The Annals of Statistics
1987, Vol. 15, No. 1, 112-133

ON ADAPTIVE ESTIMATION IN STATIONARY
ARMA PROCESSES

By JENS-PETER KREISS

University of Hamburg

We consider the estimation problem for the parameter 34, of a stationary
ARMA( p, q) process, with independent and identically, but not necessary
normally distributed errors. First we prove local asymptotic normality (LAN)
for this model. Then we construct locally asymptotically minimax (LAM)
estimators, which asymptotically achieve the smallest possible covariance
matrix. Utilizing these, we finally obtain strongly adaptive estimators, by
using usual kernel estimators for the score function ¢ = —f’/2f, where f
denotes the density of the error distribution. These estimates turn out to be
asymptotically optimal in the LAM sense for a wide class of symmetric
densities f.

1. Introduction. In this paper we consider stochastic processes (X,; t € Z),
Z = {0, +1, +2,...}, with discrete time. We assume that these processes satisfy
the following difference equation: :

(1.1) X,=a, X, + - +a,X, ,te+be_,+ - +be,

for all integers t. Here the random variables e, form a sequence of independent
and identically distributed observations with zero mean and finite variance
02 > 0. Such processes, called ARMA( p, ¢) models [autoregressive moving aver-
age models of order ( p, q)], are well known in the literature, cf. Fuller (1976) and
other monographs on the subject.

In the usual ARMA situation, observations of the process X, are available
and one relevant issue is the estimation of the underlying parameter ¢ =
(a,b) =(ay,...,a,by,..., b)) € RP*9 On this subject there exist a lot of
results, concerning consistency and central limit theorems for the proposed
estimators. Often the estimates are constructed under the assumption that the
errors (e,; t € Z) are normally distributed, while the asymptotic results hold for
quite general distributional shapes.

The aim of this paper is threefold.

First, we want to obtain an optimality criterion for sequences of estimates in
the ARMA situation. For this purpose we prove in a first main part that the
concept of local asymptotic normality (LAN) is applicable to ARMA models
(Theorem 3.1). This concept goes back to Le Cam (1960); for a definition see also
Fabian and Hannan (1982). Successful criteria for a statistical model to be LAN
are contained in Roussas (1979) and Swensen (1985). Since a very appropriate
concept of asymptotic efficiency of estimators in LAN models, called local
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asymptotic minimax (LAM), was introduced by Hajek (1972) and fully exploited
by Fabian and Hannan (1982), we use this as an optimality criterion.

Second, we present one possible construction of such LAM estimates if only
Vn -consistent initial estimators are available. For this a paper of Beran (1976) is
useful. Unfortunately, these estimates appear to depend on the distribution of
the white-noise process (e,; t € Z).

That is why our third aim is to give estimates which are asymptotically
equivalent to LAM estimates up to order 1/ Vn and which do not depend on the
distribution of the white noise. Such estimators are called adaptive (in the
strong sense). This last step contains generalizations of the results of Bickel
(1982) in several directions. Bickel treats independent observations and of course
that is why his proofs cannot easily be carried over to the problem considered
here. While a proof of the LAN property for AR(p) models [i.e., ARMA( p,0)
models] is contained in a paper of Akritas and Johnson (1982), the construction
of adaptive sequences of estimators in the model considered herein is the main
new result of the present paper. As can be seen from a small Monte Carlo study
at the end of Section 5, practical application of the recommended adaptive
procedure is not immediately excluded.

To make the paper more inviting to read all technical and complicated proofs
are given in Section 6. :

2. Notation and assumptions. First, we have to ensure that stationary
solutions (X,, t € Z) of (1.1) exist and that these solutions are invertible, cf.
Fuller (1976), Section 2.7. This is the case if we assume that the parameter space
0 C RP*? is chosen in such a way that the polynomials A(z) =1 — a,z —

- —a,2z? and B(z) =1+ b,z + -+ +b,27 have no zeros with magnitude less
or equal to one. These latter conditions are usually denoted by stationarity and
invertibility conditions. Additionally, we assume that these polynomials have no
zeros in common and a, # 0 or b, # 0. Further let us assume: .

(A.1) The distribution of the zero mean random variable e, possesses an
absolute continuous Lebesgue density f, f(x) # 0, for all x € R, with finite
Fisher information I( f ) = [(f’/f )*f dA. Moreover, 0 < 02 := [x%f(x) dx < oo.

If (e1_gs---re0 X1 py--vs X3 Xyy...5 X,) denotes a sample of the stochastic
process, in which, for the sake of simplicity, we use an initial part of observations
of the white-noise process, then the following property is assumed to be satisfied.

(A.2) The common distribution of (e,_,,...,ep X;_,,..., X,) possesses for
all n €N = {0,1,2,...} a nowhere vanishing Lebesgue density g,(-; ¢), where
& € 0 is the underlying parameter.

The density of the distribution of (e,_,,...,e4 X;_,,..., X,,) also can be
expressed in the form

(2.1) go(el_q,...,XO;0)t=I—[lf(e,{e1_q,...,X,}),

where e,{e,_,,..., X,} denotes the residual calculated from (1.1). For these
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calculated residuals we derive an explicit expression in order to obtain a more
manageable representation of the likelihood function. To do so we need the
following notation.

