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NONPARAMETRIC CHANGE-POINT ESTIMATION®

By E. CARLSTEIN
University of North Carolina at Chapel Hill

Consider a sequence of independent random variables {X;: 1 < i < n}
having cdf F for i < fn and cdf G otherwise. A class of strongly consistent
estimators for the change-point 6 € (0, 1) is proposed. The estimators require
no knowledge of the functional forms or parametric families of F and G.
Furthermore, F and G need not differ in their means (or other measure of
location). The only requirement is that F and G differ on a set of positive
probability. The proof of consistency provides rates of convergence and
bounds on the error probability for the estimators. The estimators are
applied to two well-known data sets, in both cases yielding results in close
agreement with previous parametric analyses. A simulation study is con-
ducted, showing that the estimators perform well even when F and G share
the same mean, variance and skewness.

1. Introduction. Let X,..., X be independent random variables with
X[, ..., X[y identically distributed with cdf F,
Xlonj+15---» X, identically distributed with cdf G,

where [ y] denotes the greatest integer not exceeding y. The parameter 6 € (0,1)
is the change-point to be estimated. The body of literature addressing this
problem is extensive, but most of the work is based upon at least one of the
following assumptions:

1. F and G are known to belong to parametric families (e.g., normal, binomial)
or are otherwise known in functional form.
2. F and G differ, in particular, in their levels (e.g., mean or median).

Hinkley (1970) and Hinkley and Hinkley (1970) use maximum likelihood to
estimate @ in the situation where F and G are from the same parametric family.
Hinkley (1972) generalizes this method to the case where F and G may be
arbitrary known distributions, or alternatively where a sensible discriminant
function (for discriminating between F and G) is known. Smith’s (1975)
Bayesian approach and Cobb’s (1978) conditional solution also require assump-
tions of type 1. These authors generally suggest that any unknown parameters in
F and G can be estimated from the sample, but nevertheless F and G must be
specified as functions of those parameters.

At the other extreme, Darkhovshk (1976) presents a nonparametric estimator
based on the Mann-Whitney statistic. Although his estimator makes no explicit
use of the functional forms of F and G, his asymptotic results require
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/2. G(x)dF(x) # %. This excludes cases where F and G are both symmetric and
have a common median. Bhattacharyya and Johnson (1968) give a nonparamet-
ric test for the presence of a change-point, but again under the type 2 assump-
tion that the variables after the change are stochastically larger than those
before. [See Shaban (1980) for an annotated bibliography of change-point litera-
ture.]

In contrast to assumptions of types 1 and 2, the estimators studied here do
not require any knowledge of F and G; virtually any salient difference between
F and G will ensure detection of the change-point (asymptotically). Specifically,
our basic assumption is:

Theset A:= {x € R:|F(x) — G(x)| > 0} satisfies either
(*) :
/AdF(x) >0 or fAdG(x) > 0.

Note that F and G may be discrete, continuous or mixed. The theoretical results
for Darkhovshk’s (1976) nonparametric estimator assumed F and G to be
continuous. Unlike Cobb (1978), we do not require the supports of F and G to be
identical; in fact the supports may be entirely unknown.

The intuition behind the proposed class of estimators is as follows. For a
hypothetical (but not necessarily correct) change-point t € T, = {i/n: 1 <i <
n — 1}, consider the pre-t empirical cdf ,2"(x), which is constructed as if
XD, ...,X?, were identically distributed, and the post-¢ empirical cdf A7(x),
which is constructed as if X7, ,,..., X* were identically distributed. That is,

Hh(x) = it I{X< x}/nt,

i=1
Rix) = Y I(XP<x)jn(l-1).
i=nt+1
The former estimates the unknown mixture distribution
Hh(x) =I{t <0}F(x) + I{t > 0}(6F(x) + (¢t — 0)G(x))/t
and the latter similarly estimates
h(x) = I{t < 0}((0 — t)F(x) + (1 — 0)G(x))/(1 — t) + I{t > 0}G(x).
The difference between these two unknown distributions is measured by the
entities

8y = |th(Xin) - ht(Xin)I
=({t<0)Q1-0)/(1—¢t)+I{t>0}6/t)8¢, 1<i<n.

