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Parameter Estimation in Continuous Time
Markov Switching Models: A Semi-Continuous

Markov Chain Monte Carlo Approach

Markus Hahn∗ and Jörn Sass†

Abstract. We want to estimate the parameters governing a continuous time
Markov switching model given observations at discrete times only. For parame-
ter estimation in a setting with continuous time and a latent state process, using
MCMC methods two approaches are common: Using time-discretization and aug-
menting the unknowns with the (then discrete) state process, or working in contin-
uous time and augmenting with the full state process. In this paper, we combine
useful aspects of both approaches. On the one hand, we are inspired by the dis-
cretization, where filtering for the state process is possible, on the other hand, we
catch attractive features of the continuous time method, like exact estimation (i.e.
no discretization error) and direct estimation of the generator matrix rather than
the transition matrix. This is achieved by taking not the whole state process for
data augmentation but only the states at observation times. Using results on the
distribution of occupation times in Markov processes, it is possible to compute the
complete data likelihood exactly. We obtain a sampler that works more robustly
and more accurately especially for fast switching in the state process.

Keywords: Bayesian inference, data augmentation, hidden Markov model, switch-
ing diffusion

1 Introduction

We consider a continuous time Markov switching model (MSM). The observation process
can be seen as a diffusion where the drift and the volatility coefficients are modeled as
continuous time, finite state Markov processes with a common state process. This model
includes the hidden Markov model (HMM) where the volatility is constant. Continuous
time MSMs (e.g. Buffington and Elliott 2002; Guo 2001) and HMMs (e.g. Liechty and
Roberts 2001; Sass and Haussmann 2004) are widely used in finance, but are also applied
in many other areas, for example in biophysics for the problem of restoration of ion
channels (e.g. Ball et al. 1999).

It is our aim to estimate the states for drift and for volatility as well as the gener-
ator matrix of the underlying Markov process based on discretely observed data. This
is a common situation that occurs e.g. in many inference problems encountered in fi-
nance, where it is more convenient to use continuous time models since these allow the
derivation of closed form solutions while stock prices are observed only in discrete time.
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We assume that the number of states is given, and refer to (Otranto and Gallo 2002)
and (Frühwirth-Schnatter 2001) for the matter of model selection. For the problem of
label switching, which arises if the different states are not well separated, methods like
identifiability constraints, relabelling, or random permutation (cf. Jasra et al. 2005) can
be incorporated into the sampler constructed.

In discrete time, the expectation maximization (EM) algorithm (Dempster et al.
1977) can be used to find maximum likelihood estimates for the parameters, the drift
and covariance coefficients as well as the generator matrix governing the switching of the
states, see e.g. (Elliott et al. 1997) or (Engel and Hamilton 1990). For low rates (i.e. rare
jumps) and low volatility, the EM algorithm provides very accurate results. However,
for high rates the law of the discretized model (using a discrete time Markov chain)
varies considerably from the law of the continuous time model and the EM algorithm
yields poor results. In continuous time, no finite dimensional filter for estimating the
underlying state of the MSM is known, hence it is not possible to compute the maximum
likelihood parameter estimate via an EM algorithm, see (Elliott et al. 1995) for details.
Alternatively, one might use a moment based method, see e.g. (Elliott et al. 2008). This
can yield good estimates, but it requires a lot of observations.

Taking a Bayesian approach, for parameter estimation in a setting with continuous
time and a latent state process, two methods based on Markov chain Monte Carlo
(MCMC) seem to be reasonable: First, using time discretization (replacing the generator
matrix with a transition matrix) and augmenting the unknowns with the (then discrete)
state process; or, second, working in continuous time and augmenting with the full state
process (compare Ball et al. 1999; Liechty and Roberts 2001). Both methods are based
on a multiple-block Metropolis-Hastings sampler. Results for the continuous time MSM
in (Hahn et al. 2007) indicate that for data with high rates, considerable noise, and based
on not too many observations, MCMC estimation in continuous time is not sufficiently
stable and fast. Then again, using time discretization and discrete time MCMC methods
turns out to work more robustly and faster, but introduces a discretization error.

The idea of the algorithm presented here is to combine the useful aspects of these two
MCMC approaches. On the one hand, the algorithm is inspired from the discretization,
where filtering for the state process is possible, on the other hand, we catch attractive
features of the continuous time method, like exact estimation (i.e. no discretization
error) and direct estimation of the generator matrix rather than the transition matrix
(compare Israel et al. 2001). This is achieved by taking not the whole state process for
data augmentation, but considering only the states at observation times. Working in
continuous time but augmenting with the state process at discrete times only, we refer
to this method as “semi-continuous”.

For this setting, the conditional distribution of the observed data given the boundary
states is an infinite mixture of normal distributions. As the weights of these mixtures
depend rather on the occupation times of the state process than on the path of the state
process itself, the calculations simplify. Using results on the distribution of occupation
times in Markov processes in (Sericola 2000), it is possible to compute the complete
data likelihood exactly.
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We construct an exact scheme for a multiple-block Metropolis-Hastings sampler.
More precisely, it is possible to perform a Gibbs step for the update of the state process.
For the update of the generator matrix, we construct a proposal approximating a Gibbs
step. The drift coefficients and the volatility coefficients are updated using a random
walk Metropolis step.

Compared to augmenting with the full state process, we dramatically lower the
dimension of the unknowns. Also the dependence between the parameters is lowered
(especially between the state process and the generator matrix). Therefore, we expect
faster convergence.

