
in Section 2. These models are the skew-generalized-normal (SGN; see also Section 2.4),
the skew-normal-t (SNT') and the skew-t-normal (ST N) presented in the Introduction.
As in the previous section, we focus our study on the linear regression model

Y; = x! B+ os, € ind SN(0,1/vs,s:), (32)
1 =1,...,n, with different prior specifications for the parameters v; and s;, i =1,...,n.

The results will be applied in the next section to the Australian athletes dataset.

5.1 Skew-generalized-normal distributions
We consider the SGN linear regression model

[Y;|8,0%, a1, as) oad- SGN(xI'B,0% a1,a9), i=1,...,n, (33)
whose likelihood function is

f(y|B.0® a1, a2) = (2/0)" ¢n (2) @y (121, + a2D? (2))

where z = (y — X3)/0 and, as was defined earlier, D(z) = diag(z1, ..., 2,). From the
specification (32) and the results in Section 2.4 (see, e.g., (13)), we can write (33) as

YilB,0%\] " SN(xIB0% N), i=1,....n, (34)
Nilor, ao]  “&" N(ar,as), i=1,...,n, (35)

where v; = 1 and s; = \;, i = 1,...,n. Therefore, letting ¢? = 02 /(1+A?),i=1,...,n,
a convenient hierarchical representation of (33) is

YilB,0%, &, 0] R NGB+ N6, ), i=1,...,n, (36)
62, (&l R HEN(0,92), i=1,...,n, (37)
[1h2| ] PG Mo, as) "R Nag,ag), i=1,...,n, (38

where the G;’s are conditional distributions on the \;, which are determined by the
prior distribution of 2.
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We consider also the following prior specifications:
1
77(5,02,041,062) X ;77(061|062)7T(042)7 (39)

with oy ~ N (a1, az2) and ag ~ IG(az/2,b2/2). Note that for a; = 0 it follows from (34)-
(35) and by considering the results in Section 3 (see Proposition 5) that [Y;|3, 0?] o
N(xI'B,0?),i =1,...,n. Hence, in that situation the posterior inferences on (3, 0?)
must be based on the standard normal regression model. Moreover, since we are consid-
ering the improper prior 7(0?) oc 1/0? for 0, we have then in (38) that the distributions
G;’s are such that

1=1

(Y2 |\;) o RN (40)

1
ey
The conditional posterior distributions necessary to implement a Gibbs sampling proce-
dure with the aim of obtaining the required posterior analysis are established in the next

proposition, whose proof follows from standard algebraic manipulations, and therefore
is omitted.

Proposition 13. Consider the conditional representation (36)-(38) of the SGN linear
regression model (33), with the prior specifications in (39)-(40). Then,

Bl o102, A5 ~ N (B) - BOME), (X D) X)),
€18, 4. a1.02, 03]~ TN, (0;[L, + DAD(N)] ' D(A)e, [L, + D)D) ~'D(¥))

n N2 4 g2
[¢|5,O&1,O&2,€7A7y] ~ EIG <1’%>7

B, a1,02,€,5] ~ Ny (D(T)[D(E)D(%) '€ + a0y 'L,1,],D(7)) ,
)\T1n+a1 [6%) )

A ~ N
[O[1|ﬁ,’l,b,0é2,€, 7Y] < n+1 7n+1

alBopan &Ny ~ IG ("2”‘“ ”*‘all"”“(al‘al)““)

2 ’ 2

where B(z) = (XTD(¢) ' X)'XTD(¢) 'z, e = y — X8, ¢ = (2,... .27, 7 =
T

( argi ey ) , IG(a, ) is the Inverse Gamma distribution and T'N,,(c; p, X2)

T P77 &G PR
denotes the N, (u,X) distribution truncated below at c.

5.2 Skew-normal-t¢ distributions

We start with the following result.
Proposition 14. If [Z]S = s] ~ SN(a1+/5), where S ~ Gamma(v/2,v/2), then marginally,
the pdf of Z is given by
f2(2) = 26(:)T (e v)
where T'(+; v) is the cdf of the standard Student-t distribution with v degrees of freedom.
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Proof. The marginal pdf of Z is given by

o] v v/
fz(z) = 2(;5(2)/0 %s”m_le_”sm@(al\/gz)ds

© (y v/2
2¢(z) /0 %s”m_l(f”sm /tgz a1v/sp(ay/st)dtds.

