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STOCHASTIC COMPLEXITY AND MODELING

By JorMA RISSANEN
IBM Almaden Research Center

As a modification of the notion of algorithmic complexity, the stochastic
complexity of a string of data, relative to a class of probabilistic models, is
defined to be the fewest number of binary digits with which the data can be
encoded by taking advantage of the selected models. The computation of the
stochastic complexity produces a model, which may be taken to incorporate
all the statistical information in the data that can be extracted with the
chosen model class. This model, for example, allows for optimal prediction,
and its parameters are optimized both in their values and their number. A
fundamental theorem is proved which gives a lower bound for the code length
and, therefore, for prediction errors as well. Finally, the notions of “prior
information” and the “useful information” in the data are defined in a new
way, and a related construct gives a universal test statistic for hypothesis
testing.

1. Introduction. The purpose of statistical model fitting is to “ understand”
the observed data. If by understanding we mean the ability to remove redundan-
cies in the data and hence to discover regular statistical features, then the
ultimate measure of the success of such attempts must be the length with which
the data can be described, say, in terms of binary digits. Indeed, if such a shortest
description of the data, to be called stochastic complexity, is found in terms of
the models of a selected class, there is nothing further anyone can teach us about
the data; we know all there is to know. This is the rationale behind the MDL
(minimum description length) criterion, which we, inspired by the algorithmic
notion of information, Solomonoff (1964), Kolmogorov (1965), and Chaitin (1975),
introduced in Rissanen (1978) and (1983) in a particular nonpredictive form. The
criterion also reduces to the maximum likelihood criterion in the special cases
where the use of the latter is appropriate.

We may regard our work as a continuation of the program that Fisher began
with his information, which is defined in terms of the covariance of the estimated
parameters about a “true” parameter. Wishing to remove the untenable assump-
tion of data generating systems and “true” parameters, we instead regard the
class of models to provide a language in which to express the regular features in
the data. Because then the models cannot be restricted to have a fixed number of
parameters Fisher’s information does not apply, and we must consider the
complexity and information directly in the observed data. That the resulting
complexity still is a meaningful concept is evidenced by the fact that even
prediction errors can be so expressed. The fact that no “true” parameters are
needed in our notion implies that the associated optimal model is not an
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approximation of anything at all. Rather, it acquires its own data dependent
meaning from the two interpretations of the complexity, the first as the shortest
code length and the second as the smallest prediction errors. As a further
consequence, any two models, even with different numbers of parameters, can be
fairly compared, which, for example, in the important selection-of-variables
problem pretty much settles a major question about the least-squares estimates
left open by Gauss, namely, how to estimate the number of the regression
parameters.

The first contribution in this paper is to define the notion of stochastic
complexity, especially when the coding is done in a predictive manner. This will
provide a criterion, which, unlike the earlier nonpredictive MDL criterion,
penalizes the number of the parameters in the fitted models without any
explicitly added term. The associated predictive MDL modeling principle turns
out to be closely related to the “prequential” principle, discovered independently
by Dawid (1984) for the case where the data have a natural order. Still another
related idea, called “forward validation”, appears in Hjorth (1982), where it,
however, was used in a traditional manner to provide unbiased estimates or
estimates with reduced bias.

The main contribution in this paper is a fundamental theorem, which sets a
tight lower bound for the code length with which long strings of data can be
encoded with help of a class of models. Because prediction is just another form of
coding, the theorem also gives a universal lower bound for the mean prediction
errors of any predictors. The theorem may further be used to assess the goodness
of estimators, which, unlike in the Cramér-Rao bound, may include the esti-
mates of the number of the parameters as well. This theorem with a companion
theorem, stating that the complexity achieves the lower bound, may be taken to
provide a rational basis for model comparison, regardless of whether the models
have the same number of parameters or not.

As the third contribution of this paper we formalize concepts such as “useful
information,” and “prior information” in the data. We also define a universal test
statistic for hypothesis testing, which appears to have a number of advantages.
We illustrate the idea by a test of two-way contingency tables.

2. Predictive MDL principle. The probabilistic models we consider consist
of indexed densities f,(x|u), or ultimately probabilities P,(x|u), where x =
Xyy...,X,, also written as x”, denotes a sample of length n as a response or
“output” to another “input” sample u = u”" of the same length. Because the
input sample adds nothing new in principle, we drop it to simplify the notations;
we illustrate its use in Example 2 below. We denote both random variables and
their values with lower case letters, letting the context tell which is meant. The
data items are often numerical, but, of course, not always. When numerical, each
number in the binary notation, say, has only some number r of fractional digits.
Hence, when the model is a density it assigns a probability to x, which is
obtained by integrating the density over the n-dimensional cube of edge length
277 with x as the center. We denote this induced probability function by P,(x)
without indicating the implicitly understood precision r, which we otherwise do
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not need. The index a may be taken sufficiently general to allow comparison of
nested and nonnested models alike. However, it is the number of parameters that
turns out to be the interesting quantity, and we for simplicity take the index to
be of the form a = (&, §), where & denotes the number of components in the
parameter vector § = (0,,...,6,),and & = 0,1,... . The value £ = 0 corresponds
to the empty parameter A.

