The Annals of Statistics
1988, Vol. 16, No. 4, 1475-1489

KAPLAN-MEIER ESTIMATE ON THE PLANE!

By DoroTA M. DABROWSKA
Carnegie Mellon University and University of California, Berkeley

Estimation of the bivariate survival function from censored data is
considered. The product integral representation of univariate survival func-
tions is generalized to the bivariate case and used to determine identifiability
of the survival function of the partially observed data. A bivariate analogue
of the Kaplan—Meier estimate is introduced and its almost sure consistency is
studied. Extensions to the general multivariate case are sketched.

1. Introduction. Survival and reliability studies often involve observations
on paired individuals subject to censoring. Let T' = (T}, T,) be a pair of nonnega-
tive random variables (rv). The variables T; and T, are thought of as survival or
failure times and may represent lifetimes of married couples, times from ini-
tiation of a treatment until first response in two successive courses of a treat-
ment in the same patient, etc. Under bivariate right censoring, the observable
variables are given by Y = (¥, Y;) and 8 = (§,, §,), where Y, = min(T}, Z;) and
8,=IT,=Y,)). Here Z = (Z,, Z,) is a pair of fixed or random censoring times
thought to represent times to withdrawals from the study. We refer to Clayton
(1978), Hanley and Parnes (1983), Campbell (1981) and Clayton and Cuzick
(1985) for examples of this type of censoring mechanism.

Two problems are addressed in this paper. First, we discuss conditions which
ensure identifiability of the underlying joint survival function of the partially
observable failure times. In the univariate case Aalen and Johansen (1978) and
Gill and Johansen (1987) show that the survival function can be expressed as a
product integral of the cumulative hazard function. A similar representation is
available in the bivariate case for a suitably defined bivariate cumulative hazard
function. The latter is a vector function representing cumulative hazards corre-
sponding to “single” and “double” failures. Under the assumption of indepen-
dence of the failure and censoring times, the bivariate cumulative hazard and the
associated bivariate survival function can be easily expressed in terms of the
joint distribution function of the observable variables.

Further, we consider estimation of the survival function of the censored
failure times. Our estimation procedure rests on the natural “substitution
principle,” i.e., the estimate is based on the sample counterpart of the product
integral. We refer to it as a bivariate Kaplan—Meier estimate. The name seems
to be justified since apart from its product integral form, the marginals are given
by the univariate Kaplan—-Meier (1958) estimates and in the absence of censor-
ing, the estimator reduces to the usual empirical survival function. The almost
sure consistency of the bivariate Kaplan—-Meier estimate is established.
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1476 D. M. DABROWSKA

The relevance of identifiability questions in inference problems related to
competing risks models has been raised by many authors; see Tsiatis (1975) and
Peterson (1975) for instance. In the context of estimation of the bivariate
survival function from censored data, this problem was considered by Langberg
and Shaked (1982). The authors suggested looking at P(T, >s, T,>t) =
A(s, t)B(t), where A(s, t) = P(T, > s|T, > t) and B(t) = P(T, > t), and apply-
ing the product integral representation of univariate survival functions to the
terms A and B separately. Properties of the corresponding estimator of the
survival function were developed by Campbell and Fsldes (1982), Campbell
(1982), Horvath (1983), Burke (1984), Lo and Wang (1986) and Horvath and
Yandell (1986), among others. The estimator suffers from various drawbacks, in
particular it is not a proper survival function since it is not monotone in each of
its coordinates, it does not reduce to the usual empirical survival function in the
case of uncensored data and is dependent on the selected path and ordering of
the components. Ruymgaart (1987) considered estimation of the related cumula-
tive hazard function.

Tsai, Leurgans and Crowley (1986) suggested an estimation procedure which
involves estimation of conditional survival functions using Beran’s (1981) non-
parametric regression methods for censored data. The estimator rests on smooth-
ing techniques appropriate for nonparametric density and regression estimation
and, although it is consistent, its rate of almost sure consistency is very slow, as
compared to the Campbell-Féldes estimate or ours.