Now, combining these n differences via any homogeneous norming function
S,: R*—> R [ie., S(oy,---5¢Y,) =Sy(¥5..-5¥,) =0, whenever ¢ > 0 and
¥, = 0V i] we obtain

An(8) = 8721 = £)°8,(8%, .., 81,
= p(6)S,(8%,., 8%,),
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where p(¢) = I{t < 0} — 0)"2/(1 — t)'/% + I{t > 6}8(1 — ¢)*/%/t/%. Note
that A, () attains its maximum [over ¢ € (0,1)] at ¢ = §. Thus a reasonable
estimator for @ is the value of ¢ € T, which maximizes the corresponding sample
criterion function

D(t) = t2(1 - t)"/*8,(dL, ..., d2,),

-

where
dl, = |h(Xr) - h(X), 1l<i<n.

In Section 2 the estimators are discussed in more detail and their asymptotic
properties are presented. The results include strong consistency, with rates of
convergence and bounds on the error probability. Proof of these results is
deferred to Section 4. Section 3 investigates the finite-sample behavior of the
estimators: First the estimators are calculated on Cobb’s (1978) Nile data and on
the Lindisfarne scribes data [see Smith (1980)]. In both examples this nonpara-
metric analysis produces results which are nearly identical to the results of the
earlier parametric analyses. Then the estimators are tested (via simulation) in a
situation where no other change-point estimator can be used: F and G are both
unknown and are of different parametric families, but they are both symmetric
and share the same mean and variance. Here again the performance of the
estimators is quite reasonable.

2. Properties of the estimators. The change-point estimator described in
Section 1 is formally defined as

6, T, forwhich D,(6,)= max D,(t).
teT,

Notice that there are only n — 1 distinct values of D,(+) to be compared, so 6,
always exists and is easily calculated.

Certain constraints must be imposed upon the choice of a norm S,. The
following conditions are intuitively reasonable, convenient for proving theoreti-
cal results about 6, and easy to check in practice. For n > 1, denote y, :=
Yr--er ¥, 0,=(0,...,0) and 1,, == (1,...,1). Write y¥ > y® for the condi-
tion y® >yP Vie(l,...,n).

DEFINITION. A function S,: R* — R is a mean-dominant norm iff:

1. (Symmetry) S, is symmetric in its n arguments.

2. (Homogeneity) S,(cy,) = ¢S,(y,) whenever ¢ > 0 and y, > 0,.

3. (Triangle inequality) S,(y¥ + y?) < S, (y") + S,(y,?) whenever y > 0,
and y® > 0,.

4. (Identity) S,(1,) = 1.

5. (Monotonicity) S,(y") > S,(y?) whenever y» > y® > 0,.

6. (Mean dominance) S,(y,) = X.,y,/n whenever y, > 0,,.

Some natural examples of mean-dominant norms are S{(y,):= L™ ,y./n,
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SP(y,) = (X7, y?/n)/* and SP(y,) = sup, ., Y- Let D{(¢) and 6" denote
the criterion function and estimator, respectively, corresponding to norm S9,
1 <i< 3. DP®(¢) is a Cramér-von Mises distance between the cdfs ,A™(-) and
h%(-), D® is similarly a Kolmogorov—Smirnov distance.

Since 6, is being proposed as a nonparametric estimator, it would be desirable
for 6, to be invariant under strict monotone (increasing or decreasing) transfor-
mations of the data Xj,..., X,. Since D{®(¢) is unchanged by strict monotone
transformations of the data, the particular estimator 8 has the desired invari-
ance property. For an arbitrary mean-dominant norm S,, the corresponding
criterion function D,(¢) and estimator 6§, are invariant if the observations
X,,..., X, are all distinct. If, on the other hand, the data contain ties, then
D (t) 1s not in general invariant. This is due to the arbitrary use of lower cdfs
[e.g., F(x) == P{X < x}] rather than upper cdfs [e.g., Fx) = P{X > x}] in our
estimation procedure. The following modification will always yield an invariant
estimator. Calculate d*; = |,A*(X) — h*(X[)| for each i€ {1,...,n} and

te T, where ,h"(x) —Z,=II{X"2x}/nt and AM(x) =X~ ,,HII{X" x}/
n(1 — t). Using analogous logic to that in Section 1, the maximizer 6, T, of
Dy(t) = 8/%(1 — t)*S(d},,..., dt,) is also a reasonable estimator of 8. Define

§ = (0, + 0,)/2 as our modlﬁed estimator. Now, both D,(¢) and D,(¢) are
invariant under strictly increasing transformations of the data, so 6,, d, and 0
are invariant under such transformations. When a strictly decreasmg transfor-
mation is applied to the data, D,(¢) calculated from the transformed data is
equal to D,(t) calculated from the original data; likewise D, (t) calculated from
the transformed data is equal to D,(¢) calculated from the original data. Thus 0
is invariant under all strict monotone transformations of the data, regardless of
the choice of S, and regardless of the presence of ties in the data.