The remainder of the paper is organized as follows. In Section 2 we introduce the
model and the problem of estimation given discretely observed data. In Section 3 we
specify the prior distributions and give the complete data likelihood. In Section 4 we de-
scribe the proposal distributions used for the Metropolis-Hastings sampler. In Section 5
we derive the conditional distribution of the observations using results from (Sericola
2000) needed to implement the sampler (in order to improve readability we describe
the case of 2 states; in the Appendix, details for the general case are given). Numerical
results in comparison to other methods are given in Section 6 both for simulated data
and financial market data.

2 Continuous time Markov switching model

2.1 Setting up the model

In this section we present the model which is a multidimensional continuous time
MSM. On a filtered probability space (Ω,F = (Ft)t∈[0,T ], P) we observe in [0, T ] the
n-dimensional process R = (Rt)t∈[0,T ],

Rt =
∫ t

0

µs ds +
∫ t

0

σs dWs, (1)

where W = (Wt)t∈[0,T ] is an n-dimensional Brownian motion with respect to F , with
µ = (µt)t∈[0,T ] being the drift process, and σ = (σt)t∈[0,T ] being the volatility pro-
cess. The drift process µ and the volatility process σ, taking values in Rn and Rn×n,
respectively, are continuous time, time homogeneous, irreducible Markov processes
with d states, adapted to F , independent of W , driven by the same state process
Y = (Yt)t∈[0,T ]. We denote the possible values of µ and σ with B = (µ(1), . . . , µ(d))
and Σ = (σ(1), . . . , σ(d)), respectively. We assume the volatility matrices σ(k) to be
nonsingular and use the notation C(k) = σ(k) (σ(k))>.

The state process Y , which is a continuous time, time homogeneous, irreducible
Markov process adapted to F , independent of W , with state space {1, . . . , d}, allows for
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the representations

µt =
d∑

k=1

µ(k) 1{Yt=k}, σt =
d∑

k=1

σ(k) 1{Yt=k}. (2)

The state process Y is characterized by the generator matrix Q ∈ Rd×d as follows:
For rates λk = −Qkk =

∑d
l=1,l 6=k Qkl, k = 1, . . . , d, in state k the waiting time for the

next jump is λk-exponentially distributed, and the probability of jumping to state l 6= k
when leaving k is given by Qkl/λk, see e.g. (Brémaud 1981).

Remark 1. One cannot distinguish between the pairs (σ,W ) and (σ̄, W̄ ), where σ̄
is a square-root of σσ> and W̄ = σ̄−1σW . However, without loss of generality we
can assume σ(k) to be a lower triangular matrix, i.e. σ(k)(σ(k))> equals the Cholesky
factorization of the covariance matrix.

2.2 Estimation problem

Starting from a prior distribution of the unknown parameters B, Σ, Q, we wish to de-
termine P(B, Σ, Q | Ṙ), the posterior distribution of these parameters given discretely
observed data Ṙ = (Ṙm)m=0,...,N , Ṙm = R∆t m, for a uniform observation time in-
terval ∆t > 0. Equivalently, one can consider the corresponding increments ∆Ṙ =
(∆Ṙm)m=1,...,N , where

∆Ṙm =
∫ m ∆t

(m−1)∆t

µs ds +
∫ m ∆t

(m−1)∆t

σs dWs, m = 1, . . . , N. (3)

To this end, we augment the unknowns with Ẏ = (Ẏm)m=0,...,N , Ẏm = Ym ∆t, the
latent state process at the observation times. We construct a multiple-block Metropolis-
Hastings sampler to draw from the joint posterior distribution of B, Σ, Q, Ẏ given Ṙ.
We partition the unknowns into three blocks, namely (B, Σ), Q, Ẏ .

In Sections 3 and 4, we specify appropriate prior distributions and describe the
construction of the updates.

2.3 Motivation

As pointed out in Section 1, existing algorithms for estimating MSMs work well for
slow state switching, but show weaknesses in dealing with fast switching. While Rydén
et al. (1998) and Timmermann (2000) show that MSMs are suitable approximations
for modeling stock returns (catching a number of stylized facts), in such applications
one often faces fast state switching, compare (Sass and Haussmann 2004) and (Hahn
et al. 2008a) for daily and intra-day data, respectively. To avoid this problem, one
might make the observation interval ∆t smaller, but this may be problematic. More
frequently quoted data might not be available (think of assets quoted on a daily basis
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Figure 1: Transition probabilities depending on time for different rates (left: λ1 = λ2 =
60; middle: λ1 = 150, λ2 = 200; right: λ1 = 220, λ2 = 280)

only). Still, if high-frequent data is available, one should reconsider that appropriate
statistical properties for stock returns are obtained only over time intervals that are not
too short; e.g. for second-by-second quotations it is inevitable to include the possibility
of jumps in the price process.

This is some motivation to look for methods giving reliable results even for fast state
switching. And in fact it is possible to obtain stable results for such data (of course
depending on the noise level), where “fast” switching means up to about one switch per
observation interval on average (in accordance with observations in Sass and Haussmann
2004 and Hahn et al. 2008b).

To give some illustration, Figure 1 plots P(Yt = l |Y0 = k, Q), the transition proba-
bilities depending on time, for different rates. Assuming ∆t = 1/250 (as in Section 6),
even in the third panel with high rates, transition probabilities for a time-step of length
∆t are far from ergodic probabilities. This justifies our choice of augmenting with Ẏ .
More illustrations and results for some reasonably chosen drift and volatility are found
in Section 6.