Campbell (1981), Hanley and Parnes (1983) and Muhoz (1980) studied non-
parametric MLE estimation using Efron’s (1967) self-consistency algorithm and
the EM algorithm of Dempster, Laird and Rubin (1977). The nonparametric
MLE in this model does not have closed form expression and is not unique.

In connection with testing for independence, Pons (1986) derived a weak
convergence result for the estimate of the bivariate cumulative hazard function
corresponding to double failures (estimator A;; of Section 3). Bickel (personal
communication) suggested the use of this estimator to construct an estimate of
the bivariate survival function. His approach boils down to solving the integral
equation

F(s,t) = F(s,0) + F(0,¢) — 1 + j:jO‘F(u —, 0 ~=)Ay(du, dv)

subject to the initial condition
F(S,O) = l—[ (1 - Aw(du,O)),

u<s

F(0,t) = TT1(1 - Ag(0, dv)),

where A,,, A, and A, are cumulative hazard functions corresponding to single
and double failures (Section 2). This is an inhomogeneous Volterra equation and
has a solution in terms of the Peano series

1+ Y fj; Ay(du,, doy) -+ Ay(du, dv,).
n=1 <y < <u,<s

0<v, < --- <y, <t
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The corresponding estimator obtained by plugging in estimates f\Op Ay and A,
(Section 3) has several of the same properties as the estimate considered in this
paper. The definition is symmetric, the marginals are given by the Kaplan—Meier
estimators, in the absence of censoring the estimate reduces to the empirical
survival function. It has an extra nice property, namely it is always a survival
function. However, an undesirable property is that it throws an important part
of the data away.

2. Survival and cumulative hazard functions. In this section we show
the correspondence between the bivariate survival and cumulative hazard func-
tions. For the sake of completeness, we briefly consider the univariate case first.
Next we define a bivariate hazard function and show that in analogy to the
univariate case, it determines the bivariate survival function. Extensions to
higher dimensions are outlined.

2.1. Univariate survival times. Let T be a univariate nonnegative rv defined
on some probability space (2, #, P) and let F(t) = P(T > t) be its survival
function. Furthermore, let A(%), A(dt) = —F(dt)/F(t —), A0) =0 be the
associated cumulative hazard function. Then for ¢ € [0, 7] such that F(7) > 0,
we have Y

(2.1) F(t) = exp{—A%(t)} 'E[t{l - A(Auw)},

where A° is the continuous component of A, the product is taken over the
discontinuity points of F and A(Au) = A(u) — A(u — ) denotes the size of the
jump at time u. This is the well-known representation of univariate survival
functions. We refer to Peterson (1977), Gill (1980), Beran (1981) and Wellner
(1985) for its derivations. Aalen and Johansen (1978) and Gill and Johansen
(1987) show that (2.1) can be written as a product integral
F(t)=T1(1-A(ds)) = lim [J(1- A((s;-18:1)),
s<t max|s;—s; 1|0

where 0 = s, <s, < .-+ <s, =1t is a partition of (0,¢] and A((s;_,, s;]) =
A(s,) — As;_,).

While various proofs of (2.1) seem to be available, the following simple
argument will be useful in the sequel. For ¢ € [0, 7] such that F(7) > 0, we have
F(t) = exp{A(t)}, where A(t) = log F(¢). By the Jordan decomposition of func-
tions of bounded variation,

A(t) = jO‘A(du) = jO‘Ac(du) + jO‘Ad(du),

where A° and A are the continuous and discrete components of A. Specifically,

A%(t) = 3 A%(Au) = ¥ log{F(u)/F(u -)}

us<t u<t

Z lOg(l - A(Au))’

u<t
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where the sum is taken over the discontinuity points of F, and

A(t) = A(t) — AY(t) = [O‘F(u =) 'F(du) = — A%(¢).