We are interested in predicting the sequence x as well as coding it. The former
may be viewed as a special predictive form of coding, and we gain generality by
proceeding with the coding interpretation. Often, we wish to model the data such
that the individual observations are independent. Then, instead of coding a
sequence the relevant problem is to encode the n-element unordered “list” {x,},
where repeated occurrences of a value are preserved. The required modification
for such a case will be discussed below. Predictive coding means that we model
the conditional density for the possible values of the “next” observation x,,,
thus

(2.1) fk,@(t)(xt+1|xt)’

where 8(¢) = O(x") is obtained with an estimation algorithm for the parameter 6
with %2 components. Such a density allows us to encode the observation x,,, to
the precision r with the “ideal” code length —log P, 5.,(x,.,|x"), which, as just
explained, is represented by —log fy 5(;(%;.1/x*). The word “ideal” means that if
the possible values of the next observation indeed are distributed as modeled,
then no prefix code exists with a shorter mean length. Whenever we wish to
express the code length as the number of binary digits in the coded string, the
logarithm is to be taken to the base 2; otherwise, its base does not matter. By
adding all these ideal code lengths, we get the total code length

n—1

(2.2) L(x|k) = - Z log fk,@(t)(xt+1|xt)-

t=0

This may be minimized with respect to 2 to give the estimator ie(n) = k(x"),
which with the last data point defines the final estimate #(n) having k(n)
components. .

How should we select the estimate 6(¢) for each £? On first thought one might
think of picking it so as to minimize the ideal code length —log f, 4(x,,,|x").
But, clearly, this cannot be done, because such a minimization would make 6(¢) a
function of x,,,, which, in turn, would make decoding impossible. Indeed,
decoding of x,,, requires the knowledge of é(t), which therefore must not
depend on the value x,,, to be decoded. We are faced with the central issue in
inductive inference, and we reason as follows: In the light of past observations
the best single value of the parameter for encoding the “next” observations,
X1, L=0,1, ,t — 1, is the value that minimizes the sum

—ZiZolog fr, o(x; +1lx ) This is the maximum likelihood estimate (¢), except
that we add the restriction that the predicted density (2.1) is positive for every
possible value of x,,,, which is required to make (2.2) meaningful for all data
sequences. We might then say that this choice for the estimator d(¢) is based
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upon the hope that the predicted distribution (2.1) for the new observation x,_ ,
is like it was in the past, which to us seems to be as sound a principle for
statistical inference as any. After all, by its nature inductive inference is based
precisely upon such a faith; the same reasoning was also applied in the “pre-
quential” procedure, Dawid (1984).

The minimization of (2.2) requires the initial estimate #(0) for each number of
components k. The traditional way to calculate such is to select more or less
arbitrarily a prior density function for the parameters and then take one of the
maximizing values as the estimate 6(0). The predictive approach, however, offers
a different way, and one which avoids the both conceptually and technically
difficult problem of specifying the prior densities. Indeed, what (2.2) really
requires is the specification of a density function f(x;) for the first observation
such that it reflects our prior knowledge about its value. Technically, we may
take this density function to be in the parametric family and specified by the
empty parameter A. Such a distribution is often much easier to pick than a prior
for the parameters. For example, if the prior knowledge consists of the fact that
the set of possible values of x, is finite, M, put —log f(x;) = log M. The
procedure to compute (2.2) for each selected number of parameters k is then as
follows: The first observation x, is encoded with the ideal code length —log f(x;),
where the density is selected to represent our knowledge, often ignorance, about
the value x,. We continue encoding the next observations with this same density
until one parameter can be uniquely fitted, and we increase the number of fitted
parameters in this manner one by one until the set value k, needed in the
evaluation of (2.2), is reached.

The minimized code length (2.2) does not quite represent the complexity of the
sequence x, because it is conditioned on the optimizing number of parameters,
which clearly is required in the decoding process. This value can be given in a
coded form as a preamble in the entire code string. Because the decoder will have
to be able to separate the binary codeword representing %(n) from the subse-
quent code of the data without a separating comma, the preamble must be a
so-called prefix code. As discussed in Rissanen (1983), encoding the natural
number & by a prefix code requires

(2.3) L*(k) = log*k + log ¢

binary digits, where log*k = log k£ + loglog k& + - - -, the sum including all the
positive iterates, and c is the constant, about 2.865, that makes ¥®_ 275" = 1,
Therefore, we may define the (semi) predictive (stochastic) complexity of the
sequence x, relative to the selected class of models, as

(2.4) Igp(x) = mgn {L(x|k) + log*k + c}.

The word “semi” suggests that the optimizing number of parameters, which we
still write as k(n), is not determined the predictive way. To avoid misunder-
standings we emphasize that the main effect for penalizing the number of
parameters in (2.4) is by no means due to the second term, log*k. In fact, in most
if not all the cases of interest the minimizations of (2.2), where no such term
appears, and (2.4) produce exactly the same number of parameters, which is why
we may safely use the same symbol to denote both.
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We can apply the above discussed inductive reasoning to obtain a purely
predictive complexity. Indeed, let %(t) denote the minimizing number of parame-
ters in (2.2), where 7 is replaced by ¢. Then we may regard the pair (k(¢), §(t)) to
represent our best estimate of the conditional density for the possible values of
the “next” observation x,,, available at time ¢. Adding the resulting ideal code
lengths we get the purely predictive (stochastic) complexity as follows

n—1

(2.5) lP(x) = - Z log fie(t),@(t)(xt+1|xt),
t=0

where %(0) = 0 and 8(0) = A, representing the empty set of parameters. In other
words, the initial density f(x,) is determined as described above.

