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ASYMPTOTIC RESULTS FOR MULTIPLE IMPUTATION!

By NATHANIEL SCHENKER? AND A. H. WELSH
U.S. Bureau of the Census and University of Chicago

Imputation and multiple-imputation procedures have been used in prac-
tice to handle the problem of ignorable nonresponse in sample surveys. We
examine the large-sample properties of these procedures where covariates are
available for the case when the complete-data analysis is based on least
squares. The results provide a formal justification for the inference proce-
dures discussed by Rubin and Schenker for the location problem and suggest
new procedures for the regression problem.

1. Introduction. One of the main sources of errdr in surveys is missing data
due to nonresponse [Cochran (1977), Chapter 13]. A review of the vast literature
on nonresponse as well as several articles on how to deal with the problem
appear in three volumes entitled Incomplete Data in Sample Surveys [Madow,
Nisselson and Olkin (1983), Madow, Olkin and Rubin (1983) and Madow and
Olkin (1983)], produced by the Panel on Incomplete Data of the Committee on
National Statistics. ,

The discussions of ten case studies in Madow, Nisselson and Olkin (1983)
reveal that a popular method of handling nonresponse in a survey is to impute
(fill in) a value for each missing item in the survey. The survey data can then be
analyzed using standard techniques for complete data. A major drawback of such
single imputation followed by a standard analysis, as pointed out for example by
Rubin (1978) and Ford (1983), is that the missing values are treated as if they
were known. Thus the variability due to imputing the values is ignored and the
resulting inferences are too sharp.

Rubin (1978) proposed multiple-imputation as a general Bayesian technique
for handling nonresponse that allows assessment of uncertainty due to imputa-
tion. The practical idea is to replace each missing datum with two or more values
representing a distribution of likely values. Each of the two or more resulting
completed data sets is then analyzed using standard complete-data methods.
These analyses are combined to reflect both within-imputation variability and
between-imputation variability.

Some theoretical investigations of the properties of multiple-imputation
interval estimates of the population mean can be found in Rubin (1979), Herzog
and Rubin (1983) and Rubin and Schenker (1986). These studies all assume a
simple-random-sample with no covariates, a scalar outcome variable and a
nonresponse mechanism that is ignorable [Rubin (1976, 1983) and Little (1982)].
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In this context, the assumption of ignorable nonresponse is equivalent to assum-
ing that the respondents are just a simple random sample of the originally
intended sample.

A more general situation is that of a survey with a scalar outcome variable Y
and covariates X, in which there is ignorable nonresponse on Y. For many
common sampling procedures (e.g., simple random sampling, stratified random
sampling based on the covariates and sampling with probability proportional to
a covariate value), ignorable nonresponse means that the probability of a unit
responding, given X and Y, does not depend on Y.

The situation with covariates is often more relevant in practice than the
simple-random-sample case examined in the preceding references for several
reasons. First, many surveys have background information that is available for
all units. Second, the assumption of ignorable nonresponse can approximate
reality more closely when there are covariates available to “explain” the nonre-
sponse. For example, many “hot-deck” imputation procedures assume that
within adjustment cells defined by the covariates X, the distribution of Y for
nonrespondents is similar to the distribution of Y for respondents [Ford (1983)].
This can be much more reasonable than assuming that the respondents and
nonrespondents have similar Y distributions unconditionally. Finally, even if the
nonresponse mechanism does not depend on X or Y, inferences from the data
can be more precise if the information in X is used in creating imputations, as
long as Y is related to X.

The purpose of this paper is to examine the large-sample properties of
multiple-imputation procedures when the scalar outcome variable Y follows a
linear model involving the covariates X and there is ignorable nonresponse on Y.
The asymptotic sampling distributions of the multiple-imputation estimators are
derived for the situation in which the complete-data analysis is based on
standard least-squares procedures. The imputation procedures considered here
have been used extensively in practice but few theoretical results are available.
The present results may be thought of either as providing an alternative
justification for multiple imputation or as establishing the calibration [see
Dawid (1982)] properties of the Bayesian procedures. Finally, the results for the
sample mean in the location problem referred to in Rubin and Schenker (1986)
are contained in the present results.