3 Prior distributions and complete data likelihood

3.1 Prior distributions

Assumption 1. A priori, B, Σ, Q, Ẏ0, are independent with distributions

µ
(k)
i ∼ N(mik, s2

ik),

C(k) ∼ IW(Ξ(k), νk),
Qkl ∼ Ga(fkl, gkl),

Ẏ0 ∼ U({1, . . . , d}),

(4)

where i = 1, . . . , n and k, l = 1, . . . , d, l 6= k. With N, IW, Ga, and U, we denote
the normal, inverse Wishart, Gamma, and uniform distribution, respectively. The off-
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diagonal elements of Q are assumed to be independent. Without loss of generality,
the volatility matrices σ(k) are assumed to be lower triangular matrices with positive
diagonal entries.

If we think of time zero as the beginning of our observations after the process has
already run for some time, it may be reasonable to alter the assumptions on the initial
state as follows:

Assumption 1a. Assumption 1 holds, but B, Σ, (Q, Ẏ0) are independent and the state
process starts from its ergodic probability ω, i.e.

P(Ẏ0 |Q) = ω. (5)

3.2 Complete data likelihood

For given B, Σ, Q, Ẏ , the process Ṙ is Markov and its increments ∆Ṙ are independent.
Hence, the complete data likelihood is given by

P(Ṙ |B, Σ, Q, Ẏ ) =
N∏

m=1

P(∆Ṙm |B, Σ, Q, Ẏm−1, Ẏm), (6)

where P(∆Ṙm |B, Σ, Q, Ẏm−1, Ẏm) is an infinite mixture of normal distributions (for
details see Section 5).

Note that while Ṙ given Y is independent of Q, this is not true for Ṙ given Ẏ .

4 Proposal distributions

4.1 Drift and volatility

For the update of B and Σ, a joint normal random walk proposal, reflected at zero for
the diagonal entries of σ(k), is used:

µ(k)′ = µ(k) + rµ φ,

σ
(k)
ij

′
= σ

(k)
ij + rσ ψ

(k)
ij ,

σ
(k)
ii

′
=

∣∣σ(k)
ii + rσ ψ

(k)
ii

∣∣,
(7)

where φ and ψ are n-dimensional vectors and n×n matrices, respectively, of independent
standard normal variates, i = 1, . . . , n, j = 1, . . . , i− 1, k = 1, . . . , d, and rµ and rσ are
parameters scaling the step widths.

As the transition kernel is symmetric we have a Metropolis step with acceptance
probability αB,Σ = min{1, ᾱB,Σ}, where

ᾱB,Σ =
P(Ṙ |B′,Σ′, Q, Ẏ ) P(B′) P(Σ′)
P(Ṙ |B, Σ, Q, Ẏ ) P(B) P(Σ)

. (8)



Hahn and Sass 69

4.2 Generator matrix

For the off-diagonal elements of the generator matrix we sample from a Gamma distribu-
tion with parameters fkl + f̂kl and gkl + ĝkl, where the expected number of jumps f̂ and
the expected occupation times ĝ can be computed as follows. Denoting the transition
matrix of Ẏ with X,

Xkl = P(Ẏm = l | Ẏm−1 = k) =
(
exp(Q ∆t)

)
kl

, (9)

and the number of jumps in Ẏ with n̂kl,

n̂kl =
∣∣{m ∈ {1, . . . , N} | Ẏm−1 = k, Ẏm = l

}∣∣, (10)

the maximum likelihood estimate of the transition matrix given Ẏ is given by X̂kl =
n̂kl/

∑d
j=1 n̂kj , from which we can compute the corresponding generator matrix Q̂,

stationary distribution ω̂, and expected number of jumps f̂ and expected occupation
times ĝ,

f̂kl = ω̂k Q̂kl T,

ĝkl = ω̂k T.
(11)

Then, the proposal distribution is independent of Q with density

q(Q′) =
∏

k 6=l

Ga(Q′
kl; fkl + f̂kl, gkl + ĝkl). (12)

For the conditional distribution of the generator matrix we have

P(Q | Ṙ, B,Σ, Ẏ ) ∝ P(Ṙ |B, Σ, Q, Ẏ ) P(Ẏ |Q) P(Q), (13)

where P(Ẏ |Q) is obtained as

P(Ẏ |Q) = P(Ẏ0 |Q)
d∏

k,l=1

X n̂kl

kl . (14)

Hence, the acceptance probability is given by αQ = min{1, ᾱQ} with

ᾱQ =
P(Ṙ |B, Σ, Q′, Ẏ ) P(Ẏ |Q′) P(Q′)
P(Ṙ |B, Σ, Q, Ẏ ) P(Ẏ |Q) P(Q)

q(Q)
q(Q′)

. (15)

Remark 2. If we augment with Y instead of Ẏ , we know the number of jumps and
the occupation times for the current sample path, and the above proposal constitutes a
Gibbs step. Hence, for our setting using only Ẏ it seems reasonable to keep the proposal
approximating the parameters.
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4.3 State process

For updating Ẏ , we describe an extension of the forward-filtering-backward-sampling
algorithm (see e.g. Frühwirth-Schnatter 2006) allowing to draw from the full conditional
distribution. We give details using the notation ∆Ṙm = (∆Ṙ1, . . . , ∆Ṙm) and η =
(B, Σ, Q).