Letting w =t — 2z, we have

v/2)/2
ute) = 20(e) [ e [ R it +))dwds. (41)

Applying Fubini’s theorem and after some algebraic manipulations, we obtain from (41)
that

(v +1)/2) { (o (w + x))z} S
z) = 2¢(z 1+ dw,
Fe) = 200 [ SR .
thus concluding the proof. O
The skew-normal-t (SNT) linear regression model is defined as
D/i|/3,0'2,041,1/] ”ﬂ SNT(X;'Tﬁ7O—27a17V)7 i:17"’un7 (42)

whose likelihood function is
F(y1B,0%, a1,v) = (2/0)" ¢n (2) [ T(enz5v),
i=1

where z = (y — X3) /0. Using Proposition 14 and specifications given in (32), we can
rewrite (42) as

Yi|B,02, Miyar] A SN(xIB, 02, a1/ M), i=1,...,n,

[Ai|V] s Gamma(v/2,v/2), i=1,...,n,
where v; = 1 and s; = a1/, ¢ = 1,...,n. Thus, letting z/Jf =a?/(1+alX), i =
1,...,n, we propose the following hierarchical representation of (42):
D/’L'|ﬁao'27ala€i7)\i] an Tﬁ"'al V 517 a 1= 15"'7”5 (43)
znd. .
[glil-(/\lval)w}?]v [€Z|wz] ~ HN(O,@/Jl), i=1,...,n, (44)
[V2|a1, \i] oen [Ai|V] 5 Gamma(v/2,v/2), i=1,...,n, (45)

where the G;’s are conditional distributions on (ag, A;) and are determined by the prior
distribution of o2. Considering the same scheme for prior specifications as in the SGN
case with

ay ~ N(a1,b3), v~ Exponential(ci/2), (46)

we obtain the following full conditional distributions.
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Proposition 15. Consider the conditional representation (43)-(45) of the SNT linear
regression model (42), with the prior specifications in (46). Then,

B, a1, v, &N y] ~ Ni (3(y) — Blark), (XTD(¢)‘1X)‘1) ,
€8, 0100y ~ TN, (0:0aL, + 03D D) e [L, + 0?D(A)]'D&))

(6, —a1ki)® + §i2>
2 9

[¢|/67a17V7€7A7Y] ~ HIG <17

- 22 492 i€q
B v) ] Gomma (5 Y e { T

a1 + b2kTD (1) le i
< 1+ b03cTD(¢) "1k 1+ b3TD(yp) ! )

[V|57¢aa17€7A7Y] ~ exp{—l/ (A 1 +Cl>}HAy/2 !

where B(z) = (XTD(¥) ' X) ' X"D(¢) 'z, e = y — X3, ¢ = (¥2,...,92)7T, k =
()\1/251, .. .,)x,ll/zﬁn)T and TN,(c; u,X) denotes the N, (u,X) distribution truncated
below at c.

[Oéﬂ,B,’l[J,V,S,A,Y] ~

5.3 Skew-t-normal distributions

We start with the following result.

Proposition 16. If [Z|S = 5] ~ SN (0,5~ ', a1571/2), where S ~ Gamma(v/2,v/2), then
marginally, the pdf of Z is given by

fz(z) = 2t(z;v)®(12),

where t(-;v) denotes the pdf of the standard Student-t distribution with v degrees of
freedom.

Proof. The proof is straightforward using the well-known result about the predictive
distribution of the normal-gamma Bayesian model (see Bernardo and Smith, 2000), i.e

fz(z) = 2®(a12)/000N(Z;O,s_l)Ga(s;V/Q,u/2)ds

The skew-t-normal (ST N) linear regression model is defined as

[}/Z|IB702’QI7V] l%i. STN(X?67 0-27a1) V)? i = 17 i '7n7 (47)
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whose likelihood function is

flylB,0% a1,v) = (2/0)" {Ht 2V } n(Q17),

and z = (y — X3)/o. Using Proposition 16 and the model specifications given in (32),
(47) can also be rewritten as

D/i|1370.25Ai7a1] ”}\51 SN(X?ﬁ,O’ 7; al)\ 1/2)7 1= 15"'7”5
[Ai|V] s Gamma(v/2,v/2), i=1,...,n

where v; = \; and s; = a1\ 1/2 ,i=1,...,n. Letting 2 = 02/(\; +a3),i=1,...,n,

we propose the following hlerarchlcal representation of (47):

[}/'L|ﬁao'27ala€i7)\i] i%. N(X;Tﬁ—kozlé'“?/}?), 1= 17"'7”7 (48)
€ LAy an)[0?],  [Glw?] ™ BN, 2), i=1,...,n, (49)
[1hF]cr, Ai] " a, A |V] 5 Gamma(v/2,v/2), i=1,...,n. (50)

Again, the G;’s are conditional distributions on (ag,\;) and are determined by the
prior distribution of o2. The prior scheme for this model is the same as for the SNT
regression model. Note that this regression model considers both a mixture of the shape
parameter and a mixture of the scale parameter for the skew-normal model.