Section 2 introduces notation and describes multiple-imputation procedures in
the linear-model framework. Asymptotic distributions of multiple-imputation
estimators are derived in Section 3. Some specific examples of imputation
methods and their properties are given in Section 4. Section 5 contains a
discussion of the application of the results and possible extensions to alternative
estimation procedures.

2. Multiple imputation in the linear-model context. Suppose that @ is a
(possibly vector-valued) quantity of interest and that when there is complete
response, inference for @ may be based on

WY2%(Q — Q) ~ N(0, I),

where @ and W estimate @ and the dispersion matrix of @ — @, respectively.
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When there is nonresponse and several (say m) independent imputations of
the missing values have been created under a single nonresponse model, there are
m completed data sets and hence m values of @ and W, say @, ; and W*l,
!l =1,..., m. The multiple-imputation estimate of @ is

m
(2°1) Qx=m™" Z Qu.-

=1
The estimated dispersion matrix of @ — Q.. is
(2.2) T=W+(@1+m?)B,
where
(2.3) W=m'1) W,,

=1
is the average within-imputation dispersion matrix of @ — Q.. and

m

(24) B=(m-1)7" 2 (@~ Qu.)(Qu,~ Qu.)

=1
is the between-imputation dispersion matrix. [W in (2.3) equals the complete-data
estimator of the dispersion matrix of @ — @ when m = 1.] When the observa-
tions are not identically distributed, formula (2.2) may need some modification;
see Section 5.
A simple normal-based multiple-imputation inference for @ is based on

T-172(Q - Q4.) ~ N(0, I).
Li (1985) and Rubin and Schenker (1986) have proposed other approximations to
correct for the fact that B may be based on only a few degrees of freedom. These
approximations may be derived by assigning @ — @, . a normal distribution and
B a Wishart distribution. These approximations will be discussed further in
Section 5 after the derivation of the appropriate distributions in Sections 3 and
4. In the linear-model framework, suppose that when there is complete response,

the data are of the form
Y, Y,
Xl EREE) Xn ’

where the Y;’s are scalar outcome variables and the X;’s are p-dimensional
covariate vectors. We assume throughout that the Y;’s follow the model
(2.5) ‘ Y, =X/0+¢,
where the ¢,’s are independent and identically distributed random variables with
mean 0 and variance o2 and § is a p-dimensional vector of regression coeffi-
cients. For simplicity, we assume throughout that (2.5) contains an intercept
term; if the model does not contain an intercept some minor modifications to
what follows will be required. Inference for @ = @(8) may be based on results for
0 so we first consider inference for @ = 6.

With complete data and n not small, least-squares inferences for 6 are based
on

W-172(9 — ) ~ N(o, I),
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where
n
g =¥ X XY,
i=1
and
W=s2¥"1,
with

n n
=Y XX/ and s=(n-p) " ¥ (¥%—X/0)".
i=1 i=1
Suppose now that due to ignorable nonresponse, only n, < n of the Y values are
observed with n, = n — n, missing. The observed data can then be written in

the form
}’1 Y"l : ’
Xl 3 an b (X(l)),“’, X(no) b

where the X ;)’s are covariates associated with missing Y values. If the probabil-
ity of nonresponse and/or Var(e;) depends on X, then Xy« s X(ng) mMAY be
extreme in the design space. In this case, imputation will amount to extrapola-
tion and consequently will be extremely' sensitive to the model used. It is
therefore advisable in practice to impute with caution. Suppose multiple imputa-
tions for the missing Y values, say (Y-, You)h 1= ! < m, have been
created. Then the complete-data statistics obtained from the multiply-imputed
data are (6, W), 1 <1< m, where