In the case where the observed data do not form a natural sequence, and they
are modeled as independent, we should modify (2.2) by minimizing it over all
permutations. In other words, we should find that order which allows for the
shortest code for the unordered list. Except for very small sample sizes such a
search is far too complex, and we construct a symmetric function of the data by a
local optimization procedure as follows:

n—1

(2.6) L(x|k) = EO e R {108 Fa. sy mue( %) 5

where the minimizing index j defines i(¢ + 1). The associated predictive and
semi-predictive complexities for the unordered list of observed data are then
defined analogously with (2.5) and (2.4). We illustrate this procedure by Example
2 below.

DiscussioN. In Rissanen (1978) and (1983) we, in effect, defined a third,
purely nonpredictive notion of complexity, which to within terms of order log # is
given by

k
(2.7) Inp(x) = r;eljg{—log fr,o(x) + 5log n}

This formula results from a particular way of coding the data, where the second
term represents the number of digits required to encode & parameters to an
optimal precision. Clearly, this nonpredictive stochastic complexity cannot be
meaningfully interpreted in terms of prediction errors. The criterion (2.7) is seen
to be identical in form but not in scope nor in content with Schwarz’s criterion,
Schwarz (1978).

We now have three different versions of complexity for a sequence. This
abundance is a reflection of the difficulty in defining the notion of complexity in
an objective way for short data sequences. The trouble arises just as soon as we
try to make precise the way one is allowed to use the models in the selected class
to do the coding. For example, one cannot permit the estimators 6(¢) to be
completely arbitrary, because there may exist the estimator that assigns the
probability unity to the actually occurring value x,,, for each ¢, which would
give a perfect prediction. To be sure, such an estimator would require the
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knowledge of this value, but for a given sequence such a “predictor” exists as a
mathematical function. One could bar out such estimators by requiring their
description to have a uniformly bounded length, independent of the sample size
n, but then we would be back in the algorithmic notion of complexity, and we
would not be able to use our model classes in any meaningful way as the
“language” in which to look for the regular features in the data. .

For these reasons, in the three notions of complexity the estimators 6(¢) to be
used are specified one way or another. Although the chosen estimators, of course,
are meaningful and natural, their selection was done on subjective grounds just
the same, which is what we ideally would have liked to avoid. (Such qualms
might be considered as being of no practical significance, but our aim in this
paper is to seek a foundation for statistical reasoning which is as free from
arbitrary choices as we can make it.) The situation improves rapidly with the
growing sample size n, because then all the three notions of complexities tend to
be equal, and, moreover, all of them, indeed, represent asymptotically the
shortest code length, calculated per observation, available with any ways of doing
the coding. This, of course, is the reason why it at all is meaningful to talk about
complexities. We prove such results in the next section.

ExAMPLE 1. Consider the class of Bernoulli models. Hence, £ = 1 and 6 = p,
the probability of the occurrence of symbol 1. In lack of prior knowledge the first
symbol is taken to occur with probability ;. Hence no prior density in the
parameter space nor the Bayesian formalism is needed. Having observed m
occurrences of the symbol 1 in the past ¢ symbols, we form the estimate
b(t) = (m + 1)/(t + 2), which is seen to modify the maximum likelihood esti-
mate such that the values 0 and 1 are avoided. By an easy induction the entire
string of length n with n;, occurrences of symbol i, i = 0,1, gets the probability
P(x) = ny'n,!/(n + 1)!. Notice that the sum of this over all strings of length n
is unity. The predictive and the semi-predictive complexities, taken either for
strings or for unordered lists, agree, and they all are given by —log P(x), which
by Stirling’s formula also can be written as

(2.8) I(x) = nH(fn?) + Hogn + O(1/n),

where H(p) = —plog p — (1 — p)log(1 — p).

We next study to what extent prediction error measures can be interpreted as
code lengths, which at the same time illustrates how the large classes of models as
studied here are typically generated. Let £,,, = g,(x‘) denote a parametric
predictor of x,,;, where the parameter is to be determined from the past data.
Usually, the predictors are defined by recurrence equations such as of the ARMA
type. One may view this process as a means of accounting for the dependencies in
the data, which when done well causes the prediction errors to be nearly
independent. Next, let §,(x,,,, £,,,) denote a measure of the prediction error.
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Now define
(2°9) f,yo(x,“[x’) = K(xt’0)2“8t(xt+h-"‘¢+1)’

where K(x', 6) denotes that number for which [f, ,(y|x‘)dy = 1. We then see
that

—log f, 0(xz+1|xt) = 8,(x,11, £,4,) — log K(x%,6)

represents an ideal code length for the observation x, given the past data. With
a suitable estimator 8(¢) = A(x*) the total ideal code length takes the form

@10 LGk = T 8(rn i) — L log (', 0(0).

We see that this predictive MDL criterion differs from the first sum, involving
the prediction errors, only to the extent the second term depends on k. Most of
the usual prediction error measures actually depend only on the difference
€;41 = X,,, — £,,,, and, moreover, often the possible values of x,,, range from
— o0 to + o0. Then we see that K(x’ 8(¢)) = K(x?), and the difference between
the two criteria amounts to a constant.