2.2. Bivariate survival times. Let T = (T, T;) be a pair of nonnegative rv’s
defined on a probability space (2, %, P) and let F(s, t) = P(T, > s, T, > t) be
the corresponding joint survival function. By a bivariate cumulative hazard
function, we mean a vector function A(s, ) = (Ayy(s, £), Agy(s, B), A, (s, t)),
where

P(T, € ds, T, € dt) F(ds, dt)

A = -
u(ds, df) P(Ty 25 T,2t)  F(s—,t-)’
P(T,eds, T,>t)  -F(ds,t
Molds,) = TSR A0
128, T,>t)  F(s—,t-)
P(T,>s, T, dt —F(s, dt
Ag(s, dt) = i 2 )— : :

P(T,>s,Ty>t) F(s, t—)
and
A(0, 2) = Ag(s,0) = A,4(0, 0) = 0.
If F has a density f(s,t), we have A(ds, dt) = Ay \(s, t)dsdt, A(ds,t)=
Aw(s, 8) dt and A (s, dt) = Ay (s, t) dt, where

1
(s, t) = (hl,l}g;-»o Tth(T‘ €ls,s+n], Te[t,t+h]T, 25 T, > t)

 i(s,)
C F(s—,t-)’

1
A(s, t) = }111% ZP(TI €ls,s+R]T, 25, T,> ¢t)

I

[ 1wy doyR(s - ),
t
o1
Aoals, t) = lim —P(T, € [t,¢ + )T, > 5, T, > ¢)

= fs°°f(u, t) du/F(s,t -).

Thus A, (s, t) represents the instantaneous rate of a “double failure” at point
(s, 2), given that the individuals were alive at times Ti=s—and Ty=1t—.
Further, A (s, #) represents the rate of a “single failure” at time s given that
the first individual was alive at time T, = s — and the second survived beyond
time T, = ¢ The meaning of Aoi(s, t) is analogous.

We next give the representation of the bivariate survival function F(s, t) in
terms of the bivariate hazard function A(s, t). Set A(s, t) = log F(s, t). Then
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for (s, t) € [0, 7] X [0, ], F(7y, T5) > O, we have
F(s,t) = exp{A(s, t)}

- exp{ /0 jo ‘A(du, dv) + A(s,0) + A0, t)}

= F(s,0)F(0, t)exp{j:j:A(du, dv)}.

We exploit the Jordan decomposition of A(s,t). For (s, t) € [0, ;] X [0, 7,],
F(r,, ) > 0, the function A(s,t) = log F{(s, ¢) is a function of bounded varia-
tion in the sense of Vitali and Hardy and Krause. We refer to Hildebrandt
(1963), Chapter 3, and Clarkson and Adams (1933) for a survey of basic results on
functions of bounded variation on the plane. By Theorem 5.4 in Hildebrandt
(1963), page 110, A(s, t) has a finite or countable number of discontinuities and
they lie on a denumerable set of lines orthogonal to the coordinate axes.
In what follows, for any bivariate function ¢(s, ¢) we write
(b(AS, t) = ¢(S, t) - 95(3 ) t)y
¢(s, At) = ¢(s,t) — ¢(s,t —)

and :
(b(AS, At) = q’(sy t) - ¢(sy t —) - (1)(8 ) t) + ¢(S -, _)'
Introduce sets

E, = {(s,t): A(s,t) <0, A(As, t) = A(s, At) = 0},

E,={(s,t): A(s,t) <0, A(As, t) <0, A(As, At) = 0},

E,={(s,t): A(s,t) <0, A(s, At) <0, A(As, At) =0},

E,={(s,t): A(s,t) <0, A(As, At) > 0}.
By the right-continuity and monotonicity of F, the set E; corresponds to the
support of the purely continuous component of A, while E, is the support of the
purely discrete component. Further, E, and E, are supports of components of A
that have discontinuities lying along lines orthogonal to the coordinate axes. By
the Jordan decomposition of functions of bounded variation on the plane, we
have

fost‘A(du,do) - éA,.(s, t),

where
As, ) = fosfo‘z[(u,u) € E]| A(du, dv),

Ays,t)= ¥ fO‘I[(u, v) € E,][A(u, dv) — A(u — , dv)],

u<s

45, 6) = ¥ [T[(u,v) € B][A(du,v) = Aldu, 0 -)],

v<t

Afs,t) = Y Y I[(u,v) € E]A(Au, Av).

u<s v<t
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We compute now the explicit form of this decomposition. The following identi-
ties will be useful:

F(u,v)/F(u—,v-)=1-A,(Au,v-)

' —Ag(u -, Av) + A (Au, Av),
F(u-,0)/F(u—,v-)=1-Ay(u—,Av),
F(u,v=)/F(u—,v-)=1-=A(Au,v-).