The theoretical properties of 6, include strong consistency and an exponential
bound on the error probability.

THEOREM 1. Let {S,: n > 1} be mean-dominant norms and assume (*)
holds. Let & € [0, ;) be arbitrary but fixed. Then
|6, — 0ln® - 0 almost surelyasn - .
THEOREM 2. Let {S,: n > 1} be mean-dominant norms and assume (*)
holds. Then, for any ¢ > 0,
P{|6,— 0| > e} < cynexp{—cye®n}  Vn>n(e),
where ¢, > 0 and c, > 0 are constants.

Proof of these results is deferred to Section 4. Analogous results hold for 4.

3. Applications.

/

The Nile data. Cobb (1978) reports the annual volume of discharge from the
Nile River for each year from 1871-1970. His analyses assume that the observa-
tions are independent normal variables with common variance for the whole
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Fic. 1. The Nile data. i is the year (1871 to 1970), X; is the annual volume of discharge (10'° m3).

_series. The results he obtains clearly indicate 1898 as the most likely change-point;
he cites independent meteorological evidence that this change is real. Figure 1
shows the data X; along with the criterion function D®)(¢); the corresponding
nonparametric estimate is 0¥ = 0.28 (i.e., 1898). Since there are ties in the data,
DY(t) + DO(t) and D(Z)(t) + DO(¢). But the masimizers 0w, 4O, @ and 4@
are nevertheless all equal to 0.28.

The Lindisfarne scribes data. The Lindisfarne text [as studied by Smith
(1980)] divides into 13 sections. It is assumed that only one scribe was involved
in the writing of any one section, and that sections written by any one scribe are
consecutive. It is also assumed that a scribe may be characterized by his
propensity to use one of two possible grammatical variants: either the “s” or
“8” ending in the present indicative third person singular. Let m; denote the
total number of relevant words in the jth section, and let Y; denote the number
of times that the “s” ending was used in those words. Smith (1980) assumes that
the Y; are 1ndependent binomial variables with common parameter p between
change-points and he uses independent beta prior distributions on the p’s. His
analysis (which entertains the possibility of multiple change-points) arrives at a
model with changes of scribe after Section 4 and again after Section 5.

Let n:= }:‘3 m; represent the total number of relevant words in the entire
text and let X (1 < i < n) be an indicator variable for the “6” ending in the ith
word. Our analys1s assumes that the X; are independent Bernoulli r.v.s with
common parameter p, for all i < [0n] and common parameter p, for all
i >[0n]+1 (p, and p, unknown). In this scenario, D,(t) [and D,(#)] are
proportional to

nt n
Ct) =1 - 1) L X/t - X X/(1-1t)
i=1

i=nt+1
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TABLE 1
The Lindisfarne scribes data®
k 1 2 3 4 5 6 7 8 9 10 11 12 13

n, 21 57 101 131 183 228 276 333 381 403 423 444 464

g
Z X; 9 19 32 38 62 73 82 93 100 103 106 110 114
i=1

C(ny/n) 185 152 174 129 349 340 289 248 167 118 73 45 —

%k is the section of the text, n, is the number of relevant words in sections 1 through &, X; is the
indicator of “8” ending in ith word.

for all choices of mean-dominant norm S,. Since we only consider potential
change-points at the ends of sections, the criterion function C,(#) is computed
only for values of ¢ in the restricted set {X%¥_,m;/n: 1 <k <12} C T,,. Table 1
shows the data and the function C,(), which is maximized at 8, = 183 /464 (i.e.,
at the end of Section 5).

Simulation study. When the functional forms of F and G are unknown to
the statistician, but both distributions are symmetric with the same mean, then
no other change-point estimator is appropriate. Such is the case in this example:

F is the distribution with density f(x) = 0.697128x*I{|x| < 1.291};
G is the N(0,1) distribution.