With the quadratic error function, giving rise to gaussian models, the predic-
tive MDL principle reduces to a predictive least-squares principle, which we
illustrate in the important selection-of-variables regression problem; for ARMA
estimation, see Rissanen (1986a).

ExaMPLE 2. The observations consist of n tuples, (x(i), u,(2),..., u, 1)),
i=1,...,n,m+ 1 elements in each, where m, the number of the regressor
variables or “inputs” in our terminology, may be large. The basic problem is to
find out which subcollection of the regressor variables gives the best prediction of
the variable x. In order to simplify the description, we only look for subcollec-
tions consisting of the first 2 variables, and ask for an optimum value for k. The
general case is similar except numerically more complex. We consider a linear
predictor of the usual type

k—1
(2.11) #(i) = goa,-u,-(i),

where u,(i) = 1. We measure the prediction errors by the sum of the squares,
8(xyy — &,41) = 3e/,1, where e, = x,,, — &,,,. Then fy(x,,,[x"), defined by
(2.9), is seen to be normal with mean £%,,, and variance 1.

Ignoring initial knowledge we look for the smallest observation x(i,) according
to (2.6), which we predict as 0. For 2 = 0, which means that we ignore all the
regressor functions, the best fit for a, from the past observations at times
i},..., 1, is the average d(t) = 1/tX%_,x(i;), which is taken as the prediction of
that observation x(i,, ), among those not yet predicted, for which the prediction
error is smallest. Adding such prediction errors (x(i,) — @,(t))? over all the data
gives L(0). For £ = 1 we still predict x(i,) as 0. Recursively, suppose we have
calculated i, ..., i, (which need not coincide with the indices found for £ = 0), at
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which points the corresponding prediction errors e?(i;) also have been de-
termined. We find &, ,(¢) and @&, (¢) by minimizing X!_ (x(i,) — @ — bu,(i,))*
with respect to a and b. This gives the prediction error e(i,.,) = x(i,, ;) —
®(i,,,), where £(j) = @, ,(t) — 4, ,(t)uy(Jj), and i,,, denotes the index of the
variables not yet predicted for which the prediction error is smallest. Adding
again the squared prediction errors over all the data we get the sum L(1). We
continue this way calculating L(k) for each k, and we find the minimizing
number & = 7c(n), which, in turn, defines the least squares estimates for the real
valued parameters from all the data.

This routine for fitting polynomials to a scattered points, marked by hand on
the screen of a computer, was programmed. The displayed optimum degree
polynomials agreed in an uncanny way with the best polynomial judged by the
human eye. Also, it was found to be essential to compute the predictive complex-
ity for an unordered list, rather than for the data ordered in a random way, to
avoid initialization problems. We proved in Rissanen (1984b) that under reasona-
ble conditions on the regressor variables the estimates £(n) are consistent, and
that the estimates of all the parameters are asymptotically optimal in minimiz-
ing the mean per observation prediction errors E(1,/n)S(%(n)) in the case where
such a proof makes sense, namely, where a “true” set of parameters exists. These
results, in effect, settle the issue of how one should estimate the number of
regressor variables, because prediction is the very reason we want them.

3. Main bound. The main result to be stated requires certain smoothness
conditions on the parametric densities, which determine the way certain esti-
mates of the parameters converge. These conditions need a verification in each
individual class of models. By the theory of large deviations they can be shown
to be satisfied for the class of Markov chains, as shown by H. Kiinsch in
Rissanen (1986b). By a rather different (and difficult) analysis they can also be
verified for the gaussian ARMA models. For the gaussian regression case,
Example 2 above, the required conditions are trivially satisfied.

THEOREM 1. Let for each k the parameters 6 range over a compact subset
Q* with nonempty interior of the k-dimensional Euclidean space. We assume
that there exist estimates 0(x™) satisfying the central limit theorem such that the
tail probabilities are uniformly summable as follows

(31) P{Vn|8(x") — 8] > logn} < 8(n), forall8,and ¥.8(n) < w,

where ||0|| denotes a norm. If g is any density defined on the observations,
satisfying the compatibility conditions for a random process, then for all k and
all 6 € Q*, except in a set of Lebesgue measure zero,

Ek,010g[ fk,o(x")/g(xn)] > 1
(k/2)log n -

The mean is taken relative to the distribution defined by f, ,.

(3.2) lim inf
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The proof is given in Appendix A.

DiscussioN. The claim can also be stated thus: For all %, all positive

numbers ¢, and for all points 6 € Q*, except in a null set,
fr, o(x") .

(3.3) E, 4log 2(x") > (4 —¢)klogn,

for all but finitely many values of n.

This theorem has many uses, the most important of which is that it justifies
the notions of stochastic complexity thereby providing a rational basis for model
assessment regardless of the number of parameters in them. To see this we first
demonstrate how the theorem may be regarded as a generalization of Shannon’s
famous coding theorem. Let L(x) be any real-valued function, interpreted as a
code length, which satisfies the inequality

(3.4) L(x) > —logg(x), allx,

where g(x) is a density defining a random process. Because it integrates to unity
over the sequences of the same length, we see that (3.4) requires the length to
satisfy a generalized Kraft inequality. But g also satisfies the compatibility
conditions for a random process, which is reflected in a similar but weaker
requirement for the code length. These conditions are natural enough, and all the
usual codes satisfy them. We call such a code length regular for brevity. By
applying the theorem to the density g(x) the inequality (3.4) converts (3.3) to the
desired result,

(3.5) E,oL(x") = Hy o(n) + (3 — )k logn,

where H, ,(n) denotes the entropy of the data sequences of length n. Shannon’s
inequality results from % = 0, which represents the case of a model class having
only one member, and fixing n.