Consider the purely discrete part first. By (2.2), we have

Afs,t)= Y% [log(F(TF(_u%) - log(FF;(‘uT—"’vi_)—))

(2.2)

us<s,v<t

(u,v)€E,
2.3 log % 7)
(2:3) B\ Flu—,0-)

B _ Ao(Au, v =)Ao (u — , Av) — Ayy(Au, Av)
- EL ‘°g[1 (1 Au(Bs, 0 (1 = Aoy — , 0)) ]

u<s,v<t
(u,v)€E,

Further, using (2.2) again,

Ao,0) = 8 [0 0) & B o - e )]
s F(du,Av)  F(du,v-)F(u -, Av)
- Etl)l[(u,v) < E?’][F(u —,0) F(u- ,0)F(u—,0 —)}
B s Flu-,0-)
(2.4) - Et'l(;I[(u’v)EEal F(u—,o)
[ F(du, Av) _ F(du,v—) F(u-,Av) }
Flu-,v-) Flu-,v-)Flu-—,v-)
« ¢ I[(u,0) € E]
- Et'/(; [1 - Ay —, A”)]
X [Au(du’ Av) = Ayg(du, v =)Ag(u -, A”)] .
Similarly,

_ t I[(u’o) EE2]
(2.5) Axls, 1) = L [1 - Ay(Au, v )]

u<s"0

X [A(Au, dv) — A(Au, v —)Ag(u —, Av)].
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Finally,

s F(du,dv) F(du,v)F(u,dv)
Al(s")=fof0’[(“"’)EE1][ F(u,0)  Flu,0)F(u,0)

= le)l[[(u, v) € E,][Ay(du, dv) - Ajo(du, v)Ag(u, dv)].

Note that formulas (2.4)—(2.6) follow heuristically from (2.3) through a Taylor
expansion by noting that the quotient in (2.3) is infinitesimal on E,, i = 1,2, 3.
Define function L(s, t) by

Ayo(du, v =)Aqy(u =, dv) — Ayy(du, dv)

{1 - Ap(Bu,0 =)} {1 — Ay(u—,A0)}) "

By the definition of the sets E;, we have A,(Au, v — ) = 0 for (u, v) EE;UE,
and Ag(u —,Av) =0 for (u,v) € E, U E,. Therefore, combining (2.3)-(2.6)
with the product integral representation of the univariate survival functions, we
arrive at Proposition 2.1.

(2.6)

L(du,dv) =

ProposITION 2.1. For (s,t) such that F(s,t) >0, we have F(s,t)=
F(s,0)F(0, t)IT{_,By(s, t), where

Bi(s’ t) = exP{Ai(s’ t)}
- exp{—fosjotz[(u, v) € E,] L(du, dv)}, i=1,2,3,

B4(s’ t) = ]._.[n [1 - L(Au’ AU)]:

u<svs<t
(u,v)€E,

and
F(s,0) = exp{—A‘l'O(s,O)} J;l;s{l - AIO(Au’O)}’

F(O’ t) = exP{ _A%I(O’ t)} }:[t{l - AOI(O’ AU)}‘

Gill pointed out to me that the representation of Proposition 2.1 can be
rewritten as a product integral
F(s’ t) = l—[ (1 - Aw(du,O)) l_[t(l - AOI(O’ dv))

u<s

(2.7) x [T (1 - L(du, dv)),

where the last factor on the right-hand side is defined by
IT(Q - L(du, dv)) = im  TT(1 = L((u;_y ;] X (0,-1,5,)),

us<s max|u;—u;_,|—0 §, 5
v<t max|v;—v;_,|—=>0
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where 0 =u,< -+ <u,=s, 0=9,< -+ <v,=t is a partition and
L((w;— u;l X (vj-1, v]) = L(u,, v;) — L(u,_,, v;) — L(u j—1) + L(u;_q, ;).
While a rigorous argument requires extension of Gill and Johansen’s  (1987)
results on product integration, heuristically note that