Starting from P(Ẏ0 |∆Ṙ0, η) = P(Ẏ0 |Q), for m = 1, . . . , N we compute the filtered
probabilities

P(Ẏm |∆Ṙm, η) =
d∑

k=1

P(Ẏm | Ẏm−1 = k, ∆Ṙm, η) P(Ẏm−1 = k |∆Ṙm, η), (16)

where

P(Ẏm | Ẏm−1, ∆Ṙm, η) = P(Ẏm−1,∆Ṙm−1, η) P(Ẏm | Ẏm−1,∆Ṙm−1, η)

× P(∆Ṙm | Ẏm−1, Ẏm, ∆Ṙm−1, η)/ P(Ẏm−1,∆Ṙm, η)

∝ XẎm−1,Ẏm
P(∆Ṙm | Ẏm−1, Ẏm, η) (17)

(using that given Ẏm−1, Ẏm is independent of ∆Ṙm−1), and

P(Ẏm−1 |∆Ṙm, η) ∝ P(∆Ṙm | Ẏm−1, η) P(Ẏm−1 |∆Ṙm−1, η) (18)

in a forward-run.

Then we perform backward-sampling: we draw Ẏ ′
N from P(ẎN |∆ṘN , η), and for

m = N − 1, . . . , 0 we draw Ẏ ′
m from

P(Ẏm | Ẏm+1, ∆ṘN , η) = P(Ẏm | Ẏm+1, ∆Ṙm+1, η)

∝ P(Ẏm+1 | Ẏm, ∆Ṙm+1, η) P(Ẏm |∆Ṙm+1, η), (19)

where we used that given Ẏm+1, Ẏm is independent of ∆Ṙm+2, . . . , ∆ṘN .

5 Conditional distributions of the observations

The conditional distributions of the observed increments ∆Ṙm given the initial state
Ẏm−1 and the boundary states Ẏm−1, Ẏm, respectively, are infinite mixtures of normal
distributions given by

P(∆Ṙm | Ẏm−1 = k, η) =
∫

T
ψ(∆Ṙm; B, C, τ) dF in

k (τ), (20)

P(∆Ṙm | Ẏm−1 = k, Ẏm = l, η) =
∫

T
ψ(∆Ṙm; B, C, τ) dF bd

k,l (τ), (21)

where

ψ(∆Ṙm; B, C, τ) = ϕ

(
∆Ṙm;

d∑

j=1

µ(j)τj ,

d∑

j=1

C(j)τj

)
, (22)
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ϕ( · ; x, c) denotes the density of a multivariate normal distribution with mean vector x
and covariance matrix c, T = [0, ∆t]d, and F in and F bd denote the conditional joint
distribution functions of the occupation times given the initial and boundary states,
respectively,

F in
k (τ) = P(O1

∆t ≤ τ1, . . . , O
d
∆t ≤ τd |Y0 = k), (23)

F bd
k,l (τ) = P(O1

∆t ≤ τ1, . . . , O
d
∆t ≤ τd |Y0 = k, Y∆t = l). (24)

Here Ok
t denotes the occupation times of Y in state k up to time t,

Ok
t =

∫ t

0

1{Ys=k} ds. (25)

Since

P(∆Ṙm | Ẏm−1 = k, η) =
d∑

l=1

P(∆Ṙm | Ẏm−1 = k, Ẏm = l, η)Xkl, (26)

it is sufficient to describe F bd. In the following we use results of Sericola (2000) to
obtain expressions for the corresponding density fbd.

First we introduce some notation. We denote the uniformized Markov chain (see e.g.
Ross 1996) associated to the Markov process Y with Z̃ = (Z̃m)m∈N0 and the uniform
jump rate of Z̃ with λ̃. We define the number of visits of Z̃ in state k during the first
m transitions

Ṽ k
m =

m∑

h=0

1{Z̃h=k}. (27)

We set

D = {τ ∈ [0, ∆t]d | τ1 + · · ·+ τd = ∆t} (28)

and use the notation riD for its relative interior. Clearly, we just have riD = {τ ∈
(0, ∆t)d | τ1 + · · ·+ τd = ∆t}. We also define its relative boundary rbD = D \ riD.

It is useful to introduce the ∗ operator that projects a vector on its first d − 1
components, i.e. for a d-dimensional vector the last component is omitted, while a
d− 1-dimensional vector is unchanged.

To ease notation, in the remainder of this section we assume Q to be given.

Sericola (2000, Theorem 4.3) describes the joint distribution of the occupation times
of d− 1 states and the final state conditional on the initial state in terms of the distri-
bution of the uniformized discrete chain Z̃. We adapt the conditioning and take partial
derivatives to obtain an expression for the density fbd.
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Theorem 1. On riD, F bd has a continuous density fbd, and for τ ∈ riD,

fbd
k,l (τ) =

∞∑

m=d−1

e−λ̃ ∆t (λ̃ ∆t)m

m!

∑

v∗∈Vm

χ∆t;τ∗
m;v∗ P(Ṽ ∗

m ≤ v∗, Z̃m = l | Z̃0 = k)
/
Xkl, (29)

where

Vm = {(v1, . . . , vd−1) | vi ≥ 0, v1 + · · ·+ vd−1 ≤ m} (30)

and, setting τ̄d = ∆t− τ1 − · · · − τd−1, v̄d = m− v1 − · · · − vd−1,

χ∆t;τ∗
m;v∗ =

∂d−1

∂τ1 · · · ∂τd−1

(
m! τv1

1 · · · τvd−1
d−1 τ̄ v̄d

d

tm v1! · · · vd−1! v̄d!