NoraTioN 2.1. For each ¢ € 6 there exists 7 > 1, such that we have for all
z € D(0) = {w € C||w| < n} the following power series expansions:

o0
(i) (1+bz+ - +b,27) " = ¥ B2t
k=0
0
1-az—--- -a‘],,z“’)_1 = Y a,2*,
k=0

1+bz+ - +b,27 ©

e} -1
S ( 5 «s) .
k=0 k=0

Because of this the time series {X,} has the following properties [cf. Ash and
Gardner (1975), Sections 2.3.4-2.3.7]:

o0 o0
(ii) E BrX, 1= Z Ok
k=0 k=0

- — e —q. 2P
1-a,z a,z

o0 o0
et‘—‘ Z kal—k and Xt= Z sket_k, tEZ.

k=0 k=0
Since ¥¥_o|B8.| < oo and E|X,| is finite, the series ¥¥_,p,X,_, is almost surely
absolutely convergent; see Lukacs (1968), Theorem 4.2.1. Of course, the same

result holds true for the remaining series.
For the power series coefficients {8,; 2> 0} of (1 + b,z + - -- +qu‘1’)‘1 the
following recursion formula can easily be derived:

(2.2) B+ b8+ -+ +b,8,_,=0, foralls>1

(note B, = 0if £ < 0 and B, = 1). The above Notation 2.1 together with (1.1) and
(2.2) leads to (note a, = —1, b, = 1)

[o0)
€= kZOIBk(Xj—k X - _apXj—k—p)
-J p 00 q
= Z :Bk—l(_ Z ain+1—k—i + Z Bk—1( Z biej+1—k—i)
(2.3) k=1 i=0 k=j+1 i=0
J p gq—1 s
=) Bk—l(_ > ;X gt )y e—s( )y :Bj+s-kbk)’
k=1 i=0 s=0 k=0

Jj=1-gq.

The second equalify gives the explicit expression for the calculated residuals used
in (2.1). For each 94 € § we can denote them more exactly by e;(#). Also the
abbreviation e/(¥;) = e}, i = 0, 1, will be used. If we designate the distribution of

(e5, 8 <0; X,_,, s>1) on R? by P,, when ¢ is the underlying parameter and
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the restriction of Py to ;= o(e;_g ..., € Xl_p,..., XJ-) by P, s, then, for
By, #; € 6 the hkehhood ratlo has the following form [cf. (2.1) and (2.3)]

dPn,:?l — go(el—q""’XO;ﬂl) 121 f( JO (e _e))

dp, s, gO(el—q"“’XO; 3y) j-1 f(e,('))

In order to prove LAN we need derivatives of the log-likelihood ratio. To this

end, we derive a simple expression for e,(d,) — e;(#), ¢ € 6, which seems to be
useful in other situations, too.

(2.4)

LEMMmA 2.2. With

T

J
.09 0
Z :Bk—l(ﬂ)(Xj—k:“-’ Xj—k+1—p’ €jkreees ej—k+1—q)
k=1

J
Y B (YT — k) B(j = ks 99)"),
k=1

(2.5) e (9,) — e)(9) = (9 = 9,)72(j — 1,9, 9,)
holds true.

PrOOF. From the definition of e;(#), cf. (2.3), we obtain

e(#) — e/(8) = (a - ap)" i B (9)Y(— k)

S (B 0) ~ Bo () S %,

1
-1

M° TM\

+

{ S e (300~ T ﬁ,~+sﬁ,¢<a>bk}.
s=0 k=0 k=0

Since for all %, €  £X_,a’X, ;= L7_,bl,_,(9,), t > 1, and from the recursion
formula (2.2),

S B ()(eyur 2(B0) + brey 4(80) + - +boeyiry a(B0)

k=1
g-1 s
= ej('?o) - X e—s( Z ﬁj+s—k(ﬂ)bk)’
s=0 k=0
we have the desired result. O

From (2.4) and (2.5) we get

P,  goler_gio-r X 8) o fef = (8= 8,)"Z(j - 159, %))
2.6 = .
( ) dP n, % gO(el—q,- L¥) XO, 0) j=I_[1 f(ejo)
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With the following additional abbreviation,

;  Hei(80) = (3 = 80)"2() — 15 8, 9))
(2'7) ¢j(‘90’ ‘9) - f(ej(ﬂo)) ’

we have

dP, 4 1 goler_gr--vr Xo3 9)

n
gdPn,oo = +2 E 108‘?51'(00, ).

gO(el—q""’XO; t‘)0) Jj=1

(2.8) lo

After these preliminaries, we are now ready to establish local asymptotic
normality for the above likelihood ratio.

3. Local asymptotic normality. This section of the paper is devoted to
local asymptotic normality for ARMA processes. In order to establish this
property for our model we will verify assumptions (A.1)—(A.4) of Roussas (1979),
* who considers arbitrary stochastic processes. Similar conditions sufficient for the
LAN property are given in Swensen (1985). Swensen’s conditions are also valid in
the case considered here. For this section we emphasize that both e, =
(e1_gs-+-»€p) and Xy = (X,_,,..., X,) are regarded as initial observations. We
need the following regularity assumption.

(A3) goleg, Xy, #,) = go(eg, Xy, ¥), in P; -probability if 4, — 9.
The main result of this section is

THEOREM 3.1 (LAN property for ARMA models). Let {h,} C R?*? be a
bounded sequence and 9, = 9, + n~'/?h,. Under our assumptions (A.1), (A.2)
and (A.3) we have for

61 A0 = = L ile (G- 10.9), b= 1721,

the following two results:
(3.2) log[dP, 5 /dP, 5| = B3A.(30) + 3RLI(f)T(8o)h, — O,

in P, , -probability, where T(d,) is defined in Theorem 3.5 below (approxima-
tion of the log-likelihood ratio).

(3.3) 2(8, (3P, 5,) = (0, I({ )T()),

where “ = " denotes weak convergence (asymptotic normality of the approxi-
mating statistic).

REMARK. Again we would like to mention that we define LAN the same as
Fabian and Hannan (1982), 2. Definition, page 461. This definition is slightly
more general than the one given by Hajek (1972).
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From the above theorem one can obtain by using standard arguments

COROLLARY 3.2. Under the same assumptions as above
{Pn, ‘,0} and {Pn, 19n} are contiguous in the sense of Definition

(3.4) 2.1, Roussas (1972), page 7,
and
(35) L(8,(80) = I(F)T(80)hlPy, 5,) = #(0, I()T(8,)).