6u;= (¥, + ‘I’o)_l(‘l'lé1 + ‘I'oé\w)

and
W, =s%,(¥, + ¥,) 7,
with
n ny
¥, = Z X, X/, ¥, = E X(i)X(,i)’
i=1 i=1
ny ny
6, =¥ Y XY, 0= ¥ ' X XiyYiiy
=1 i=1
and
: i n, 2 ny 2
8,2..1= (n_P) Z(Yi_Xilé*l) + Z (Y(i)z_X('i)ﬁ*l) .
Li=1 i=1

It is convenient to note that we can represent s%, as a function of
n

312 = (n, _p)_l Z (Yz - Xi,§1)2

i=1

and
ny

_ 2
s2=(no—p) " L (Yon - X(\001)

i=1
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(see the proof of Theorem 1). By (2.1) (with @ = 8), (2.3) and (2.4),

*1

2% + %)

Z
Z
and

B= (m - 1)_1 Z (§*1 - é*)(é*z - é*-)'-

=1
We will also require

B

I
sI
M 3

1
sk

~
]
—

3. Asymptotic theory for multiple-imputation estimators. Our main
result, Theorem 1, gives the asymptotic sampling behavior of the estimators 0,
B and W when the imputed data satisfy certain conditions. These conditions are
conveniently stated in terms of the conditional asymptotic behavior of the
estimators ), and s2, 1 < [ < m, based on the imputed portion of the data. We
discuss particular methods of imputation in Section 4 and show that these
methods satisfy the conditions of the theorems.

We begin by proving a useful preliminary lemma. We suppose throughout
that all random variables are defined on a common probability space.

LEMMA 1. Let {V,} be a sequence of random variables such that, for some
function h, as n — oo,
h(V,...,V,) 55T,

where T' has a distribution function G. If {U;} and {W,} are sequences of
random variables such that

(38.1) P{W,<r,U,- h(V,...,V,) <s|V,,...,V,} = H(r)F(s)

almost surely for all (r,s) € #%, where H and F are continuous distribution
functions, then

P(W,<r,U,<t)-> H(r)(G*F)(t),
for all (v, t) € R?, where “ *” denotes convolution.

Proor. Notice that
|P(W, <r,U,<t)— H(r)(G=F)(¢)
<E| sup |P(W,<r,U,-h(V,...,V,)

— 00 <8< 00

<s|Vy,...,V,) — H(r)F(S)I]

+H(r)E[F{t — h(Vy,...,V,)} = (G*F)(t)]).
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By the argument leading to Polya’s theorem [Lemma 3.2 of Ranga Rao (1962)],
the convergence in (3.1) holds uniformly in s so that the dominated convergence
theorem ensures that the first term on the right-hand side converges to 0. Since
F is bounded and continuous,

E[F{t- h(V,,...,V)}] > E{(F(t - T)} = (G* F)(t)
and the result obtains. O

We are now able to prove Theorem 1.

THEOREM 1. Let m > 2 be a fixed integer and let n — oo such that n,/n, =
A, 0 <A < co. Suppose that the model (2.5) holds and that n;*¥, - A, and
ng'¥, = Ay, as n - oo, where A, and A, are positive. definite matrices. If for
almost all sample sequences, conditional on the observed data,

(3.2) ny*(by, - 0,)/0 55 N(0,2), 1<li<m,
for some dispersion matrix 3, and
(3.3) se/o?-pl, 1<l<m,

then it follows that
W20, - 0) /0~y Z,
nB/e® -, E,
nW/o? >p(1+A)(4, +AA,) 7"
and
nWy/a® —>p(1+2) ALY
where Z and Z are independent and have p-dimensional
N(O,(1 + M) {ATY + m IN(A, + A Ag) N A Ay(4, + A A0)7'})
and
Wishart(m — 1,(m — 1) /(1 + A)A(A, + AAg) T 4,3 Ag(A, + A 4,) 7Y
distributions, respectively.