Proposition 17. Consider the conditional representation (48)-(50) of the STN linear
regression model (47), with the prior specifications in (46). Then,

B, &Y~ Ni (Bly) —aiB€). X"D®) X)),
. (651 1
[5|ﬂa¢7alayaAaY] ~ TNn (O’TOL%&WD@#)) )

(6 —&)* + 5?)

[1[1|,6,Q1,V,€7A,y] ~ HIG <17 2

A8, ¥, 01,1,€,y] ~ HGamma(2 ;)

[051|/65¢7V7€7A7y] ~

1+ 03" D(y) 1€ " 1+ 026" D(vp) !
[V|57¢7alaévkay] ~ eXP{—V (A 1n+01>}HAy/2 !

where f(z) = (X"D(¥)"'X) "' X"D(y) 'z e =y ~ XB, % = (4F.....07)"
TN, (c; p, X) denotes the N, (u,X) distribution truncated below at c.

N <a1 + 026 D () e G )
¢
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Remark 2. As a summary, note that, if we combine scale and shape mixtures, then
all the above regression models, including the SN one, can be represented jointly by
assuming that [g;]v;, ;] S SN(0,1/v;,8;), i =1,...,n, and considering that:

1. For the SN: v; =1 and s; = « for all 4;

2. For the SGN: v; =1 and s; = \; with \; i N(aq, az) for all ;

3. For the SNT: v; =1 and s; = a1/ A; with \; i Gamma(v/2,v/2) for all i;

4. For the STN: v; = \; and s; = al/\i_l/Q, and \; i Gamma(v/2,v/2) for all i.

6 An Application to Australian Athletes Data

In order to illustrate our results, particularly the Bayesian specification of skew-normal
shape mixtures models given in Section 5, we consider a dataset from Cook and Weisberg
(1994) on characteristics of Australian athletes available from the Australian Institute of
Sport (AIS). Specifically, we consider the variables lean body mass (Lbm), height (Ht)
and weight (Wt) associated with n = 102 Australian male athletes. Table 1 presents a
summary of the basic descriptive statistics for these variables.

Table 1: Descriptive statistics of the AIS dataset: sample mean Z, sample standard
deviation s, and sample skewness and kurtosis coefficients /b, and b, respectively.

| Variable | 2 | s [ Vb1 | by |
Lbm 74.66 9.89 | 0.28 | 0.71

Ht 185.50 | 7.90 | 0.07 | 0.06
Wt 82.52 | 12.40 | 0.40 | 0.49

Enhanced athletic performance is known to be linked to increase in lean body mass, the
difference between total body weight and body fat. In order to study the relationship
between the lean body mass of the AIS male athletes and their height and weight, we
consider a linear regression model through the origin given by

Lbm; = B1Ht; + BoaWt; +0e;, i=1,...,102,

assuming [g;]v;, s;] are independent with SN(0,1/v;,s;) with prior specification for
v; and s;, ¢ = 1,...,n such that we obtain the skew-normal shape mixtures regres-
sion models studied in Section 5, say, SGN (x' 3,02, a1, az2), SNT(xI'3,0% a1, v) and
STN(xFB,0%, a1,v). To elicitate the prior distributions for these models, we start with
the Bayesian approach to fit a skew-normal (SN) model. We consider an improper prior
for (3,0?) and a normal prior centered at 0 with variance 10 for the shape parameter.
Such a prior specification reflects our belief in favor of normality of the data. Using
Proposition 10, we implement a Gibbs sampling algorithm with the software R. For this
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algorithm, we run parallel chains of 50,000 iterations and discard the first 25,000 as
the burn-in period with lags of 10 iterations to avoid autocorrelation. The posterior
summaries of this model are reported in Table 2.

Table 2: Bayesian estimates for the AIS dataset under a skew-normal linear regression
model.