= Ay(du,v =) =P(Ty, > u|T, 2 u, Ty > v) = F(u,0 - ) /F(u— ,v -),
1-Ag(u—,dv)=P(T,>0|Ty,2u,Ty=v)=Flu—,0)/Flu—-,v-),
— Ap(du, dv) = (1= Ayp(du, v =) + (1= Ag(u -, dv))
—-P(T,>u,Ty>0|T, 2 u, T, > v)
= {F(u,0o-)+ F(u—,v) — F(u,v)}/F(u—,0-)
and after some algebra
P(T, > u, Ty > o|T, > u, Ty > v)
P(T,>u|lT, > u, T, > 0)P(Ty> o|T, 2 u, T, > v)
F(u,v)F(u - ,v-)
- Flu,v-)F(u—-,v)’

Substitution of these expressions into the right-hand side of (2.7) and a little
algebra gives an alternative proof of Proposition 2.1.

1 - L(du,dv) =

2.3. Extensions to the multivariate case. We consider now the general multi-
variate case. Since the notation is cumbersome, we merely sketch the main
points.

Let T = (T,,..., T,) be a nonnegative rv defined on some probability space
(Q, #, P) and let F(t,...,t,) = P(T, > t,,..., T, > t,) be the corresponding
survival function. We define first the k-variate cumulative hazard function.
Roughly speaking, this is the collection of 2* — 1 functions representing the

instantaneous risk of all possible “g-tuple failures,” ¢ = 1,..., &, of components
my...,m,at times b, glven that they were alive at times ¢, ceey
t, — and that the remalmng components survived beyond times t me
{1 , k} — {m,,..., m,}. More precisely, let JJ be the collection of all zero—one

sequences (J) = {Jy---» Jp} such that j; # 0. By a k-variate cumulative hazard
function we mean a triangular array

Aty ety = {Agy(tneo s t)ia =1,k (j) €, Yj = q},

consisting of & rows with ( ) elements in the gth row, g = Lk For(Hed
such that ¥j, =g and j, = --- = jlq = 1, the function A ) is defined by

A

a(J

byt s b by Al G sy )

F(tl,...,tjil_ldtjil,tjilﬂ, ot G o ty)

tl, _1 -1 tlnl tjil"'l””’ tjiq_l’ tjiq_ ’tfiq"‘l’””tk)

q(j)(tl,...,

= (_l)q (

Thus for instance if %2 = 3, then the first row of A(¢,, ¢,, t;) consists of three
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cumulative hazard functions corresponding to “single failures,” the second row
consists of three cumulative hazard functions corresponding to “double failures”
and the third consists of one function representing the cumulative hazard
function of a “triple failure.”

The derivation of the product integral representation of F(¢,,..., ¢;) is induc-
tive and follows along the same lines as in the bivariate case. Set A(¢,,...,¢,) =
log F(t,,..., t;). Then

F(tl,...,tk)=exp{ft1-~-ftkA(dul,...,duk)}
0 0
(2.8)

(-

k-1
X ]._I ]._.[F(mltl7°°°7mktk)] ’

i=1|(m)

where the inner product in (2.8) is taken over all zero—one sequences (m) =
(my,..., m;) such that ¥m; = i. The double product in (2.8) represents, the ratio
of products of i-dimensional marginal survival functions, i = 1,..., k2 — 1. For
instance if £ = 3, then this factor reduces to

F(t,, t3,0)F(8,,0, &) F(0, t,, t5)/ {F(£,,0,0)F(0, t,,0 F(0,0, £,) }.