In what follows we assemble the results which, together with those of Roussas
(1979), lead to Theorem 3.1. Since the proofs are rather technical we defer them

to Section 6.
First, we consider differentiability in quadratic mean.

THEOREM 3.3. For each 9, € 0, the random functions (3, -) are differen-
tiable in q.m. [ P, ] uniformly in j > 1. That is, there are (p + q)-dimensional
r.o’s ¢(9g) = p(eNZ(j — 1; 9y, B9) = p(e))Z°(j — 1) [the q.m. derivative of
¢i(9y, ) with respect to ¢ at 9,] such that

(B, ¥+ AR) -1
(3 ,6) ¢_]( 0s Y0 \ )
uniformly on bounded sets of h € R?*? and uniformly in j € N. Finally, <f>j(00)
is measurable with respect to <.

— h7(99) =1r_00, ing.m.[Py],

Next, we have

THEOREM 34. For each 9, €0 and each h € RP"%, the sequence
{(hT j(ﬂo))z}, J € N, is uniformly integrable with respect to P, .

The following result deals with the asymptotic covariance matrix of A ().

THEOREM 3.5. For each O,€ 0 and j>1 let the (p+q)X(p+ q)-
dimensional covariance matrix T';(9,) be defined by
(3-7) I‘j(‘(}o) = 4E00[‘1;j(00)¢;,?(00)]
= I()E,,[2(j = 1; 9, %) Z7(J — 1; B, ,)].
Then T (%) = T(8)I(f), asj — oo, in any one of the standard norms in R?*9,
and T'(d,) is positive definite.

To obtain some insight into the structure of I'(?#,) consider

EXAMPLE 3.6. An explicit representation of I'(d,) is

) © o Y(1 - k)
o=l £ Eanfsi )

(3.8)
x(YT(1-1),ET(1 - L 00))).
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For purely autoregressive schemes, i.e., ¢ = 0, we have
(3'9) r(ﬂ) = (E XrXs)r s=1,..., p*

Finally we need some weak laws of large numbers (WLLN) for the approximat-
ing functions ¢(9,).

THEOREM 3.7. (i) For each 9, € 0, each h € R?*? and for the probability
measure P‘, , the WLLN holds for the sequence {[ h” j(ﬂo)]z J € N}. Also

(i) — Z {E,,o[(hT (9)) |.sz¢ ] — [n% 1(00)] } -0, asn— oo,

in Poo-probability. As is shown in Schiitt (1985) and Swensen (1985) we can
dispense with this latter assertion.

Theorems 3.3-3.7 guarantee that the sufficient conditions for local asymptotic
normality given in Roussas (1979) are fulfilled.

REMARK. Recall that at the beginning of Section 2 we assumed that initial
observations of the white-noise process are available. Of course, this assumption
is bothersome, so that we would like to mention that it is possible to dispense
with it.

Define

¢
ét(ﬂ) = Z Bk—l(Xt+1—k —a X, _apXH—l-—k—p)
k=1

and

Y(j - k) )

8.0 = = £ (o) £ 0

[compare with (2.3) and (3.1)].

If, for example, ¢ satisfies a global Lipschitz condition it can be shown that
E A (9) — A A®)] = o(1) holds true (the proof is omitted, since it is not essen-
tial). From this we have that Theorem 3.1 remains valid if we replace A, by A
which depends on observations of the time series, only.

Now we are ready to consider statistical inference for stochastic processes of
ARMA type.

4, Existence and construction of LAM estimates. From Theorem 3.1
(LAN) we can construct sequences of estimates which are locally asymptotically
minimax (LAM) as is defined in Fabian and Hannan (1982), 1. Definition, page
463. But as it turns out below these estimates depend on the distribution of the
underlying white noise (e,).

In the above paper a very useful criterion is given which ensures the LAM
property, also in our context, under suitable conditions. More precisely, we have
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from Fabian and Hannan (1982), 3. Theorem, page 467:

LEMMA 4.1. Under assumptions (A.l), (A.2) and (A.3) we have for any
sequence {Z,} of estimates the following implication:

I(d) "
I(f)

implies that {Z,} is LAM.

4.1) Vn(Z,- 9,) — ———A,(9,) = op, (1) ({2, is called §,regular)

In order to construct regular estimates the existence of Vn -consistent initial
estimators {9,} is essential. That is why we assume

There exists a sequence {9, } of estimators which satisfies

(A4 (3, - 9) = 05, (1),

COMMENTS ON ASSUMPTION (A.4). Of course (A.4) holds for estimators for
which the usual CLT is valid, i.e., for all the standard estimators. For pure
autoregressive models such estimators exist under moment conditions, as is
shown in Anderson (1971), Theorem 5.5.7.

In contrast to AR models, the computation of estimators in the ARMA case is
more complicated. Nevertheless, (A.4) is satisfied in this situation too, as is
stated in Section 8.4 of Fuller (1976).

Now, if ¢ is assumed to satisfy

(i) lim f {¢(x +h) —¢(x))"f(x) dx = 0,
(A.5) GREIC
(if) hm/ f(x) dx = —3I(f),

we can establish

THEOREM 4.2 (Existence of LAM estimators). Assume {9,} C 0 is discrete
and Vn -consistent for 9, € 0 ( for the definition of discreteness see below). Then
0 defined by (4.2) and (4 3) below is regular [cf. (4.1)]:

O IRE)T
(4.3) % f 2 —1;9,9)27() — 1 9, ).
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_For technical reasons we restrict ourselves to discrete sequences of estimators
{¥,} such as (assume {9,} according to (A.4) is given):

9, is given by one of the vertices of {#: % = n='/%(i,, ..., i, ,),
i; € Z} nearest to 4,.

Of course, {9} satisfies the following more general discreteness property.

DEFINITION 4.3. A sequence {d,) of estimates is called discrete if K € N

exists such that independently of n € N, #, takes on at most K different values
in

Q.= (¥R Yn|9 - ¥y <c}, c> 0fixed.