It is readily seen that (3.4) holds for the semi-predictive complexity L(x) =

lgp(x) and

g(x) — i 2-—L*(k)2—L(x|k),
k=1

where L(x|k) is given by (2.2). The predictive complexity, too, is regular, for it
satisfies (3.4) with equality, as seen by putting g(x) = 27**), The nonpredictive
complexity (2.7) satisfies (3.4) up to terms of order log n. The inequality (3.5),
then, gives a justification for the term “minimum description” in Rissanen
(1983); there we described a particular coding scheme but did not prove that it
produces an asymptotically shortest code length.

Further, Theorem 1 gives a lower bound for the accumulated prediction errors
resulting from “honest” predictors. By an “honest” predictor we mean one where
the prediction of the #'th data item is made as a function of the previous items
only. Such one-sided predictions guarantee by Bayes’ theorem that the resulting
minimized joint density is both proper and satisfies the compatibility conditions
for a random process, as was seen to be the case with the predictive complexity
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above. Hence, Theorem 1 applies. The qualification of “honesty” is necessary
because the cross-validation technique in Stone (1974) and Geisser and Eddy
(1979) involves prediction which is “dishonest” in the sense that a data item is
predicted both from the “future” and the “past” values alike. Evidently, in a
given sequence, only one intermediate value can be meaningfully so predicted;
the other data items are needed in this prediction and, therefore, there is no point
in predicting them. A specific statement of a bound for “honest” predictions for
the regression problem and the gaussian ARMA processes is given in Rissanen
(1984b) and (1984a), respectively. We give here the latter statement, where the
quantifications are weaker than in Theorem 1 for the reason that at that time we
had not verified the condition (3.1) for gaussian ARMA processes.

THEOREM 2. Consider the set of gaussian ARMA( p, q) processes, where the
p + q + 1 parameters 0 = (a,,...,a,, by,..., b,) range over a compact subset
QP+a*1 of the (p + q + 1)-dimensional Euclidean space with nonempty interior.
In particular, b, = o, where o% denotes the variance of the innovation process.
Let £, be any predictor of x, as a measurable function of the past data x'~'.
Then for all p and q, all positive numbers e, and for all points § € QP9+,
except in a set A(n), the volume of which shrinks to zero as n grows,

n —_
(3.6) E(,% Y (x,- %)= 02(1 + p—-—'-—q——iln n)
t=1

Many criteria for estimation appearing in the literature can be expressed as
the negative logarithm of a product of conditional densities for the data items
with possibly some added terms to penalize the number of parameters, to be
minimized over the parameters. In view of Theorem 1 there is a growing
suspicion in this author’s mind that unless the minimized criterion satisfies the
inequality (3.4), the estimation will run into one or another kind of trouble. Prime
examples of this are the maximum likelihood function and the ordinary least-
squares criterion, neither of which can be applied to estimation of complex
models where the number of the parameters is also to be estimated. The
cross-validation criteria were meant to rectify this problem, but they appear to
be asymptotically equivalent with Akaike’s AIC, which does not satisfy (3.4), and
they do not allow a consistent estimation of the number of the parameters, Stone
(1977a, b). Hence, it is not the idea of “cross-validation” that does the trick but a
normalization (3.4). For the same reason this author is skeptical of the Bayesian
attempts to introduce improper priors. In contrast, the MDL principle allows any
sorts of “prior” assignments, whether they are determined from a part of the
data or from no data at all so long as they produce decodable parameters. And
always the optimized code length is regular.

Another form of Shannon’s inequality states that the Kullback-Leibler dis-
tance between a “true” density function f and any modeled density g is
nonnegative. We can sharpen the inequality if we specify only that the “true”
density is one in a family, and we allow the modeled density to result from any
estimation procedure; for example, we may take g(x) = I, fzs(%,,,|x‘) Where
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a(t) = (k(x?), B(x?)) is some estimator. Then by (3.2) not only is the
Kullback-Leibler distance nonnegative, but it must be strictly positive at least
by an amount which reflects the uncertainty that the “true” parameter is one in
the chosen class. This suggests the interpretation that this amount (%/2)log n
represents the optimal model complexity. We may thus view (3.2) as providing a
yardstick for the goodness of an estimator a(x) by comparing the associated code
length —log g(x) for long strings with the nonpredictive complexity, which
represents the lower bound in Theorem 1. This is particularly appropriate
because all the three complexities appear to reach the lower bound asymptoti-
cally in an “almost sure” sense; see for example the discussion in Dawid (1984),
which also gives a nice justification for the term (k/2)log n.

It seems to us that, indeed, the three complexities can be rigorously shown to
reach the bound —log f, 4(x) + (k/2)log n for almost all samples, perhaps even
more simply than in the “mean” sense, but we cannot see any way at all to prove
that no shorter regular code length exists for almost all samples. About the
reachability of the bound in Theorem 1 for the semi-predictive complexity, we
can supply a proof only in selected cases. One such is the basic gaussian
regression problem, Rissanen (1984b). Another is the class of Markov chains,
Rissanen (1986b). A third appears to be the important ARMA class, although at
this writing the job is not quite finished. Here, we prove such a result with
independence conditions.