To obtain the product integral representation of F(¢,..., t;), it remains to use
the product integral representation of i-dimensional marginal survival functions,
i=1,...,k — 1, and next apply the Jordan decomposition to the integral ap-
pearing in the exponent of (2.6). In the last step, note that the discontinuities lie
on hyperplanes orthogonal to the axes of the coordinate system. The form of the
purely continuous component can be deduced from the derivative of A(Z,,..., ¢;)
with respect to ¢,..., t,. The form of the purely discrete component follows
from a little algebra applied to ¥, ., - X,, <, A(Auy,..., Auy).

3. Estimation of the bivariate survival function from censored data.
We assume now that the data are censored and consider the identifiability
question first. The failure times T = (T}, T;) and censoring times Z = (Z,, Z,)
are defined on a common probability space (2, %, P) and the respective joint
survival functions are denoted by F(s, t) and G(s, t). The observable rv’s are
given by Y= (va Yv2) and § = (81: 82), where sz = min(T‘i: Zz) and 81’ = I(T‘l = Y;):
i=1,2.

By Proposition 2.1, the identifiability of F(s, t) will follow if we can show that
the bivariate hazard function A(s, t) can be expressed in terms of the joint
distribution function of Y and §&.

Set H(s,t) = P(Y,>s,Y,>t), K(s,t)=P(Y,>s,Y,>¢8,=1,08=1),
Kys,t)=P(Y,>s, Y,>t 8, =1) and Kys,t)=P(Y,>s, Y,> 1t 8, =1).
Assume

(A) T=(T,T,)and Z = (Z,, Z,) are independent.

Assumption (A) is sufficient to ensure identifiability of F on the support of H.
Indeed, for (s,t) such that H(s,t¢) >0, we have H(s,t) = G(s, t)F(s,t),
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K(ds, dt) = G(s — , t — )F(ds, dt), Ky(ds, t) = G(s — , t)F(ds, t) and
K (s, dt) = G(s,t — )F(s, dt) so that
s rt
A(s, t) = f le(du, dv)/H(u — ,v-),
0 Yo

Auls,0) = = [ "Ky(du, t)/H(u - , 1),

Aals,2) = - [ K (s, do)/H(s, v - ).

Suppose now that Y, = (Y, ¥,,), 8, = (8,;,8,,), i = 1,..., n, is an iid sample,
each (Y, ;) having the same distribution as (Y, 8). To estimate the survival
function F of the partially observable survival times, define

H(s,t)=n'YI(Y,;>s, Y, > t),

Iel(s’ t)=n"! ZI(Yli >58,Y;>t0,=1,68,=1),
Ifz(s, t)=n"' Y I(Y,; > s, Y, >¢8,=1),

If3(s, t)=n'Y I(Y,; > 3,.Y2i > ¢, 8y, =1).

Further, let A(s, t) = (Alo(s, t), AOl(s, t), All(s, t)) be an estimator of the bi-
variate cumulative hazard function given by

A(s, t) = Ls[)tlfl(du, dv)/H(u — ,v -),
AIO(S’ t) = _[)sfz(du’ t)/H(u -, t),

Rols,6)= - [ Ry(s, dv)/H(s, v —).

A natural candidate for an estimator of F(s, t) is provided by
F(s, t) = F(s,00F(0,¢) T] [1- L(Au, Av)],
0

<u<s
O<v<t
where
Ao(Au, v =)Ao (u -, Av) - A (Au, Av)
{1 - A,(Au, v -)H1-Ap(u-, Av)}
and F(s, 0) and K(0, t) are the usual Kaplan—Meier estimates, i.e.,

F(S,O) = u].:.[s[l - AIO(Au’O)]’
F(0,t) = TT[1 - Agy0, Av)].