)

=
m!

∆tm v1! · · · vd−1! v̄d!

×
d−1∑

i=0

(−1)i
∑

J⊆{1,...,d−1}
|J|=i

( ∏

j∈J

vj τ
vj−1
j

)( ∏

j /∈J

τ
vj

j

)
v̄d!

(v̄d − i)!
τ̄ v̄d−i
d . (31)

Remark 3. The conditional joint distribution of Ṽ ∗
m and Z̃m can be computed via its

backward equation (see Sericola 2000, Section 4.1).

For a better understanding, consider the case of d = 2, where Theorem 1 takes a
simpler form.

Corollary 2. Let fbd
k,l (τ1, τ2) denote the joint distribution density of the occupation

times (τ1, τ2) given the initial state equals k and the final state equals l. For τ1+τ2 = ∆t,
τ1 ∈ (0,∆t), the density is continuous and

fbd
k,l (τ1, τ2) =

∞∑
m=1

(
e−λ̃ ∆t (λ̃ ∆t)m

m!

m∑
v=0

(
m

v

)
τv−1
1 τm−v−1

2 (v τ2 − (m− v)τ1)
∆tm

× P(Ṽ 1
m ≤ v, Z̃m = l | Z̃0 = k)

)/
Xkl. (32)

At the boundary we have

P(O∆t = (0,∆t) |Y0 = k, Y∆t = l) = 1{k=2,l=2} e−λ2 ∆t/X22, (33)

P(O∆t = (∆t, 0) |Y0 = k, Y∆t = l) = 1{k=1,l=1} e−λ1 ∆t/X11. (34)
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Hence, Equation (21) can be rewritten as

P(∆Ṙm | Ẏm−1 = k, Ẏm = l, η) =

ψ
(
∆Ṙm; B, C, (0, ∆t)

)
P(O∆t = (0,∆t) |Y0 = k, Y∆t = l)

+
∫ ∆t

0

ψ
(
∆Ṙm; B,C, (τ1, ∆t− τ1)

)
fbd

k,l (τ1, ∆t− τ1) dτ1

+ ψ
(
∆Ṙm; B, C, (∆t, 0)

)
P(O∆t = (∆t, 0) |Y0 = k, Y∆t = l). (35)

In the appendix, we describe how to proceed for d > 2.

Remark 4. The error in the computation of the conditional distributions of the obser-
vations ∆Ṙm results firstly from the truncation of the infinite sum in (29), and secondly
from the numerical approximation of the integrals. However, opposite to the situation
of the discrete approximation, using this approach we can control the error and reduce
it arbitrarily. In fact, we have fast convergence for the error-affected terms and hence, it
is possible to keep the numerical error negligible: Due to the exponential term in (29),
only the very first summands are of importance, and as ψ as well as fbd are very smooth
functions, e.g. the composite Simpson’s Rule provides fast and highly accurate results
even for few subintervals (compare Figure 4).

We illustrate the results of this section with Figures 2, 3, and 4, where we consider
a one-dimensional d = 2 states model with observation time interval length ∆t = 0.004;
for state one and two, the corresponding rates are set to λ1 = 150 and λ2 = 200, the
drifts to µ(1) = 2 and µ(2) = −2, and the volatilities to σ(1) = 0.10 and σ(2) = 0.12.

Figure 2 shows the conditional distributions of the occupation time of the first state
given the boundary and initial states. Note that the distributions for Ẏ0 = 1, Ẏ1 = 2 and
Ẏ0 = 2, Ẏ1 = 1 are identical (also in Figure 3 and 4) and that the discrete contributions
in the density are not shown.

Figure 3 shows the distributions of the observations ∆Ṙm (rescaled to be compa-
rable with µ) given the boundary (left) and initial (right) states; for comparison with
the discrete time approximation, we included the normal densities ϕ( · ; µ(1), C(1)) and
ϕ( · ; µ(2), C(2)) (dotted). Note that the conditional distributions are skew and obviously
non-normal.

In Figure 4 the distributions of the occupation time of the first state given the
boundary (left) and initial states (right) are plotted for varying precision. The solid
plots (highest values at the modes) show the true functions. For the dotted plots, three
summands in (32) and three sampling points for Simpson’s Rule were used. For the
dashed plots (which nearly totally coincide with the true functions), four summands
and five integration points were used. This makes it evident that the approximation
error is negligible even for fast state switching. Using five terms in the summation and
seven integration points takes little more computation time and gives results numerically
equal to the exact values.
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Figure 2: Distributions of occupation time of state one (densities – top, cumulative –
bottom) given boundary (left; Ẏ0 = 1, Ẏ1 = 1 – solid; Ẏ0 6= Ẏ1 – dash-dotted; Ẏ0 =
2, Ẏ1 = 2 – dashed) and initial (right; Ẏ0 = 1 – solid; Ẏ0 = 2 – dashed) states

6 Numerical results

6.1 Simulated data

First we consider 100 samples of simulated data (n = 1, d = 2, N = 5000, ∆t = 1/250)
for moderate speed of state switching. To avoid a bias, the parameters for the prior
distributions (according to (4)) are chosen such that the mean values are the true ones,
while the variances are large (Var(µ(k)) = 16, Var(σ(k)) = 0.0025, Var(Qkl) = 120).