THEOREM 3. Let the family of densities satisfy the conditions for indepen-
dence for each k and 6 € Q%, namely, f, o(x) = T17_, 5 o(x,), and let f, o(x,) e
three times continuously differentiable with respect to 0 in the interior of a
compact set QF*. Further, let the central limit theorem hold for some estimates
6(x™) of 0 in the interior points such that the four first moments of Vn (6(x™) — 6)
conver’;ge. Then lgp(x), defined by Eq. (2.4), is optimal in that for all k and all
fin QF,

k
(3.7) Isp(x™) < —E, 4log f), o(x") + Elogn + o(log n),
where o(log n)/log n goes to zero.
The proof is given in Appendix B.

4. Information in experiments. In this section we wish to define in a
formal way such frequently used intuitive notions as “information in an experi-
ment” and “prior information.” The first of these has been defined earlier in
terms of the Fisher information and in some contexts in terms of the
Kullback-Leibler information, Gokhale and Kullback (1978) and Lindley (1956).
Although both concepts do have the right flavor, their scope is limited to model
classes with a fixed number of parameters, and a change of view is needed to
generalize them for the model classes studied in this paper. As regards the “ prior
information”, the early definition by Lindley (1956) in terms of Shannon informa-
tion, is strictly restricted to the traditional way of modeling prior knowledge as a
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distribution about a “true” parameter value. In other words, the only source of
uncertainty stems from sampling, which, of course, is a grossly simplified view
and leads to absurdities of the kind that the importance of parameters and their
estimates can be measured solely in terms of how narrow the distribution of their
estimates is.

Intuitively, by “useful information” in the data we mean something that we
can learn. This certainly cannot be the “disorder,” which we measure by complex-
ity. Rather, such information must have the nature of regular features or
constraints that we can discover, which suggests that it could be measured in
terms of the reduction in the total code length below a certain neutral level,
obtainable with use of no model at all. In order to calculate such a neutral level,
we use a universal prior density on nonnegative real numbers, which we can
define by help of the universal distribution for the integers constructed in
Rissanen (1983) and given by (2.3). This universal distribution provides asymp-
totically the most efficient coding of integers. For example, it follows from the
work in Bentley and Yao (1976) on the function log* that the length of any prefix
code sequence on the natural numbers must exceed L*(n) — 2k*(n) infinitely
many times, where &£*(n) denotes the number of terms in log*(n). Because the
second term grows very slowly, we conclude that the universal sequence is not far
from the least asymptotic upper bound for all probability sequences on the
positive integers. That such a bound cannot be reached by any sequence is not a
serious practical defect, and we feel quite free to use L*(n) as an excellent
representative of the universal prior. We extend this universal distribution to a
universal density for the positive real numbers as follows:

1 -
(4.1) q*( y) = ;2'105*(3/)’

where ¥ is the smallest integer greater than or equal to y. This has the property
we need: It accurately represents the complexity of any truncated real number. If
a number y has r fractional decimal digits, the above density assigns to it the
probability 10 ~"g*(y), and its complexity may be taken as the negative binary
logarithm of this probability. For example, the number 275.233 has the complex-
ity 10 + log*276 = 22, and there is no way to describe this number with fewer
binary digits while maintaining the additional requirement that the description
can be decoded even when it is followed by other binary symbols; i.e., that the
code is a prefix code. And it is precisely this property which we regard as the
foremost requirement in any prior that can claim universality; for example, it
follows that scale changes and other such transformations cannot reduce the
complexity in a substantial way.

The universal density at the observed sequence x is taken as ¢*(x) =

7 19*(x,). Now we define

(4.2) I(x) = —logg*(x) — I(x),

where /(x) is one of the complexities defined in Section 2, to be the information
in a statistical experiment, defined by x and the considered class of models. This
represents the amount of ““ useful” information in the data. The word “ useful” is
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to be taken only in the sense of extractable regular features relative to the
considered class of models. Two strings of data might well have the same amount
of useful information, but we might consider one of them to be more valuable for
some practical purpose. The measure also corresponds to intuition: If the data is
“random” in the sense that it cannot be compressed by any model, then the
useful information is zero, or near zero, as it should be. On the other hand, if we
have guessed the model class right, then the best model that gives the complexity
also incorporates the maximum amount of useful information; there is nothing
more to learn from the data with the proposed models. However, another model
class might be found which compresses the data more, and which allows us to
learn more.

On intuitive grounds we would expect the information I”(x) to be positive, if
the chosen model class is reasonable. To show that kind of property we calculate
the mean of this information. If we consider classes of models which satisfy the
assumptions in Theorems 1 and 3, then by putting g(x) = g*(x) we see that the
mean information over strings of length n satisfies

f k0 ( x )

g*(x)
under the qualifications regarding 6, n, and e stated in (3.3). Here I(x) denotes
one of the complexities in Section 2. This is really the extreme case where we
have picked a worthless class of models. In any other reasonable class, I(x)/n
will be below —log g*(x)/n by the order of a constant, and the mean useful
information will be strictly positive even for finite values of n.