The marginals of F\(s, t) are given by the univariate Kaplan—Meier estimates. In
the absence of censoring (s, t) reduces to the usual empirical survival function.
This can be verified by noting that the empirical survival function is purely
discrete and by carrying the same calculation as in (2.3). A referee pointed out

L(Au, Av) =
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that in the presence of censoring ﬁ(s, t) may fail to be monotone. As an example
consider points (Y}, Y5, 8,5, 85,), & = »4, given by (0.51,0.02, 1, 1),
(0.68,0.68,1,1), (0.11,0.62,1,0) and (024 024 0,0). Then F(s 0) =1, 0.75,
0.75,0.375,0 for s = 0, 011 0.24,0.51, 0.68, F(O t) = 1,0.75,0.75,0.75,0 for t =
0,0.02,0.24,0.62,0.68, F(s, 1) = 0.5 for (s, t) € [0.11,0.68) X [0.02,68) and
F(s t)=0 if s>068 or t>0.68. Note that F(0.51,0.02) = 0.5 > 0.375 =
F(0.51,0). Roughly speaking, this anomaly can be explained by the fact that
three different portions of the data set are involved in estimation of Ay, A, and
A,;. It can be easily verified that Ay, A, and A,, satisfy

Ao(ds,dt) = (1 — A(As, t —))L(ds, dt),
Agy(ds, dt) = (1 = Agy(s — , At))L(ds, dt).

However, unless the data are uncensored, f\m, Ay, and A, no longer satisfy this
constraint.

Extension to the general multivariate case is inductive. In Section 2.3, we
have outlined the extension of the product integral representation of survival
functions to the case of k-dimensional failure times. Consider an iid sam-
ple Y,=(Yy,...,Y) and &, =(8y,...,8;,), where Y;=min(T}, Z;) and

IT;=Y;), j=1,...,k and i=1,...,n. If the censoring variables
Z;,=(Zy,...,Z,;) are independent of the failure times T; = (Ty,,..., T};), then
the multivariate hazard function A(¢,,..., ¢,) of Section 2.3 can be expressed in
terms of the joint distribution function of Y’s and é’s. The sample counterpart
of A(¢,...,t,) coupled with the product integral representation of the survival
function F(¢,,..., t;) yields the multivariate Kaplan—Meier estimate.

4. Consistency of the bivariate Kaplan-Meier estimate. In this secticn
we consider consistency of the estimator F(s, t). For = (7, 7,) let || - ||, denote
the supremum norm on [0, 7,] X [0, 7,].

PROPOSITION 4.1.  Suppose that condition (A) holds and T = (7, 7,) satisfies
H(1, 1) > 0. Then ||F F||, = 0 almost surely.

We have F(s, t) = F(s,0)F(0, t)[1:_,C(s, t), where
Ci(s,t)= T1 {1-L(Au,A0)}.

O<u<s
O<v<t
(u,v)EE;
By Proposition 2.1 and the uniform consistency of the univariate Kaplan-Meier
estimates [Foldes and Rejt6 (1981), Csorgb and Horvath (1983) and Shorack and
Wellner (1986), page 305], it is enough to show ||B;, — C,||, » Oas.fori = 1,...,4.
This will be established in a sequence of lemmas.

ALEMMA 4.1. Under the assumptions of Proposition 3.1, IA; = Apll, = 0,
1A — All, = 0 and ||A01 Aolll, = 0 almost surely.
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Proor. This follows from the Glivenko—Cantelli theorem and simple alge-
bra. We omit the details. O

LEMMA 4.2. Under the assumptions of Proposition 3.1, |B;, — C)|, = 0 al-
most surely, fori=1,2,3.

PrOOF. We consider the case of i = 3, the proof in the remaining two cases is
analogous. By the inequality |x — y| < |log x — log y| for 0 < x, y < 1, we have

sup|By(s, t) — Cy(s, t)|

<sup| LY [log(1— L(Au, Av)) — L(Au, Av)]
1) s,
+sup Ej:l[(u, v) € E,)(L - L)(du, dv)|,

where the sup is taken over (s, t) € [0, ;] X [0, 7,]. Consider the first sum on
the right-hand side of (4.1). By the elementary inequality —log[1 — (1 + x)~1] -
1+x)"'<[x(1+x)] forx >0and x < —1 we have

XY |log(l — L(Au, Av)) — L(Au, Av)|

u<s,v<t
(u,v)EE;