The great advantage of discrete estimates is the following result, which goes
back to Le Cam and is also used, for example, by Bickel (1982).

LEMMA 4.4. Assume {S,(¥), n € N} to be a sequence of random variables
which depends on ¥ € 0. If for each sequence {8,} C 0 satisfying
(4.4) Vn (8, — 9,) is bounded by a constant ¢ > 0,
we have S (3,) = o P%(l), then also S,(9,) = op, 0(1) holds for discrete estimators
(9} which are Vn -consistent.

Proor. For ¢ > 0 there exists M > 0 such that

Po{1S(3,)] > ¢f < B {1.(,)] > e, VB, - 0 < M} +

[N

Since 9, achieves in {9: Vn|® — 9, < M} only K,, (say) different values we
obtain the desired result from our assumption. O

Finally, we give a proof of Theorem 4.2.
PROOF OF THEOREM 4.2. In order to establish regularity of {§,}, cf. (4.2), the

following asymptotic linearity is essential: Let {9,} C 8 be a sequence with (4.4).
Then

(4.5) A(8,) = A, (8) + T(3)I(f Wn (9, = 9,) = 0p, (1),
as is shown in Section 6. From this, Lemma 4.4 and
(4.6) £,(3,) > I(9), asn— coin P, -probability

[see proof of (4.5)] we obtain regularity of {5,,}. O

REMARK. The regularity of {§,} implies
(47) L(Vr (3, = DB, 5,) = #(0, T(89) "'/I(1)),

where this covariance matrix is minimal for all asymptotically normally distrib-
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uted estimates, cf. Kabaila (1983), who deals with classical asymptotic efficiency
of estimators in the sense of Cramér and Rao.

5. Construction of adaptive estimates. In this section we give an answer
to the question whether it is possible to construct estimators which are indepen-
dent of the distribution of white noise but which are LAM, simultaneously for
several types of error distributions. Of course, it is enough to establish regularity,
cf. Lemma 4.1, under these densities. Such estimators, if they exist, are called
adaptive for the specific class of densities.

To give an answer to the above question we look for estimators of the
unknown score function ¢ and the Fisher information I( f ). Then we define the
adaptive estimator similar to 5n, cf. (4.2). First, we restrict our consideration to
estimators of ¢.

The first step in this direction (for autoregressive models) was taken by Beran
(1976). However, his resulting estimator for #, is only adaptive for a small class
of error distribution densities. We shall use instead the usual kernel density
estimator for ¢.

Introduce the following additional notation:

(i) g(x;0)=1/V2n0%exp(—x2/20%), x€R,
@) f(x) = [&(x - 0)i()dy,
(5.1) .
i) o, ,(%59) = gy Z{g(x+e(0) o) +&(x — ei(#); 0)},

l#]
Jj=1,...,n
Define g, ; to be the following estimator of ¢:
1 (x 19‘) o(n) j(x 19) 2 d

- T %] < &,
(62) Gn (% 9) ={ 2 fom,(%:8)° R .
! ( > fuin),j(x; 0)] < cn fo(n),j(x; 0)7

0, otherwise,

with ¢, = o, g, = o, o(n) = 0, d, > 0. Let
- 2 2 .
(5.3) A(#)=—7- X% 4, ,(€;(9); 9)2(j - 1; 9, 9)
n ;0
be the estimated version of A, (#), cf. (3.1), and use in analogy to (4.2) (fn is
defined below)

(5.4) §,=9,+ %r 11(5 g a(92),
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with {9,) an initial estimator as in Section 4. The remaining task will be to
verify that this estimator is adaptive for the following broad class of densities f:

(i) f is symmetric about the origin,

(4.6) (i) [x*f(x)dx < oo.

Note that we use the §,, j(ej(i_)n); 8,) as estimators of the (e, j=1,...,n,
which means that the residual e ( #,) is not. used in the estimation of the score
function at that specific point.

For the proof we use ideas of Bickel (1982), who treats the regression case with
symmetric errors, i.e., he has independent observations. In contrast to Bickel, we
also use the full sample for both estimation procedures, so that practical
applications are not immediately excluded. The proof also heavily uses the fact
that f is symmetric. Results for unsymmetric but zero mean densities f will be
discussed in a subsequent paper [Kreiss (1987)].

The results are as follows.

THEOREM 5.1. Let {9,} C 0 be a discrete and Vn -consistent sequence of
estimators of 9,. Under our assumptions (A.1)-(A.6)

A,(9,) = A,(9,) = 0p,(1)

holds, if ¢, > , g, > ®, o(n) > 0,d, - 0, o(n)c, - 0, g,0(n)*/n > 0 and
no(n)’ stays bounded.

A proof is given in Section 6. Now we state the central result of the paper.

THEOREM 5.2 (Existence of adaptive estimators). Under the assumptions of
Theorem 5.1 we have, given a consistent estimator I,, of I(f ), that the estimator

S T o 5
(5.5) § =9, + v (T;)—A,,(@n)
satisfies

_ r(8,)""
(5.6) ‘/E(‘?n - 00) - %An(ﬁo) = OP,,O(I)’

for all f satisfying (A.6), which ensures that {5n} is LAM, and we obtain
(5.7) L(Vn (8, = 9oy, 0,) = H(0,T(3) ' /I( 1)),

for all densities f satisfying (A.6).
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Proor. We only have to prove that {#,} is regular. To see this consider

(.- 8) - " (0
- (8, 00) + TR (5,(5,) - 8,00) + o1
(because of the consistency of I, and f‘n)
= T (0, (8) = 3,080 + T (5, ~ ) + 0, (0,
(from Theorem 5.1)
=0 P%(l) (because of (4.5) and the discreteness of 3,,). o

In defining &, in (5.5), we make use of a consistent estimator fn of Fisher
information. For this purpose we can use

: . 4 n o
(5.8) ==Y a2 (e(3,): 9,).
n ;5

To see that this is consistent, note that from the WLLN we have for each
{¥,} C 0 satisfying (4.4),

4 i .2 . oy
~ Y ¢ (ej(ﬂn)) — I(f), in P, -probability as n — co.
j=1

Thus the assertion follows from Bickel (1982), Lemma 4.1, the contiguity of
{P, s }and {P, ;} [cf. (34)] and from Lemma 4.4.