We compare three methods: a sampler based on time discretization and data aug-
mentation with the state-vector (referred to as DT), a continuous time sampler based
on data augmentation with the full state process (referred to as CT), and the semi-
continuous method (referred to as SC) to estimate parameters; both DT and CT are
described in (Hahn et al. 2007). The samplers were slightly adapted to make them fully
comparable with respect to number of samples needed and run-time (see Remark 5).
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Figure 3: Distributions of observations given boundary (left; Ẏ0 = 1, Ẏ1 = 1 – solid;
Ẏ0 6= Ẏ1 – dash-dotted; Ẏ0 = 2, Ẏ1 = 2 – dashed) and initial (right; Ẏ0 = 1 – solid;
Ẏ0 = 2 – dashed) states, and assuming that no jumps occur (dotted)
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Figure 4: Approximation error for distributions of observations given boundary (left)
and initial states (right): 3 summands, 3 integration points (dotted), 4 summands, 5
integration points (dashed), true (solid)
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µ(1) µ(2) σ(1) σ(2) λ1 λ2

True 3.00 -3.00 0.100 0.100 60.0 60.0

Discrete time approximation (DT)
Mean 2.74 -2.70 0.107 0.105 51.1 50.7
Std. dev. 0.04 0.05 0.002 0.002 2.2 2.2
RMSE 0.26 0.30 0.007 0.005 9.2 9.5

Continuous time method (CT)
Mean 3.03 -2.99 0.101 0.100 62.6 62.4
Std. dev. 0.05 0.05 0.001 0.001 3.1 3.5
RMSE 0.06 0.06 0.002 0.001 4.1 4.2

Semi-continuous approach (SC)
Mean 3.03 -3.01 0.100 0.098 62.6 62.9
Std. dev. 0.04 0.03 0.002 0.002 3.7 2.9
RMSE 0.05 0.03 0.002 0.003 4.4 4.0

Table 1: Results for moderate state-switching

In Table 1, for each method we give means, standard deviations, and root mean square
errors of the mean estimates.

For DT as well as SC, 100 000 samples (with a burn-in of 20 000) were sufficient
to give stable results; for CT, 5 000 000 samples (1 000 000 burn-in) turned out to be
necessary.

Remark 5. Note that these numbers are not “full” updates of the parameters for the
following reason. For CT, updates for the state process are rejected more often the
longer the state process is. Hence, to obtain a reasonable acceptance ratio, only a
randomly chosen block is updated each time (cf. Hahn et al. 2007). In this example, on
average about 1% of the state process is updated. To facilitate comparison, we proceed
similarly for DT and SC. As the current state process is crucial for the updates of
the remaining parameters, the crude numbers given above should be divided by 100 to
obtain a rough number of “full” updates.

The quality of the estimates is very accurate for CT and SC, while DT introduces
some discretization error. Regarding the run-time per sample, CT is fastest; DT takes
twice the time, and SC takes ten times longer. Altogether, DT is fastest but not very
exact; SC takes five times longer but gives precise results; also giving accurate results,
CT mixes much slower and takes 25 times longer.

Next, we turn to a more challenging example with less observations, a lower signal-
to-noise-ratio, and very frequent state switching. Again we consider 100 samples of
simulated data (n = 1, d = 2, N = 2500, ∆t = 1/250); prior distributions are set
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µ(1) µ(2) σ(1) σ(2) λ1 λ2

True 2.00 -2.00 0.110 0.090 220.0 280.0

Discrete time approximation (DT)
Mean 1.49 -1.35 0.113 0.097 147.6 191.7
Std. dev. 0.08 0.08 0.003 0.003 11.9 16.7
RMSE 0.52 0.65 0.005 0.008 73.3 89.7

Continuous time method (CT)
Mean 1.88 -1.93 0.114 0.087 199.5 267.6
Std. dev. 0.36 0.17 0.007 0.007 50.4 41.8
RMSE 0.36 0.17 0.008 0.007 52.0 41.5

Semi-continuous approach (SC)
Mean 1.69 -2.13 0.116 0.087 179.4 287.0
Std. dev. 0.13 0.15 0.004 0.005 14.4 11.8
RMSE 0.34 0.20 0.007 0.006 43.1 13.7

Table 2: Results for fast state-switching

such that the mean values are the true ones but with large variances (Var(µ(k)) = 16,
Var(σ(k)) = 0.0025, Var(Qkl) = 1000); the different samplers are run. Results for
200 000 samples per run for DT and SC and for 5 000 000 samples for CT (where again
Remark 5 holds) are given in Table 2.

DT introduces a considerable discretization error; still, the results are acceptable
in the sense that they give an idea about the magnitudes of and the relations between
the parameters. For SC, with a total run-time that is about five times higher, results
are much better and the RMSEs are substantially reduced compared to DT. As the
volatility is higher for the first state, the corresponding estimates are less accurate
than those for the second state. Nevertheless, the estimates are of good quality for all
parameters. Also CT yields accurate results, however, the total runtime required is 60
times longer than DT and 12 times higher than SC.

6.2 Market data

As an example for financial market data we consider daily data for 20 stocks of the Dow
Jones Industrial Average Index (DJIA) from 1972 to 2000. The data was organized in
25 overlapping blocks of 5 consecutive years’ quotes, resulting in a total of 500 data sets
each comprising about N = 1260 data points, where ∆t = 1/252 and T = 5. This data
set was considered in (Hahn et al. 2008b) for portfolio-optimization; there, DT was used
for parameter estimation.