ProoF. Write
(34) O, - b, = (¥ + ‘I'o)_l‘l'o(éoz - él)’
so that, conditional on the observed data,
ny* (04, — 6,)/0 =5 N(0,X2(A; + A Ag) " A Ag(A, + A Ag)7Y)
almost surely. Let a € #” be any fixed p-vector such that a’a = 1 and set
= (T T,),
where
Tl=n})/2a/(é*l_él)/o, ISlSm.
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Conditional on the observed data, the m imputations are independent so that
T =g N(0, Xa’(A; + AAg) "AZ Ag(A, + AA,) 'al)  almost surely.

Let H be any m X m orthogonal matrix with all entries in the first row equal to
m~1/2, Applying the continuous mapping theorem [Billingsley (1979), page 330]
to Hr, we have that, conditional on the observed data,

n1/2a/(é‘* . él)/o = (n/n0)1/2m_1 X
=1

= (n/n,)"*m='*(Hr),
—9 Z

and

na'Ba/e® = (n/ny)(m — 1)7! i": (r,—7)°
=1

= (n/no)(m-1)"" IZI(HT)?
—g &
almost surely, where Z; and =, are independently distributed as
N(0, m™Y(1 + AM)Aa’(A, + AAg) TS Ag(A, + A A,) a)
and
(m = 1)1 +M)Aa’(A, + A Ag) T AZAN(A, + AAy) lax? 4,
respectively. But
n%a'(f,.—0)/0 = n"?a’(f, - 6.)/0 + nV?%a'(6, - 0) /0,

so that by the central limit theorem for the least-squares estimator and
Lemma 1,

nl/za,(é* o 0)/0 —')9 Z2

and
na’Ba/o® >4 =,
where Z, is independent of %, and has a
N(0, (1 + A){a’ AT + m™Aa’(8, + X Ag) T AgZ Ag(A; + A o) 'a}
distribution. The first part of the theorem obtains.
To prove the last two parts of the theorem, it suffices to show that
si/02>p1, 1<l<m.

Put

n

st=(nm-p)' L (Y- X/4,)".

i=1
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Then forl <l < m,
ski=(n —P)—l{ Z (Yi_ ) Z ( Q) X(,)§ ) }
i=1

i=1
=(n=p) {(m —p)si + (6., 6,)¥, (0,4, - 6)
+(ny—p)sd + (é*, - by) \1'0(0,” - 0:),)}
= (n=p) {(n, —p)st + (6= 0.) (¥ + %)
X¥,(¥, + %) (6, - 0,) + (n,— p)sg
+ (G — 0,)%,(¥, + %) (¥, + X)Wy (8, - 6)))
by (3.4) and the fact that '
0u;— 0= (¥, + %) (6, - 6,,).
Let ¢ > 0 be given. Then for 1 <l < m,
P{|sil -o? > 28} < P{|(n -p) (n,—p)s2— (1 +A)"e? > s}
+E[P{|(n - P)_l('no —p)sg+ (n _p)_l(éoz - él),
XU, + ¥) T (F, + W) T (6 — 6))
+(n—p) (b, - 6,)¥,(¥, + ¥)
X ¥,(¥, + ¥,) ¥, (6, - 6))
—A(1 + A) " '6? > || observed data}].

Now s2 — ¢ almost surely [see the proof of Theorem 2.2 of Freedman (1981)] so
that the first term on the nght-hand side can be made arbitrarily small. Also,
conditional on the observed data, s2 —p 62 and 6, — 6, -, 0 almost surely, by
hypothesis, so that the second term on the rlght-hand side can be made

arbitrarily small by the dominated convergence theorem and the result obtains.
O

We will also require a variation on Theorem 1 that permits an alternative
centering in (3,2). Specifically, if we replace (3.2) by the condition that for almost
all sample sequences, conditional on the observed data,

(3.5) ny*(by,—0)/0 55 N(0,Z), 1<ls<m,
then since

— 0= (¥ + %) {¥(6, - 0) + ¥,(6, - 0)}
and

B= (¥ + ‘I’o)—l‘l'o{(m -1) f‘. (901 - éo-)(éoz - éo-)'}‘l'o(‘l'l +¥,) 7,

=1
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where éo_= mTTR o, a similar argument to that used to prove Theorem 1
yields Theorem 2.