Let us close this section with some simulation results.

We have simulated AR(1) series (X, = 0.5X,_, + e,) for the following four
densities of the errors:

fi(x) = 1/;/E;exp(—x2/2),
fo(x) = 0.05/V507 exp(—x2/50) + 0.95/v2m exp(—x2/2),
fa(x) = O.5/y/2—7rexp(—(x - 3)2/2) + 0.5/\/2_7rexp(—(x + 3)2/2),

fo(x) = exp(—2|x|).
The densities f,, f, and f, are commonly used for studying the behavior of the
estimators in autoregressive models, while f; is chosen to show that the proposed
adaptive procedure works quite well. 3
In all cases we used the usual LS estimator as an initial estimator 9,, cf.
Fuller (1976), Theorem 8.21, and compare the behavior of 5,,, cf. (4.2) and 5n, cf.
(5.5): The length of the simulated series is n = 50.



124 J.-P. KREISS

TaBLE 1
Empirical 90% confidence intervals for Vn (3, — 0.5) (case 1), Y (&, — 0.5)
(case 2) andVn (8, — 0.5) (case 3), respectively, with the smoothing
parameter a(n) = 0.4

case 1 2 3
density
fi (—-1.57,1.21) (—1.57,1.21) (—1.75,1.32)
fo (—1.46,1.13) (—1.31,1.00) (—1.37,1.09)
fs (—1.65,1.18) (—0.55,0.47) (—0.65,0.58)
fa (—1.57,1.17) (—1.30,1.03) (—1.45,1.09)

The simulations show that for extreme distributions of the white noise, e.g.,
f5, the adaptive estimator has much more power than the usual LS estimator,
even when the latter is used as the initial estimate. In standard situations
(f1» f4), &, can compete with the LS estimator.

Also these simulations suggest that the estimators described and motivated by
the theoretical results of this paper represent a first step towards the practical
application of adaptive procedures in dependent situations.

Of course, some additional work is necessary to facilitate the computation of
such estimators.

The remaining section of the paper is concerned with the proofs of various
auxiliary results used in Sections 2-5.

6. Proofs. Let us start with three auxiliary results.

LEMMA 6.1. For any n > 1 define
B,={b=(by,...,b,) €R": b(2) =1+ bz + -+ +bz? # 0 if 2| <n},
and, for any b € B,, let {B;: j € N} denote the coefficients of the power series

expansion of b~'(z). Then B, is an open set in R?, and so, for any b° € B, and
e >0, is {b € B,: supjn’|B; — B < ).

Proor. The assertion follows from Cauchy’s estimates [ Ahlfors (1966), page
122]. O

LEMMA 6.2. From assumption (A.1l):
@). \/7 is absolutely continuous with ‘/7 "=f'y 2\/7 .

(ii) We have
-8\ : :
(6.1) o(-,t) = (W) zst(P,)-dszerentzable,
at t = 0 with Ly-derivative ¢ = —f'/2f, dP;/d\ = f, and

(6.2) —

/R(qv(x,s) - ¢(x, t))zf(x)dx - jl;q-)Z(x)f(x)dx.
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PRrOOF. (i) is shown in Ibragimov and Has’'minskii (1981), Lemma 2.1, page
121. We restrict our further consideration to (6.2). From (i)

/(qv(x, s) — ¢(x,t) )2f(x) &

s—t

1 s f/(x—A) ?
- (s_t)“‘fn(/t 2/f(x — \) d}‘) @

1 S f’(x—>\) 2
<l Ll ey | e

= [#*(2)f(x) d. ‘ o

LEMMA 6.3. Let g(9): (2, &, P) - (R, B) be square-integrable and let 0 be
an open subset of R®. If g: (R, o, P) > (R*,B,) exists with

() E[g(ﬁ Y ;g(ﬂ ¥ Ahy) ]2 < E[(h, - hy)"e()]’,
h, h, € R®, A#0,
(ii) E|&(9)]* < oo,
(iii) g+ M;) —80) | h1g(9), asr—o,

then g is differentiable in q.m.[P] at 9 € 6.

For a proof of Lemma 6.3 we refer to Kreiss (1984), Lemma 2.4.
Now we can verify the assumptions made by Roussas (1979) which ensure
LAN for our model.

Proor oF THEOREM 3.3. First define

. ad . : T
22(j = 1;8,9)) = ¥ Bua(9)(YT( — k), E(j — k5 8,)")
k=1
and note that Z(j — 1;8,9,), Z(j— 1; 9) (= Z(j — 1; ¥, 9,)) and
Zo(j — 1;9,) (= Z®(J — 1; ¥, ¥)) are (under Py ) independent of e;(9,). From
the definition of ¢, recall (6.1), we have

¢,(D0, o + Ah) = p(ef, NRTZ(j — 1; 9, ).