Here, for each of these 500 data sets we employed DT as well as SC to fit a sim-
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ple 2 states HMM, that is, we assume to observe up and down periods for the drift
but constant volatility. Obviously, this model is not sufficient to give good pathwise
fits, however, it is already a serious improvement over the Black-Scholes model (where
constant drift is assumed) and can lead to substantially better results e.g. in portfolio-
optimization (cf. Hahn et al. 2008b; Sass and Haussmann 2004).

Prior distributions are chosen according to (4); for each data set, means for the
drifts m1 and m2 are set to the 60 % and 40 % quantiles of the daily returns under
consideration, and standard deviations are set to s1 = s2 = (m1 − m2)/2; for the
volatility, the mean equals 0.9 times the standard deviation of the returns and the
standard deviation equals half of the mean. For the rates, for all data sets we set means
to 80 and standard deviations to 40, meaning that we expect average drift regimes to
last between 2 and 6 trading days.

For DT as well as SC, 500 000 samples (with a burn-in of 100 000) were sufficient
for all data sets to give stable results (where in each update step about 2 % of the state
process is updated, compare Remark 5; so, roughly speaking, we needed about 10 000
“full” samples).

We also tried to employ CT, however, for almost all sets we obtained no plausible
results; no well separated drifts were identified and often enormous rates were estimated.
This is not surprising, since (according to the results of DT and SC) state switching
occurs frequently; drifts for up and down states are close and volatility is high (i.e. the
signal-to-noise ratio is much lower); moreover, only relatively few data points are used.

Figure 5 gives an overview of the results for all the 500 data sets, showing the
distributions of the sample means both for SC and DT. For SC (DT), drifts are centered
around 1.3 (0.93) and −0.78 (−0.44), volatility around 0.25 (0.26), and rates around
102 (92) and 89 (83), the latter meaning that on average we expect a change in the drift
every 2–3 trading days. Average sample standard deviations for SC (DT) are around
0.50 (0.44) and 0.40 (0.34) for the drifts, 0.006 (0.006) for the volatility, and 39 (40)
and 35 (37) for the rates. These results look quite plausible and reliable.

Clearly, this is only a very rough analysis of the results, however, we are less inter-
ested in details on the concrete results for each of the 500 data sets, but more in the
comparison of the results of DT and SC. To this end, for each run we compute the
relative deviation of the results of DT from SC; i.e. for some parameter θ we take mean
estimates θ̄DT and θ̄SC from the output of the samplers DT and SC; then we plot the
distribution of the relative deviation (θ̄SC − θ̄DT)/|θ̄SC|. In Figure 6 these distributions
for the different parameters over all data sets (as well as corresponding average values)
are shown. Comparing DT to SC, on average the drift states are about 40 % less ex-
treme, while the volatility is only 1.5% higher; the rates are about 8 % lower. This
fits perfectly with the results for simulated data, where SC yielded much more accurate
results than DT; in many applications, this enhanced accuracy will justify the higher
computational costs. Especially when challenging parameters are expected, SC should
be the preferred estimation method.
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Figure 5: Distribution of sample means of SC and DT (solid: SC state 1, dotted: DT
state 1, dashed: SC state 2, dash-dotted: DT state 2)
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7 Conclusion

We present a so-called semi-continuous time MCMC algorithm for parameter estimation
in multi-dimensional continuous time MSMs. This problem is especially difficult if few
data points are available and the switching of the states happens fast. While methods of
moments yield precise results for big data sets (say, more than 30 000 data points) very
fast, we concentrate on the case where not more than 5 000 data points are available.
Moreover, in many applications one observes fast regime switching (which makes the
expectation maximization algorithm fail) and a low signal-to-noise ratio.

The resulting semi-continuous algorithm is a stable method that mixes quickly, as
the dimension of the augmented variables as well as the dependence between the pa-
rameters is reduced significantly compared to augmenting with the full state process. In
comparison to discrete time approximations, we still can employ exact filtering for the
states, but no approximation error is introduced and the generator matrix is estimated
directly rather than estimating the transition matrix. The numerical computations can
be performed to arbitrary precision. The quality of the results is quite satisfying, and
especially for fast state switching the higher computational costs pay off definitely.

While the theory presented here applies for an arbitrary number of states, due to
computational complexity, it is applicable for a moderate number of states only; it
remains for future work to devise a fast and efficient implementation to deal with high
numbers of states.

The transfer of the semi-continuous method to other Markov switching models is
straightforward whenever the distribution of the observed data depends rather on the
occupation times than on the full path of the underlying Markov process. Otherwise,
the semi-continuous approach still may be beneficial, but calculations will get more
involved.

8 Appendix

In the following we describe how to compute P(∆Ṙm | Ẏm−1 = k, Ẏm = l, η), the condi-
tional distributions of the observed increments ∆Ṙm given the boundary states Ẏm−1,
Ẏm, for d > 2.

For an index set I ∈ I, where I = {I : I ( {1, . . . , d}}, we define

D0
I = {τ ∈ D | τk = 0 for k ∈ I, τk > 0 for k /∈ I}, (36)

the set of possible occupation times τ when states in I are not visited, but all others are.
Note that D0

∅ = riD and P(O∆t ∈ D0
I |Y0 = k, Y∆t = l) > 0 if k, l /∈ I, i.e. in general

there is positive probability for occupation time 0 of single states, although these sets
are of lower effective dimension. Hence, while Theorem 1 only tells us how to deal with
riD, we also need to consider the boundary rbD explicitly. Note that as in Section 5,
we assume Q to be given.