THEOREM 2. Suppose that the conditions of Theorem 1 hold but with (3.2)
replaced by (3.5). Then
nl/z(é* —0)/0 -4 Z,
nB/e? -, E,
nW/e2>p(1+A)(A, +AA,) 7"
and
nW,/0® —>p(L+A) A7,
where Z and E are independent and have p-dimensional
N0, (1 + A)(A; + A Ag) TH{A + mTIANAZ A} (A, + X 4g) 7
and
Wishart(m — 1, (m — 1) {1 + A)A(A, + A A) T A4S Ag(A, + A 4,)7Y)
distributions, respectively. ’

Notice that the distribution of Z in Theorem 2 is different from that in
Theorem 1.

4. Imputation methods. In this section, we discuss four methods of imput-
ing a single set of n, missing Y values Y,,, ..., ¥, , given the observed data. The
multiple imputations are obtained by m independent applications of a method.
We will assume throughout that the model (2.5) holds and that both n; ¥, — A,
and n,'¥, - A, as n — oo, where A; and A, are positive definite matrices. We
show that for each of the methods, condition (3.3) and either condition (3.2) of
Theorem 1 or condition (3.5) of Theorem 2 are satisfied.

Hot-deck imputation. Suppose the covariates X take on b values and that
there are several observations at each of these values. Rewrite the data in b

blocks as
Y [ Y Yin, ( . ) ( . )
X1 ) Xl yeeey Xl ) Xl IERRE) Xl

ny

(o (o) )5

N
where n; = X%_;n,; and n,=X5_n,. In each block, sample independently



ASYMPTOTIC RESULTS FOR MULTIPLE IMPUTATION 1559

with replacement (i e., with equal probability) the observed Y’s to create impu-
tations for the missing Y’s. That is, in block J 1ndependently sample n,;
observations with replacement from {Yy,..., Y, 3,1 <j < b. This is a standard
method of creating imputations; see Ford (1983) for references.

An alternative interpretation of hot-deck imputation is that observations & iy
1 < i< ny, are drawn independently with replacement from {e;,. » €n,,} and
used to construct

Y= X/0+e, 1<i<ngl<j<b.

Now, with ¥, = ZJ 1o X; X/,

b Toj
é\o -0= ‘I'o_1 Z stj(i) .
Jj=1i=1
b
L AJE ),
j=1

Where E ;= (gay---» &j(n,) and A} = Yo (X, ..., X)pxn,» 1 <J<b. Let
= (& 1,)' be independent n,;-vectors, 1 <j < b, where the ¢’s are

independent random variables with distribution function F. It is straightforward
to use Lemmas 8.4, 8.7 and 8.9 of Bickel and Freedman (1981) to show that
conditional on the observed data, ny?L%_ | A’E; and nY/’t5_,A/E; have the
same asymptotic distributions. That (3. 5) holds with 2 = A;?! follows from the
central limit theorem applied to n}/2L%_,A/E,.

Next, notice that conditional on the observed data,

b Mo
33 = (n, _P)_l{ E Z 312'0) + (éo - 0)"1'0(0‘\0 - 0)

Jj=1i=1

2
—)Po

almost surely by (3.5) and by Lemmas 8.5 and 8.6 of Bickel and Freedman (1981).
[The argument is similar to the proof of part b of Theorem 2.1 of Bickel and
Freedman (1981).]