Now let H c RP*9 be a bounded set, i.e., ||h|| < M for all » € H. We have to
verify that for all & > 0 there exists Ao > 0 such that for all A, A] < Ao hE€H
and j€ N (& =38,+ Ah):

0 T r—1- — 2
wle), WS = Lo d) =1 R(e?)Z(j—1;8;)| <e.

(6.3) E,,
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It is enough to show that (6.4) and (6.5) below hold.
Ve>03j, €Nand A, > OsuchthatVj>j, h€ H |\| <A;:

o E"o{(p(ejq’thZ(j_ 1; 9, 1‘}0))/\— q)(ej(?,}\hTZw(j— 1; 190)) ]2 <e,
(64) (i) By, [ W7(2(j — 19, 8) - 2°(j — 1 9)} ()] < e
and
e, ARTZ2(j - 1;98,)) — ’
i) Eﬂo[w( : (; i &) ~ 1 — KTZ2(j - 1; «90)@(9}’)] <e

Ve>03A,>0,suchthatV|A\| <A, heH, j<j, —1:

(6.5) [ o( e, ARTZ(j - 1; 8y, 9)) — 1
E‘.}0 X

To see this we have from (6.2)
[<p(e;.>, ARTZ(j - 159, 8,)) — o(e?, \RTZ2(j — 15 9,)) }2
E,, 3
o(x, \RZ(j — 1,8, 9,)) — o(x, AKZ=(j = 1;8,)) |
=Eﬂofl: : A 0) f(x)dx
< By [RT(Z(j - 1;9,9,) — 2°(j — 1; )} 1( 1) /4,

so that (6.4)(i) and (ii) are consequences of Lemma 6.1. The third part of (6.4) is
mainly based on

Q Trgoof ; _ 1. — ?
E,,O["’(e”)\hz (; L; %)) — 1 _hTzw(j—l;ﬁo)qb(e}))]

[qo(ef, ARTZ2(0; 9,)) — 1
- E,

. 2
- hTZ(j -1 00)¢(e}))} <e.

2
- - wzes 0 o(et)

since {Z*°(J; ¥,); J € Z} is strictly stationary and Z*(j — 1; 9,) is independent
of e}). Now it is an easy task to verify (i)—(iii) of Lemma 6.3 by using Lemma 6.2
to establish (6.4)(iii). For fixed j € N, one can finally prove (6.5) in the same
way. O

PROOF OF THEOREM 3.4. The following inequality holds because of the strict
stationarity of {Z*(Jj; 8,); j € Z}:

f Lewmaonr> o |F7(90)]” Py,
< B, |(16,(9,))" - (W72=(j - 15 9,)9(ef))’|
+ f Lwrz=os onocet > ay | RZ(0; 90)@(e0)]” dPy,

d .
+ =B, [W7(8,)]",  d>0,
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where 1., denotes the indicator function of the set. Now (6.4)(ii) leads to the
assertion. O

For a proof of Theorem 3.5 we refer to Kreiss (1984), Theorem 2.6. It remains
to prove Theorem 3.7 in order to ensure LAN. .

PrOOF OF THEOREM 3.7. Note that [under Py ] {ef; t € Z} is an ergodic
sequence [cf. Doob (1953), page 460] and that {ATZ%(j; 9,))? can be written as
an integrable function which depends on ef, ¢ < j, only. By shifting {e?} in the
argument of this function we obtain (KTZ>(j + 1; 9,))%. That is why the ergodic
theorem [see, for example, Ash and Gardner (1975), Section 3.3.6] implies, as
n — oo, that

1 2 '
~ '21 [(b(e}’)hTZ“’(j - 1; 190)]2 - Eﬂo[qB(ef)hTZw(O; 1‘)0)]2P“,0 a.e.
j=
and (£*, = o(ef, t < 0; X;_p,..., X;1))

L$ b, (ol 1500 1o

I(f)

S|+

Y [1722(j - 1; 8)]° = Ey [9(€)R"Z2(0; 30)]° Py, ace.
j=1

|

The result follows by using (6.4) because of
. 2 . . 2
Eoo[(hT j(ﬂo)) |~Q¢j—1] = Eoo[((P(e}))hTZ(J -1 19o)) |‘2{jt1]
[note that Z(j — 1; 9,) is measurable with respect to &/;_;]. O

The next task is to verify the asymptotic linearity of A, (%), that is to prove
(4.5). The proof follows from a paper of Beran (1976), who treats the AR( p) case.
Using (2.5) we are able to carry his idea over to more complicated ARMA
models. As in Beran’s paper we first need

LEMMA 6.4. Define
2 n
66) T.9) = 7= L {6(e/() = Eu[o(e(Met;-1]}207 = 15 9)-
Then |
(6'7) Tn(ﬂn) - Tn(ﬂo) = OP,,O(]')
holds, where {9,) is a sequence satisfying (4.4).

Proor. For § > 0and ¢ z 1 let

X8 = {Xu |Xt| < 8\/;’
¢ 0, otherwise.
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Let e denote the sumlarly truncated version of e?, and set Z%(j — 1; 4, 9,) =
i B XD ps.o )51 )" Further, define [cf. (2.5)]
(6.8) e 5(9,) = (9o — ¥,) Zs(t = 1;9,, 8,) +ef,
and T3(9) as T, (19) with ¢(e; 5(9,)) instead of ¢(e;(d,)). Since
1
(6.9) f o mex X+ = maxlef] = op, (1),

by stationarity, we have T(9,) — T(9,) = op, (1) V 8 > 0. To obtain (6.7) it
suffices to consider E;_ IT2(3,) — T(9)I2 If we ‘consider the last ¢ components
TP ..., TP*9of T, only, we obtain, for ¢ = g -1,

EoO[T,f’““’s(ﬂn) - TP (9,)]*

—E%{ z [( i'Bz_le,-_k_t(a,»)(q-»(e,-,s(ﬂ,,)) - ¢(e?))

.....

2

( 5 8 e, k_,@n))(qb(e,.,s(an)) —q'»(e}’))l%-lu}

2

+—E.90{ )y Z (87, Bg—l)e})—k—t((p( E‘9°[(p M( ])}

Jj=1k=1
If we observe that E, [¢(e)|;_,] = E;¢(ef) =0 and that ey(9,) — e}
(8 — 9,)72(j - 1; 9, 0), then Lemma 6.1 enables us to show that both the
second and third summand converge to zero. By using properties of conditional
expectations we can bound the first term by

E i EoOl Z :Bk 165 k—z(ﬂn)l [¢(ej,8(0n)) - (i)(e!('))]z

j=l k=
12 » J 2
= '; Z N Z Blg—lej—k—t('ﬂn)
k=1

x [[o(x + (9 = 8,)72°) = 15 9, 8)) — 6(x)]" () k.