Actually, F and G also share the same variance in this situation, making it even
more difficult for the user to choose an estimator that discriminates between
them. Table 2 presents simulation results for &, 6 and 6, based on sample
sizes n = 50, n = 100 and n = 200. For the moderately large sample size n = 200,
all three estimators perform well (and in fact no one estimator appears to be

TABLE 2
Simulation study. True value of 6 = 0.4. The entries in each row are empirical estimates based on
1000 realizations of 0%". The standard deviation of each estimated E{§"} is less than 0.01.

n i E(§®) E(8 - o))
50 1 0.443 0.257
2 0.418 0.235
3 0.400 0.179
100 1 0.420 0.201
2 0.401 0.178
3 0.392 0.144
200 1 0.404 0.0971
2 0.391 0.0967

3 0.390 0.0957
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clearly superior to the others). For the smaller sample sizes, the choice of S, has
a more pronounced effect: ¢V is clearly the worst, while 6> is arguably the best.
This empirical evidence in favor of 6%, together with its invariance property
(discussed in Section 2) and its intuitive appeal (being based upon a
Kolmogorov—-Smirnov distance), may convince the practitioner that 6 is the
preferable choice for nonparametric change-point estimation.

4. Proofs. Assume that {S,} are mean-dominant and that (*) holds. Let
8 € [0, 1) be fixed. We shall show that, for any & > 0,

P(|6, — 0|n® > ¢} < cynexp{—c,e’n' "2} Vn 2 n(e,9),

where ¢, > 0 and ¢, > 0 are constants. Theorem 1 then follows by applying the
Borel-Cantelli lemma. Theorem 2 is obtained by setting § = 0.

Throughout this section, the entities K; will denote finite positive constants.
Define T, :== T, U {0/n, n/n} and § == 01/2(1 6)/2.

LEMMA 1. Let Y{,...,Y; be iid with cdf Q; let r, s, I and m each be
elements of T, and satisfy m < s <r < l. Define

rn

Qu(x;r,s,l,m)= Y KY"<x}/(I-m)n,

i=sn+1

q,,(x; r,s,l, m) = |Qn(x; r,s,l, m) - (r - S)Q(x)/(l - m)|9

Go(r,s)= sup sup q,(x; r, 5,1, m).
(meT,,leT,: m<sandl>r} x€R

Then
P{én(r,s)n8> 8} SKlexp{—Kst(r_ s)n1—28} .
PrROOF. Since gq,(x;r,s,1l, m) < q,x;r, s, r,s), we have §,(r,s) <
SUP, ¢ RGA(%; T, 8, T, 8)- Now apply Lemma 2 of Dvoretzky, Kiefer and Wolfowitz

(1956) in order to bound P{sup, ¢ z.(; 7, s, T, 8) > en~°}; see also the discus-
sion after their Theorem 3. O

LEMMA 2.

P{ sup |D,(t) — A, (¢)|n® > e} < Kjnexp{ —K,.?n'"?*}  Vn2xN(e,9).
teT,

PROOF. Denote ,H™ = |, h"(X") JA(XM)), HP = |h3(X]P) — h(X]")| and
el, = H" + HM. Smce dl, < 8 + el, we have

D,(£) = A,(t) < £7°(1 = £)/°S,(efs, -, €)
by virtue of S,’s properties (5) and (3). The same bound applies to A ,(¢) — D,(?),
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yielding [by (3)]
ID,(t) — A () < %1 — £)%(S,(H™,..., H™) + S,(HP, ..., H'™)).
Now, for t € T,
H™ < I{t < 0}|E,(X;¢,0,¢,0) — F(XP)|
+I{t > 0}(|F, (X [0n]/n,0,¢,0) — 6F(X) /1|
+IG(XP; t,[6n]/n,1,0) — (¢ - 0)G(X[) /1))
< I{t < 0}f,(X; t,0,t,0)
+I{t > 0}(f,(X [0n]/n,0,t,0) + |[6n]/n — O|F(X")/t
+8,(X7";t,[0n]/n,1,0) + |[9n]/n - 61G(X}) /t)
< I{t < 0}f,(¢,0)

+I{t > 8}(f,([0n]/n,0) + 8,(t,[0n]/n)(¢t - [6n]/n)/t + 2/n8)
= ,H",

Here we use the notation of Lemma 1 (e.g., F,, F, f, and fA play the role of @,
Q, q, and q,, when the corresponding X are 11d with cdf F'). A similar bound
(call it H") applies to H}*. Since these bounds on ,H™ and H} do not depend
on i, propertles 5),(2) and (4) yield |D(¢) — A,(£)] < 831 - t)l/ 2(H™ + H).
Next we shall bound P{sup;cr, t/%(1 — t)/2,H™ > ¢/2n’}; an analogous argu-
ment applies to H". Since T, is a finite set, the preceding probability is bounded
by

Y P{ef(t,0)>e2n%} + L (P{f.([6n]/n,0) > ¢/6n°}

teT,, t<0 teT,,t>0
+P{g,(t,[6n]/n)(t — [6n]/n)/t > &¢/6n°} + P{2/n6 > e/6n%}).