Hot-deck imputation is feasible in large samples from models involving only a
few covariates taking a small number of possible values. Consideration of
alternative scenarios suggests that it is also useful to have available methods of
imputation that utilize more of the structure of the underlying model.

Simple residual imputation. Put
r=Y,-X/4, 1<i<n,

where él = ¥ '¥™ XY, is the least-squares estimate based on the complete
data. Draw a sample r(l),..., T(ny Of size n, by sampling independently with
replacement from (ry,..., r, } and construct

Y(,) X6 + 1,  1<i<n,
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If the model does not contain an intercept, the residuals have to be centered
about 7 = n{ 'L r, [see Freedman (1981)]; as a small sample adjustment, it is
possible to rescale the residuals by (n,/(n, — p))/2. Simple residual imputation
has essentially been proposed and used by Kalton and Kish (1981) and David,
Little, Samuhel and Triest (1986).

It follows from Theorem 2.2 of Freedman (1981) that the conditions (3.2) and
(3.3) of Theorem 1 are satisfied with = = Aj L.

Since the simple residual imputation method resamples from the observed
residuals, no variability beyond that which is present in the complete-data
portion of the data is introduced. However, by incorporating some additional
structure, we can introduce more variability into the imputations. Suppose that
in the model (2.5) the errors are normally distributed. Then if § and o2 are
treated as independent with prior density proportional to ¢~2, the marginal
posterior distribution of o2 is (n, — p)s?/x2 _, and the conditional posterior
distribution of 6 given ¢? is N(él, 02¥1); see Box and Tiao [(1973), page 116].
The next imputation method uses the posterior distribution of (8, 62) in generat-
ing imputations.

Normal imputation. Draw ¢*? from (n, — p)s{/x5 _, and then draw 6*
from N(f,, 0*>¥1). Also draw n, independent observations Zays s L,y from
N(0,1) and construct

Y, = X30* +0*Z;, 1<i<n,.

Herzog and Rubin (1983) applied the normal imputation method with 0*2 = s2
to CPS income data; the present method reduces to the fully normal method of
Rubin and Schenker (1986) in the location problem. It should be noted that the
asymptotic results below do not require the errors in the model (2.5) to be
normally distributed.

Let a € #” be any fixed vector such that a’a =1. Then, with = =
Agt+AA[Y

|P{n})/2af(§0 — 6,) < x|jobserved data} - (I){x/(o(arza)l/2)} |

< E[ sup P{n{,/za’(ﬁo — 0*) < s|lobserved data, 6*, o*}

—00<8§<00

(4.1) —Q{s/(a(a’Agla)l/z)} | |lobserved data]
+ ’E[@{(x — nif%a(0* - 0,)) /(o(a Ag'a) ") fobserved data

—d){(x/(o(a’Za)l/z)}

Conditional on the observed data, 6**/s ~ (n, — p)/x% _, and s{ — o almost
- surely [see the proof of Theorem 2.2 of Freedman (1981)] so that ¢*2/6%2 -, 1
almost surely. It follows that conditional on the observed data,

n%’(6* — 6,) > Z ~ N(0, Ao%a’ A7 'a) almost surely.
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Since @ is bounded and continuous,

E[d){(x - n¥?a'(6* - él))/(o(a’Agla)l/z)}Mobserved data]
- E0{(x - 2)/(0(a'85%) ")}
= (I){x/(o(a’Za)l/2)}.

Now, conditional on the observed data, 0* and o*,
1/2 (0 _ 9*) — n1/2 *a’\I' Z & (z)

-4 N(0,0%’ Ay a) almost surely.