Since E,,O(Z};_l B ,':_ 18— »—(9,))? is bounded uniformly in n, j and ¢ (use Lemma
6.1 again) and since |e; 5(3,) — e(%)| = O(5) uniformly in j, n by (6.8), there
exists [because of (A. 5)(1)] a §, > 0 such that this last term is less than e for all
8 < 8, and n, j € N. Components 1 to p of T, are dealt with similarly but more
simply. O
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Now we are ready to complete the

Proor oF (4.5). Using (A.5)(ii), (6.7) and the same truncation technique as

above we obtain first
An(ﬂn) - An(ﬂo) + f‘n('ﬂn)l'( f )‘/’_"_(0)2 - 00) = OP,,O(]')y
6.10 A 12
(6.10) where I',(4) = - Y Z(j-1;9)Z7(j - 1; 9).
j=1

If we can show that
(6.11) f,(9,) - I(9,), in P, -probability as n — oo,

holds, the desired result follows. (6.11) itself is implied by

2
o0
(i) Eﬁo( Z B/?—lXj—k—t) —>j—>oo 0, uniformly inn > 1,
k=j

0 2
(il) Ea‘)o( Z (Bl?—l - lBl(e)—l)Xj—k—t) noow 0! unifOHnly in .] 2 11
k=1 '

o0
(iii) { Y B X hsJE Z} is ergodic and square integrable,
k=1

and analogous results for {e})} in place of {X;}. To prove (i)—(iii) Lemma 6.1 is
basic. For details we refer to Kreiss (1984), Lemma 4.4. O

Finally, it remains to prove Theorem 5.1. For the rest of this paper we assume
that (A.1)-(A.6) hold and that {#,} C @ is a sequence satisfying (4.4). As a first
step we note that

Et‘},, &n(ﬂn) - An({}n)"2

6.12 n 2 2
©12) % ; Eﬁo["Z(j— 1;9,)| j';{q,,,,-(x; 3,) — ¢(x)} f(x) dx|,

because of the following symmetry property of §, ; and ¢:
Gn, f(—x9) = =4, j(x;9) and ¢(—x) = —¢(x).
Along the lines of Bickel (1982) we will now establish a number of auxiliary

results which, together, ensure that the right-hand side of (6.12) converges to
Zero as n — oo.

LEMMA 6.5. Foreachx € R
_ A 20 0 2
Ean[ fa(rlz)(x){fo(n),j(x; '9n) - fo(n)(x)} ”Z(J -1 '9n)" ]
(6.13) a(n)—l

<
n-—1
where k, k, denote suitable constants.

{ko + 02%/(n—-1)}, 1<j<n,
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PROOF. Observe that

p-1( Jj 2 g-1( j
12G- 10 = T ( zﬁ:_lx,_k_,) . (z

t=0 \ k=1 t=0 \ k=1

2
Bl,zl—lej—k—t('ﬂn)) ’

that there exists a sequence {y;'}, <n Such that

J ")
Z BI?—lXj—k—t = Z Y/?—ﬂj—k—t(ﬂn)
k=1 k=1

(cf. Notation 2.1), and that E, (Z%_,v;" 1¢;_x(9,))* is bounded because of (A.6)(ii).
Thus, it is enough to consider terms of the form
_ ~ 2[ & 2
fo(rll)(x){ fo(n),j(x; &n) - fo(n)(x)} ( Z YI?—‘ lez‘n—k(&n))
k=1

Ey =T,

for i <j.

Noting that f, depends on e(9,), 1 < s < n, only, we obtain

(n),J

fo_(rlz)(x){f:r(n),j(x; 3,) — fo(n)(x)}z(;glﬁqei—k(&n)) ]

+o(n) /(n-1)0(1)
[compare with Bickel (1982), (6.7)]. Next

By [ 1) Fmy 585 82) = o)) 248,

T,<2E,
(6.14) "

< 28, | (@) gy T (8 + ei8,)s o(m) = ()

t+i—k
2

+8(x = e(9,); 0(n)) = fom(®) } | el 4(92)

£284 | Fabo)| gy (8o + e al0)s o) = ()

+g(x — e;_u(9,); o(n)) - f.,(n)(x)}] e?—k(ﬂn)l

(note that the second part occurs only if i — & # j).
Since y%g(x + y; 06) < 20 + 2x% !, these last expressions can be bounded by
(o(n)~Y/(n — 1))OQ) + (x2/(n — 1))O(1)). Similar methods lead to

| Eo, [ 1) (Fomn 35 82) = Focml®)) " eca(B)en- (8,

<o%(n) '/(n—-17°, k=+lL
Because Y2_,|v7|* = O(1), a = 1,2, the assertion follows. O
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In the same way one can establish

LEMMA 6.6. For each x € R

By [ £ ) B, 15 82) = o)) 1205 = 13 8,) ]

(6.15) o(n)~?
<

T (Ko + Kix®/(n—1)), 1<js<n,

holds, where K, K, denote suitable constants.

To follow Bickel (1982), Lemmas 6.1-6.3, we now prove the following three
results. First, we have

LEMMA 6.7. If n > oo,

(@) 1)
\/fa(n)(x) \/f(x)

616) - LB, |/ { } @27 - 191" | = o1).

ProOF. Because of Lemma 6.2 [Bickel (1982)] the result follows since
E, |Z(j — 1; 8,)|1? is bounded, independently of j € N. O
Next we prove a more complicated result.

LEMMA 6.8.

. 1 fim(a)\*
/{q,,,,(x, 5+ 2 fozn;(x)}

1 n
w 5 B
(6.17) .

X207 = 15 9) [ foim() d’C] =o(1).