Using Lemma 1, the probability in the first summation and the first probability
in the second summation are each bounded by K exp{ — K 5¢?n' ~2%}. Again using
Lemma 1 and the fact that ¢ > 6, the second probability in the second summa-
tion is bounded by K,exp{— K j¢2n'~2%}. The third probability in the second
summation is zero for n sufficiently large. Finally, each summation is taken over
order-n values of ¢. O

The maximizer of A,(-) over the set T, is
t, = I{p([6n]/n) = p(([6n] + 1)/n)}[0n]/n
+I{p([6n]/n) < p(([8n] + 1)/n)}([6n] + 1)/n.

LEMMA 3.
P{|A,(8,) — A, (8)In® > &} < Ksnexp{—Kee?n' "2} Vnx N(e,?9).

Proor.
1A,(8,) — A,(8)] < 1A,(6,) = D,(6,) + 1D(6,) — A,(8,)l + 14,(2,) — A,(6)].
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Note that either D,(6,) > A (¢,) = A,(68,) or A,(¢t,) = D,(6,) = D,(¢,); in either
case the second term on the r.h.s. of the preceding inequality is bounded by
sup; e |D,(t) — A,(¢)|. The same bound applies to the first term. Hence both of
these terms are handled by Lemma 2.

The third term equals

(0(8) = 0(2,))S,(8%,--.,8%,)
<p(0) - o(t,)
= 6(I{t, < 0}(1 = bY?) + I{t, > 6} (1 — b /%))
<6(I{t,<0}(1 - b, +I{t,>0}(1 - b)),

where b, ==t (1 — 0)/0(1 — t,) and 8’; < 1. Note that ¢,, being the maximizer
of p(-) over T, is nonrandom. Hence it suffices to observe that

0_(I{tn = 0}(0 - tn)/0(1 - tn) + I{tn > 0}(tn - 0)/tn(1 - 0))
< Y(I{t,<6}(8—t,) +I{t,>0}(t,—0)) <Kyn'<en?
for n sufficiently large. O
Denote ppi= [plF(x) — G(x)| dF(x), pg= [plF(x) — G(x)|dG(x), p=
Opp+ (1 — O)pg and c:=p/2 >0 [by (*)]. Note that §, = SP(8Y,...,8%,)

may be written as §,[0n]/n + 8,(n — [6n])/n, where §, = Xl?718% /[0n] and
8n = E?=[0n]+l 8::/(n - [On])'

LEMMA 4.
P(|6, — 0n® > ¢} < K nexp{ —Kge®n' "2} Vn > N"(g,9).
ProoF. Consider ¢ € (0,1) and » > 0. Denote b,:= t(1 — 8)/0(1 — t). Re-
calling property (6),
[t = 0|>v = |A,(t) — A,(0)
=g(I1{t <0} (1 - b}?) + I{t > 0} (1 — b;'/%))
xS,(88,,...,8%,)
>0(I{t<0)(1 - b)/2+ I{t>6}(1 - b;!)/2)8,
>10(I{t<0}(0—1t)+I{t>0)}(t—0))s,=Kivs,,
P16, — 6| > en™%} < P{|A,(8,) — A,(0)] = Kjen™°8,}
< P{|A,(6,) — A, (0)n® = K{ec} + P{8, < c}.

Since Lemma 3 applies to the first probability on the r.h.s. of this last inequality,
it suffices to consider

P{(8, — pl > ¢} < P(18,[6n]/n — Opgl > c/2}
+P(|5,(1 — [6n]/n) — (1 — O)ugl > c/2}.
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The two probabilities in this upper bound are both handled in the same way; we
only deal explicitly with the first one. It is dominated by

P(3,|[0n]/n — 6] > c/4} + P(8]8, — ud > c/4}.

Of these two probabilities, the first is 0 for n sufficiently large (since §, < 1
always holds). Since {8%;: 1 < i < [0n]} are iid and bounded, we can use (2.3) of
Hoeffding (1963) to dominate the second probability by 2 exp{ —2[0n](c/46)?}.
This bound can now be absorbed into the earlier bound from Lemma 3. O
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ing factor in the criterion function, the use of Cramér-von Mises and
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consideration of invariance are all due to that referee.
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