< LY £%(Au, A0){1 - £(Au, Ao)} !
u<s,v<t

(4.2) (u, )€ Ey
< sup{L(Au, Av): (u,v) € E;n [0, 7] x [0, ]}
x TY f}\lo(Au’ v _)Am(}‘ —, o) - Au(AAu’ Av) .
1 - Ap(Au,v—) — Ag(u — , Av) + Ay (Au, Av)

U<Tt, V<7
(u,v)EE,

For (u, v) € E;, we have L(Au, Av) = 0. Therefore
sup{L(Au, Av): (u,v) € E;n [0,7,] x [0, ]}
< sup{|L(Au, Av) — L(Au, Mo):0<u<7,0 <o <m,),

which converges almost surely to 0 by Lemma 4.1. Furthermore, the sum on the
right-hand side of (4.2) stays bounded by the consistency of A, f\m and A,
and a little algebra. Finally, the second term on the right-hand side of (4.1)
converges almost surely to 0 by Lemma 4.1 and a simple calculation. O

LEMMA 4.3. Under the assumptions of Proposition 3.1
Y Y |L(Au, Av) — L(Au, Av)| >0

u<m,v<mn
(u,v)EE,

almost surely.
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Proor. We have
> Y| L(Au, Av) — L(Au, Av)|
(4.3) <Yy |f,1(Au, Av) — L,(Au, Av)|
+ 2 Y| Lo(Au, Av) — Ly(Au, Av)|.
Here the sums extend over u < 7, v < 7, such that (u, v) € E,. Furthermore,
AL (Au, Av)
{(1 = A(Au, 0 =))(1 = Ag(u —, AU))} ’
A(Au, v —=)Ay(u -, Av)
{(1 = Ap(Au, v _))(1 - Am(“ e A”))} '

The terms L, and L, are defined by replacing A,;, A;, and A, by their sample
counterparts in L, and L,. A

Lemma 4.1 and a little algebra imply sup|L,(Au, Av) — L,(Au, Av)| = 0 as.
with sup taken over 0 <u < and 0 < v <, and ||L, — L, - 0 a.s. Since
almost sure convergence implies weak convergence and the set E, is closed, we
have

L,(Au, Av) =

L,(Au, Av) =

limsup Y Y L, (Au,dv)< Y Y L,(Au,Av) < .
U<m,v<T7 u<m,v<n
(u,v)€E, (u,v)EE,

Scheffé’s theorem [see, e.g., Shorack and Wellner, (1986), page 862] implies
Y Y |L(Au, Av) — L(Au, Av)| >0

u<mn, v<7n,
(uy U)EEA

almost surely. The second sum in (4.3) can be treated in a similar way. O
LEMMA 4.4. Under the assumptions of Proposition 3.1, |B, — C,||, = 0 a.s.

Proor. Since H(r, 1) > 0, we can find 7 <1 such that sup{L(Au, Av):
0<u<m, 0<v<mn} <7 Fix ¢e>0. By Lemma 4.1 and a little algebra,
sup{|L(Au, Av) — L(Au, Av)|/(1 — L(Au, Av)): 0 <u <7, 0<v <) <e for
n sufficiently large. Further, by the mean value theorem, we have |log(1 — x)| <
|x|(1 — &)~ for, |x| < e. Therefore, for n sufficiently large

sup|B,(s, t) — Cy(s, t)| < X X |log(1 — L(Au, Av)) — log(1 — L(Au, Av))]

L(Au, Av) — L(Au, Av)
> 1°g(1 T T 1-L(Au, Ao) )
. |L(Au, Av) — L(Au, Av)|
‘ <=8 XX "1 (au av))

<1-¢7'(1-9)""Y X |L(Au, Av) — L(Au, Av)|.
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Here all the sums are taken over 0 < u < 7, 0 < v < 7, such that (u,v) € E,.
Lemma 4.3 implies that this bound converges almost surely to 0. O

Acknowledgments. I thank Richard Gill and the referees for their com-
ments.
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