SN
Parameter | mean sd 2.5% 97.5%
01 0.06 0.01 0.04 0.08
B2 0.81 0.03 0.76 0.86
o 3.49 0.31 2.90 4.16
« -3.97 1.13 —-6.51 —2.15

In Figure 1 we provide a normal QQ-plot for the standardized residuals under a normal
model. This plot shows strong evidence against normality. According to the Bayesian
estimates reported in Table 2, the AIS dataset shows evidence of skewness, because
the parameter o has a posterior mean equal to —3.97 and the credibility interval is
[—6.51, —2.15]. Using this information, we fit the above shape mixtures of skew-normal
linear regression models following a Bayesian point of view. For each model, we place
essentially improper priors on the regression parameters and on the scale parameter o.
Based on the posterior summaries of the shape parameter of the skew-normal model,
we adopt a prior distribution centered at —4 for «; with variance equal to 1. For the
parameter s in the SGN model, we adopt an Inverse Gamma IG(3,2) distribution.
This prior elicitation means that we fix both the prior mean and prior variance of as
equal to 1. In the SNT and STN models, we adopt an Exponential(0.10) distribution
truncated below 2 for the parameter v.

We implement the Bayesian approach using the full conditional distributions given
in Propositions 13, 15 and 17, by means of a Metropolis-Hastings algorithm within
Gibbs sampling. Furthermore, the convenient hierarchical representation of the SGN,
SNT and ST N models allows to use WinBUGS as an alternative for implementing the
Bayesian approach. In both computational schemes, similar results were obtained.

For the full conditionals of the parameters A and v provided in Propositions 15 and 17,
we consider a log-normal candidate centered at the logarithm of the previous sample
and with variance allowing a rejection rate of 40% for the Metropolis step. As before, we
run parallel chains with 50, 000 iterations, discarding the first 25,000 as the burn-in and
considering a lag of 10 iterations to avoid autocorrelation. The results are summarized
in Table 3. In order to compare the models, we compute the deviance information
criterion (DIC), see, e.g., Spiegelhalter, Best, Carlin and van der Linde (2002). In
addition, we also adopt a cross validation criterion to compare the models, computing
pseudo Bayes factors (PBF) (see, e.g., Geisser and Eddy, 1979; Gelfand and Dey, 1994)
and using the log-marginal pseudo likelihood (LPML) (see, e.g., Ghosh and Gonen,
2008; Branscum and Hanson, 2008) through the conditional predictive ordinates (Chen,



536 Bayesian Shape Mixtures of Skewed Distributions

Normal Residuals

Quantiles of N(0,1)

Figure 1: Normal QQ-plot for standardized residuals.

Shao and Ibrahim, 2000, pp. 307-315).

According to the DIC values reported in Table 3, we conclude that the SGN model
is better than the other shape mixtures models for this dataset. Also, using the in-
formation provided by LPML, we compare the SGN model against SNT and STN
computing PBF. The respective values of LPML are given in Table 3 and lead to a
2log PBF of 59.64 (SGN model against SNT model) and 50.76 (SGN model against
ST N model) which are interpreted as strong evidence in favor of the SGN model. With
respect to the SNT and ST N models, note that, while the posterior estimates of the
parameters a; and v are quite similar in both models, the effect of these parameters on
the skewness and kurtosis coeflicients is very different; for more details see Nadarajah
and Kotz (2003) and Gémez, Venegas and Bolfarine (2007).
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Table 3: Bayesian estimates for the AIS dataset under various linear regression models:
skew-generalized-normal (SGN), skew-normal-t (SNT), and skew-t-normal (STN).

SGN 61 62 g a1 a9 1%
Mean | 0.05 0.81 1.14 -1.01 0.99 -
SD 0.01 0.03 0.16 0.41 0.32 -
P5 0.03 0.76 0.86 —1.88 0.50 -
Py7 5 0.07 0.86 1.51 —0.26 1.75 -
DIC —52.88
LPML —319.76
SNT 61 62 g a1 a9 1%
Mean | 0.05 0.81 0.86 —0.61 - 12.37
SD 0.01 0.02 0.13 0.33 - 10.32
Py5 0.03 0.76 0.67 -—1.33 - 2.30
Py7 5 0.07 0.85 1.16 —0.04 - 38.9
DIC 145.16
LPML —349.58
STN 51 62 g (651 (65) 174
Mean | 0.05 0.81 0.72 —0.59 - 11.87
SD 0.01 0.02 0.07 0.31 - 9.90
P5 0.03 0.76 0.60 —1.29 - 2.26
Py; 5 0.07 0.85 0.87 —0.06 - 38.29
DIC 177.79
LPML —345.14
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