Thus the first term on the right-hand side of (4.1) converges to 0 almost surely
by the conditional dominated convergence theorem and the argument leading to
Polya’s theorem. It follows that (3.2) holds with = = Ag' + A AL

With regard to (3.3), notice that almost surely, for any ¢ > 0,

P{|s — 0*2| > ¢|jobserved data}

< e_zE{(sg - 0*2)2||observed data}
=¢ 2E [E{(s§ - 0*2)2"0*, 6*2, observed data}||observed data]

=2¢"%(n, ‘P)—l
-0
S0 that conditional on the observed data, s2/6*Z —,1 almost surely. Since
6*2/02 — 5 1 almost surely, condition (3.3) holds.
The normal imputation method uses the complete data only through § and
. An interesting alternative procedure may be developed as a compromise
between the simple residual and normal methods.

Adjusted normal imputation. As in the normal method, draw o¢*2? from
(ny, = P)${/Xn,-p and then draw 6* from N(4,, 6*2¥1). Also, as in the simple
residual method mdependently draw n, observations ry,,..., 1, , with replace-
ment from {r,,.. r,,}- Then construct

Yy = X0 + ni%*r;/{(n, — p)st

Notice that conditional on the observed data, n}’r,/{(n, — p)s?}'/? has
mean 0 and variance 1 so that the imputed Y’s have the right conditional
moments but a distribution whose shape is adjusted to reflect that of ry,...,r,.
{This adjusted normal imputation method reduces to the method of imputation
adjusted for uncertainty in the mean and variance given in Rubin and Schenker
(1986) for the location problem. As with the normal imputation method, the
results below do not assume that the normal model holds.

1/2 .
V%, 1<i<n,
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Conditional on the observed data and on o*,
n},/z(éo - él)/a* = n},/z(éo - 0*)/0* + n},/z(O* — 01)/0*.
Conditional on the observed data,
ny?(8* — 6,) > N(0, Aa®A[?)
almost surely and conditional on the observed data, 6*, and o*,

)
n})/z(é\o - 0*) = '7'%)/2‘-"’1“1'0—1 Z X(i)r(i)/{nl_ l(nl - P)slz}l/z
i=1

-4 N(0,02A51)
almost surely by Theorem 2.2 of Freedman (1981). By the same argument as that
applied to the normal imputation method, it follows that (3.2) holds with
S =A;'+ AA[% The proof that (3.3) holds is also similar to that for the
normal imputation method.

The adjusted normal imputation method provides a neat compromise between
imputing from the complete data alone and imputing from a model with a
predetermined shape. An important point to note is that while the motivation
for the normal and adjusted normal imputation methods is highly parametric,
the results for these methods (and hence Theorem 1) do not assume that the
normal model holds. Thus, their application is broader than their derivation
might suggest.

5. Asymptotic inference. The results of the last two sections may be used
to suggest asymptotic inference procedures. To simplify calculations, suppose
that

N(0, WW;'W + B) for hot-deck imputation,
n*(§, — 6) ~ { N(0, W, + B) for simple residual, normal and
adjusted normal imputation,
m~Y(m — 1)nB ~ Wishart(m — 1, B),
) .. B are independent,

nW, = W,
and
nWw=w,

where W = 621 + A)(A, + A Ay) "L, W, =6?Q +A)A; ! and
B=0m (1 +MA(A, + AAg) TAS Ay(A +AA) T

Theorems 1 and 2 give conditions under which these statements hold asymptoti-

cally.
. The general discussion in Section 2 and the preceding results suggest that the
dispersion matrix WW, 'W + B be estimated by

AWW, W + nm~'(m — 1)B
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or, using the small m modification in Rubin and Schenker (1986), by
nU = nWW;'W + n(1 + m™1)B,
and that W, + B be estimated by
nW, + nm~(m - 1)B,
or by
nV=nW, + n(1 + m™Y)B.
Let C be a k2 X p matrix of full rank and consider the quadratic forms