In our general philosophy of modeling there are no data generating probabilis-
tic systems nor “true” parameter values. Therefore, it is meaningless to measure
the amount of prior knowledge in terms of Shannon information of the random
variable taking values in the parameter space with some prior distribution.
Indeed, a narrow concentrated distribution does not represent a great amount of
prior knowledge unless the center of concentration represents a “good” parameter
value; that is, one which selects a model from the family which captures well the
regular features in the data. The Shannon information and hence Lindley’s
measure of prior knowledge are independent of the most important source of such
knowledge, namely, the location of the concentration. For these reasons we define
the prior information differently. Let &(0) = (%(0), #(0)) be a prior estimate of the
number of the parameters and their values, respectively. As explained in Section
2, these estimates may define an empty parameter A, which selects a special
density fy(x,) from the family. We define

f&(O)(x) _
g*(x)

to represent the prior information, provided by the prior estimates. The dif-
ference

(4.4) I(x) = I"(x) = I°(x) = —log fao(x) — Ux) + L*(k(0))

clearly represents the information provided by the likelihood function alone.

E, ¢I"(x) = E, 4log — E, o[U(x) + 1og f, 4(x)] > —clogn,

(4.3) I°(x) = log log*%(0)
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What about positivity of these last two notions of information? It seems to us
that there should be no reason why just any prior parameter value ought to be
able to extract useful information from the data. In fact, we might even do worse
than what is achievable with the universal density g*(x), so that the prior
information might be negative. However, when the sample is large we should
definitely expect to learn something about it with the likelihood function so that
the mean of I"(x) — I°(x) should be positive. This, indeed, can be shown under
the same qualifications as the positivity of the mean of I"(x). Just pick g(x) =
fs0(%) in Theorem 1, and apply both Theorems 1 and 3.

5. Model testing. In this concluding section we wish to illustrate the wide
scope of the notion of stochastic complexity by applying it to hypothesis testing.
Consider a set of models { f,.(x)}, representing a composite null-hypothesis, and
another disjoint set { f,(x)}, representing a composite alternative hypothesis. The
indices a = (%, 6), and o’ = (k’,8’) are arbitrary. Let !/(x) and I(x) denote the
semi-predictive stochastic complexities of x relative to the two classes of models,
respectively. Then we take the difference D(x) = l(x) — I’(x) to be a test
statistic, and decide in favour of the null-hypothesis if D(x) > 0, and against it,
otherwise. Notice that in case of two simple hypotheses this test statistic
coincides with the likelihood ratio, which is known to be the most efficient test
statistic. A related test statistic was also considered in Dawid (1984).

This testing has a number of advantages over the traditional testing proce-
dures. First, even composite hypotheses get represented by a single model,
namely, the model which gives the complexity of the data relative to the class of
models. Hence, there is the possibility of learning by finding better and better
model classes. Second, our test does not require knowledge of the distribution of
the test statistic, and, hence, it is valid for small and large samples alike. 1t is
clear that the validity for small samples will have to be verified by applying the
test to a large number of actual cases, where the results are known. We have
studied a half a dozen of them, and in each the test result appears highly
reasonable. For large samples an analytic validity test can be made, and again the
results appear to be good; see the examples below. Third, the size of the test is
automatically adjusted to the amount of observed data. One might argue in favor
of a subjectively selected size, but even if we can easily do the same we cannot see
why such a thing ought to be done. After all, such a number adds nothing to the
amount of information that can be extract from the data, and hence it is quite
irrelevant in deciding which of the two considered hypotheses is the more likely
explanation of the data. After this question is settled, we regard it as a separate
matter to judge the consequences of acting on the result, which depend on issues
and values that have nothing to do with the data. We illustrate our approach
with two examples.

ExamMpLE 3. Consider the null-hypothesis p = 1 against the alternative p + 1
in the class of Bernoulli models. We have by Example 1 in Section 2,

(5.1) D(x) = 1og%—1)—!

- —n= llogn — n(1 — H(ny/n)).
!
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We accept the null-hypothesis if D(x) > 0, which means that in order for us to
accept the opposite hypothesis, the ratio n,/n must differ sufficiently from ; to
overcome the “cost” of one parameter. One can show that for sample sizes up to
about 1000, this test is close to the traditional test with the confidence level
about 0.05. For longer strings, the automatically given confidence level shrinks
gradually to zero, as it should. Notice that in the ordinary way of doing the
testing there is no cost associated with the number of parameters, and hence the
opposite hypothesis would always win by a direct comparison. This is why a
direct comparison of the likelihoods cannot be made, and one must, instead,
introduce an artificial threshold.

EXAMPLE 4. As a less trivial example, consider a two-way r X s contingency
table with the ijth entry being n,;. The observations x in reality consist with a
sequence (i,, J;),---5(i, Jo), Where 1 <i, <r, 1<j, <s, and n;; denotes the
number of times (i, j) occurs in x. Let the class of models be the set of
multinomials with 6 = {P(§) = p,;} as the parameters. The null-hypothesis
states that the cell probabilities are determined by r + s marginal probabilities
D;; = p; P, expressing independence, while the opposite hypothesis claims that no
such restrictions exist. Hence, the model defined by the null-hypothesis has
r + s — 2 free parameters while the competing “free” model requires rs — 1 free
parameters.