ProOOF. We consider two parts of the expression under consideration,

1 fol(n)(x)

= | {én,,-(x; 0, + } 1205 = 15 0,01 fnx) dis

A, B, ; 2 foeny(%)
and
1 fim(®)\ |
x
In,j: A"’x;'ﬂn +_0("') Z ._l;ﬂn 2onx dx’
’ f(A,. /B.Ca ,«)”{q A% B) + 5 fo(n)(x)} 12(s M famy ()
where
= (ol (50, 2 ), B, (sl = )
and

Cn,j = {x“f:rzn),j(x; 0n)| =< Crn f;(n),j(x; ﬂn)}'
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From Lemmas 6.5 and 6.6 and the assumptions on c,, g,, 6(n) and d,, we have

A 2
2z < 1y¢ o(n) J(x D) Fomy, (%5 3)

nj=1 Jj=1 O(n) J

X"Z(] - 17 0n)||2fa(n)(x) (ix:l

(6.18) N ()
*Eon[fAn,.Bc {.,(,,),< %) _ i )}

o(n)(x) a(n)(x)

x| Z(j - 1; 0n)||2fa(n)(x) de}
= o(1).

To obtain (6.17) it is now enough, because of (6.16), to prove n~IEn E‘,’IJ{” =
o(1), where

(f( x)
(4, ,B,C, 7\ f(x)

We start by choosing j(n) € {1,..., n} so that max[ E, . I j=1,...,n]=
E, Jy» 7™ is satisfied. Then, for example

/()
E, f[( P 12t - 1001 1A;,.(,,,]f<x>dx

Jp = ) 1(x) el 20 — 13 9,) I

@) v
= O(l)(f(_f(T)) E,1 A ,(,,,f(x) dx) = 0(1),

because of (A.6)(ii)) and because E, JLag i 0 for all x € R, since
fa(n) jo(Xs B,) =, f(x)in Py -probablhty, cf. Bickel (1982), (6.12).

By similar arguments which take account of (6.13) of Bickel (1982), one can
obtain the same result for the remaining two parts of J;*/. O

Finally we have

LEMMA 69. Ifn-

(6.19) — ZE LS8 0 (@ — V@) a2 - 15 0,

The proof is exactly the same as that of Lemma 6.3 in Bickel (1982), because
G, ; possesses the upper bound c,/2 and E, ||Z(j - 1; 3,)l> is bounded



ADAPTIVE ESTIMATION 133

independently of j, n € N. Combining (6.12) and Lemmas 6.7-6.9, we obtain
~ 2
E0n||An(0n) - An(ﬂn)" = 0(1)’

from which we can obtain Theorem 5.1, because of contiguity of {F, , } and
{P,,s,} [cf. (3.4)], the measurability of A, (9,) and A, (3,) with respect to <7,
and Lemma 44.

Acknowledgments. The author is grateful to an Associate Editor and the
referees. Their reports led to considerable improvement of the presentation of
the original version of the paper.

REFERENCES

AHLFORS, L. V. (1966). Complex Analysis, 2nd ed. McGraw-Hill, New York.

AKRITAS, M. G. and JoHNsON, R. A. (1982). Efficiencies of tests and estimators of p-order
autoregressive processes when the error distribution is nonnormal. Ann. Inst. Statist.
Math. 34 579-589.

ANDERSON, T. W. (1971). The Statistical Analysis of Time Series. Wiley, New York.

AsH, R. B. and GARDNER, M. F. (1975). Topics in Stochastic Processes. Academic, New York.

BERAN, R. (1976). Adaptive estimates for autoregressive processes. Ann. Inst. Statist. Math. 28
77-89.

BICKEL, P. J. (1982). On adaptive estimation. Ann. Statist. 10 647-671.

DooB, J. L. (1953). Stochastic Processes. Wiley, New York.

FaBIAN, V. and HANNAN, J. (1982). On estimation and adaptive estimation for locally asymptoti-
cally normal families. Z. Wahrsch. verw. Gebiete 59 4569-478.

FULLER, W. A. (1976). Introduction to Statistical Time Series. Wiley, New York.

HAJEK, J. (1972). Local asymptotic minimax and admissibility in estimation. Proc. Sixth Berkeley
Symp. Math. Statist. Probab. 1 175-194. Univ. California Press.

IBrRAGIMOV, I. A. and Has’MiINskIL, R. Z. (1981). Statistical Estimation, Asymptotic Theory.
Springer, Berlin.

KaABAILA, P. (1983). On the asymptotic efficiency of estimators of the parameters of an ARMA

" process. J. Time Ser. Anal. 4 37-47.

KREIss, J.-P. (1984). Existenz und Konstruktion von adaptiven Schitzfolgen in ARMA(p, q)
Modellen. Dissertation, Univ. Hamburg.

KREIss, J.-P. (1987). On adaptive estimation in autoregressive models when there are nuisance
functions. To appear in Statist. Decisions.

LE CaM, L. (1960). Locally asymptotically normal families of distributions. Univ. California Publ.
Statist. 3 27-98.

Lukacs, E. (1968). Stochastic Convergence. Heath, Lexington, Mass.

Roussas, G. G. (1972). Contiguity of Probability Measures. Cambridge Univ. Press.

Roussas, G. G. (1979). Asymptotic distribution of the log-likelihood function for stochastic processes.
Z. Wahrsch. verw. Gebiete 47 31-46.

ScHUTT, W. (1985). Einige Untersuchungen iiber das asymptotische Verhalten der Log-Likelihood-
Quotienten Statistik bei abhsingigen Beobachtungen. Dissertation, Univ. Hamburg.

SWENSEN, A. R. (1985). The asymptotic distribution of the likelihood ratio for autoregressive time
series with a regression trend. J. Multivariate Anal. 16 54-70.

INSTITUT FOR MATHEMATISCHE STOCHASTIK
UNIVERSITAT HAMBURG

BUNDESSTRASSE 55

2000 HAMBURG 13

FEDERAL REPUBLIC OF GERMANY