T, = (.. 8)Cc(cUc) (6, - 6)
and

T, = (6, — 8)C'(cve)"c(8..~ 0).
While the exact distributions of 7, and T, are complicated, simple approxima-
tions that permit the practical use of T, and T, for constructing confidence
contours and testing are available. Li (1985) developed several approximations
that may be usefully applied in the present context. The multivariate approxi-

mate degrees of freedom method of Yao (1965) uses a multivariate t%-distribution
to approximate the distribution of T;. This is equivalent to using

v.k
(5.1) T, ~ —‘—IF(k, v,—k+1), i=12,
14

;_k+

where

v, = max{k, m*(m — 1)T2/(m + 1)

x{(d, — oyC(cvC) *cBe(cve) e(d. - a)}z}
and

v, = max{k, m¥(m — 1)TZ/(m + 1)°
x{(d+.~ 8)c'(cve)'eBer(eve) e(d. - o)}z},

a result which is a direct multivariate analogue of the approximation suggested
in Rubin and Schenker (1986).

In the special case that A, = A, = A say, the formulas can be simplified. We
have that = = p?A~!, where p depends on the imputation method, and moreover
that

W=o02A"1,
W, =0Q+ANW
and
B=m (1 + A7) "Ap*W,
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so we can write the asymptotic dispersion matrix of n/%(f, — 8) as
Cov(n/%(f,.— 8)) = (86 + m~*(1 + X)) ""\p?*)W,
where 8§ = (1 + A)~! for hot-deck imputation and 8 = 1 + X for simple residual,

normal and adjusted normal imputation. We can then incorporate the estimates
U and V into a single estimator,

nU=néW+n(1+m)B.
Alternatively, it is clear that -
nS = (8 + (1+m1)3)nW,
where § = (pm)~(m — l)trace(W‘ IB), also estimates the asymptotic disper-

sion matrix of n'/%(f, — 0). If C is a k X p matrix of full rank as before, we can
consider the quadratic forms

T=(f,.-8)c(cuc) 'c(d,.-0)
and
T, = (8,.— 8)C’(cSc’) "C(8.4.— 6).
The approximation (5.1) applies to T. Li (1985) suggested the alternative approx-
imation
T ~ kF(k,v/k),
where » = k(m — 1){1 + m8/9(m + 1)}°. This second approximation is moti-

vated by the fact that applying the approximate degrees of freedom method to
T, leads to the approximation
T, ~ kF(k, v).

Li’s empirical investigations, while carried out in a different context, indicate
that the quality of these approximations may be improved by increasing m, the
number of imputations. Of course, as m — oo the preceding F-distributions may
be replaced by x2-distributions.

The preceding results for the case £ = 1 lead immediately to ¢-based interval
estimates and tests for individual linear contrasts in 6. Moreover, by the
Cauchy—-Schwarz inequality, for any a € 27,

[a(6,.—0)]" < a'Ma(8,.— 60)M (84— 6),

where M ‘i's any nonsingular p X p matrix, so that a 1 — « level simultaneous
interval estimate for any contrast a’d is given by
a'lly +{a’MaF*}'?,

where M = U, Vor S and F* is the a percentage point of I:he F-distributiog
(with & = p) chosen to approximate T, if M = U, T, if M = Vand T, if M = S.
_ It is straightforward to construct prediction intervals. Inference for a nonlinear
function of 6, provided the function is smooth enough, may be approached by
means of the usual one-term Taylor series linearization and the preceding
methods.
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Finally, it is of interest to consider the use of multiple imputation with
nonlinear alternatives to the least-squares procedure. It is reasonable to hope
that linearization would lead to appropriate analogues of Theorems 1 and 2. A
complete result for the imputation methods would depend on results for boot-
strapping appropriate estimators of 6 in the location problem (for hot-deck
imputation) and in the regression problem (for the other imputation methods).

Acknowledgments. We are grateful to a referee and an Associate Editor
for helpful comments that improved the paper.

Note added in proof. Since this paper was written, the following book on
multiple imputation has been published: RUBIN, D. B. (1987), Multiple Imputa-
tion for Nonresponse in Surveys, Wiley, New York. Chapter 4 contains results
related to those in this paper, developed within a different framework.
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