The idea is to split D into its interior and parts of its boundary. For the interior, we
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need to solve a (d−1)-dimensional integral. For the parts of the boundary, the dimension
is lower, but suitably adapting Q, we can proceed similarly as for the interior. In more
detail, we use the representation D =

⋃
I∈I D0

I to evaluate the integral (21) conditioning
on which states have occupation time 0, i.e. O∆t ∈ D0

I . We obtain

∫

T
ψ(∆Ṙm; B, C, τ) dF bd

k,l (τ) =

∑

I∈I

∫

D0
I

ψ(∆Ṙm; B, C, τ) dF bd
I;k,l(τ) P(O∆t ∈ D0

I |Y0 = k, Y∆t = l), (37)

where

F bd
I;k,l(τ) = P(O∆t ≤ τ |Y0 = k, Y∆t = l, O∆t ∈ D0

I ). (38)

This removes difficulties arising from discontinuities of F bd on rbD. In fact, we get
a weighted sum of integrals over relatively open domains D0

I of dimension d − |I| − 1
(except for |I| = d−1). The weights for each integral, P(O∆t ∈ D0

I |Y0 = k, Y∆t = l), are
obtained from (Sericola 2000, Theorem 3.3). The corresponding conditional densities
fbd

I can be derived from Theorem 1.

Corollary 3. For I ∈ I, |I| < d− 1, F bd
I has a continuous density fbd

I on D0
I .

For sets I, 0 < |I| < d−1, replace d with dI = d−|I| and adapt Q as follows. Reset
the diagonal entries Qkk to −∑

l/∈I,l 6=k Qkl and drop lines and columns i for i ∈ I,
which gives the corresponding dI × dI rate matrix. Accordingly adapt parameters of the
uniformized Markov chain. In τ , components τk, where k ∈ I, are dropped.

Then, w.l.o.g. we can assume I = ∅. For τ ∈ D0
I , we have

fbd
I;k,l(τ) =

∞∑

m=d−1

e−λ̃ ∆t (λ̃ ∆t)m

m!

∑

v∗∈V+
m

χ∆t;τ∗
m;v∗ P(1d−1 ≤ Ṽ ∗

m ≤ v∗, Z̃m = l | Z̃0 = k)
/
Xkl, (39)

where 1d−1 denotes the (d− 1)-dimensional vector of ones and

V+
m = {(v1, . . . , vd−1) | vi ≥ 1, v1 + · · ·+ vd−1 ≤ m}. (40)

For |I| = d− 1, i.e. no jumps occur, we have

P(O∆t = uj∆t |Y0 = k, Y∆t = l, O∆t ∈ D0
I ) = 1{j=k,j=l,j /∈I}, (41)

where uj denotes the j-th d-dimensional unit vector.

Finally, we rewrite Equation (37) to obtain a numerically computable form for Equa-
tion (21).
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Corollary 4. Combining Equation (37) and Corollary 3, we obtain

P(∆Ṙm | Ẏm−1 = k, Ẏm = l, η) =
∑

I∈I
|I|<d−1

∫

D0
I

ψ(∆Ṙm; B,C, τ) fbd
I;k,l(τ) dτ P(O∆t ∈ D0

I |Y0 = k, Y∆t = l)

+ 1{k=l} ψ(∆Ṙm; B, C, uk∆t) e−λk∆t/Xkk. (42)

Remark 6. Finally, let us consider the numerical complexity of evaluating (42). The
set of summands V+

m in (40) contains |V+
m| =

(
m

m+1−d

)
elements. Cutting the infinite

summation at some M , we have to sum up
(

M+1
M+1−d

)
terms to obtain fbd

∅ . To obtain all
fbd

I for I ∈ I, we need to consider a total of
∑d−1

dI=0

(
M+1

M+1−(d−dI)

)(
d
dI

)
=

(
M+1+d

M+1

) − 1
terms.

For the numerical integration, consider the following. Using some fixed grids, the
terms χ∆t;τ∗

m;v∗ are set up only once. As χ∆t;τ∗
m;v∗ are rather smooth polynomials in τ ,

numerical integration works very well even for simple schemes with a low number of
integration points.

Summing up, as integrals of dimensions up to (d − 1) need to be evaluated nu-
merically, whose densities get more complex with increasing d, for an increasing num-
ber of states, using a straightforward implementation the computations get very time-
consuming. However, for a moderate number of states computations can be carried out
within reasonable time.
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Rydén, T., Teräsvirta, T., and Åsbrink, S. (1998). “Stylized facts of daily return series
and the hidden Markov models.” Journal of Applied Econometrics, 13: 217–244.

Sass, J. and Haussmann, U. G. (2004). “Optimizing the terminal wealth under partial
information: The drift process as a continuous time Markov chains.” Finance and
Stochastics, 8(4): 553–577.



84 Estimation of Continuous Time Markov Switching Models

Sericola, B. (2000). “Occupation times in Markov processes.” Communications in
Statistics – Stochastic Models, 16(5): 479–510.

Timmermann, A. (2000). “Moments of Markov switching models.” Journal of Econo-
metrics, 96: 75–111.

Acknowledgments

The authors acknowledge support by the Austrian Science Fund FWF, project P17947-N12,

and by the Heisenberg Programme of the German Research Foundation DFG. We also thank

the referee, the Associate Editor, and the Editor for their comments and suggestions which led

to a considerable improvement of the paper.