We compute the predictive code lengths for the sequence x with the two
hypotheses. Just as in the case of Bernoulli models in Example 1 in Section 2,
with which the first symbol in a binary sequence is assigned the probability ;, we
imagine that each cell in the table has the initial content of 1 under both models.
This assigns to the first cell occurrence in the string x the probability 1/rs. After
this occurrence the corresponding cell content in the table under the “free” model
is incremented by 1, which gives the table for the assignment of the probability
for the second occurrence, and the process is repeated. We see that the probabil-
ity assigned to the entire string x under the free model is

!
iy

(5.2) PF(x) = (rs - 1)'m

Analogously the probability of the string x under the independence assump-
tion is obtained as
rs — 1)!
(5.3) P(x) = (——,—zﬁ—)—n(ni,+s—1)!n(n,j+r— 1)!,
. i J
where n;. = ¥ n,;, and similarly for n ;. We then have D(x) = log(P;(x)/Pg(x)),

which with Stirling’s formula gives

A O(1/n)
n;n;/n /n)-

We reject the independence hypothesis if D(x) < 0. The sum term in (5.4)
is exactly the so-called Kullback G? measure. It has asymptotically a x>

(54) 2D(x)=(r—1)(s—-1)nn- 2Znijln
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distribution with (r — 1)(s — 1) degrees of freedom. Therefore, for large values of
n, our test is like the ordinary test except that the arbitrarily selected level of
confidence is replaced by the first term. However, our test is valid even for small
values of n, when the x2 distribution for the G2 measure and, hence, the
ordinary test are not justified.

APPENDIX A

ProoF oF THEOREM 1. We pick & and write f, and E, for the density and
expectation, respectively, defined by a parameter vector § with £ components.
We also denote the so-induced probability measure by P,. For each parameter
in QF let JJ,(6) denote a closed neighborhood of radius r, = log n/ Vn Vn with 0 as
its center. Define for the process determined by 6 the set of its 8-typical strings
of length n

(A1) Y,(6) = {x"0(x") € J(6)},

where 6(x) denotes an estimate of  satisfying the assumptions in the theorem.
Let P,(6) denote the probability under P of the strings that fall within Y,(6),
which is the same as the probability that (6(x”) — 8)/n falls within a neighbor-
hood of radius log 7 about the origin. By the assumption, this probability exceeds
1 — 8(n), where 8(n) — 0.

Before continuing, we give the gist of the proof which is really quite simple.
Let the parameter have only one component and let @ be divided into N equal
segments J,(4,), i =1,..., N, of length 2r,. (Regard the given choice for the
radius as a good guess.) Now, if a density £ exists whose Kullback distance from
fg, is short, then the probability mass given by g to the set Y,(6,) must exceed a
certain amount, dependlng on how short a distance we demand. The same holds
for 6,,0,,.... But there is only the total mass of unity available, and it so
happens that & can be as close as stated only to a preciously few of the densities
fs,» which is what the theorem in essence states. A critical point in the proof is to
make sure that the sets of strings for which g has to distribute its mass are
indeed disjoint. The statement of the theorem is such that it is not enough to
consider the sets Y,(6), which, of course, are disjoint by their very definition, but
we have to add probabilities of sets of strings with different lengths.

We need to define another smaller set of typical sequences, namely, the set

Xn’t(0)={x"+‘|x"+je Y, (8),j= O,1,...,t}.

In words, this is the subset of sequences of Y, ,(f) such that not only the
sequences themselves are typical but also all their prefixes of length ranging from
n to n + t are typical as well. We need to estimate the probability P, ,(6) of this
subset Let Z,(0), for j in the range 0 < j < ¢, denote the set of sequences x”** in
n +:(0) with the property that the prefix x”*/ of x"** is the first which is not in
Y,.,(0). Hence, all the shorter prefixes x”" , x"*/=1 belong to
Y, o(0),...,Y,,; 1(0), respectively. The case j = 0 means that already the first
prefix of length n does not belong to Y,(8). It is clear that the union of Z,(6) over
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J is precisely the difference Y, , (8) — X, (0). Because §(n) is summable, we
deduce first that

(A2) B(%ud0) = X, (0)} < X 8(0) = (),
and then
(a3) P A0) > 1= 8(n) = u(n),

where 8(n) + p(n) - 0.

Let g(x) be any density function defined on the data sequences, as stated in
the theorem, and denote by @, ,(6) the so induced probability over the set
X, (8). Then by the nonnegativity of the Kullback distance between the
densities g(x)/Q,, (0) and fy(x)/P, (8), we get

fo(x) P, (8)
fX o fo (208 s dx = By (0)log WOk

n,t

(A4)

Pick a positive integer m, and let A, (n, t) be the set of 6 such that the left hand
side of (A.4), denoted by T,, ,(6), satisfies the inequality

(A5) T, (0) < (1 - %)log((n )

We wish to calculate an upper bound for the volume V (n) of B,(n)=
A, (n,0) + A, (n,1) + --- . To this end, let N(n,0) denote the maximum num-
ber of disjoint neighborhoods J,(8) that can be constructed such that their
centers 0 lie in A, (n,0). Let C(n,0) denote the set of the centers. These
neighborhoods may not cover A,(n,0), because there may be points that are too
close to some of the constructed neighborhoods without being covered by any.
However, if we double the radius of each neighborhood in the maximal collection
we get a cover S(n,0) for A,(n,0). Recursively, let N, , denote the maximum
number of disjoint neighborhoods </, () that can be constructed such that
their centers lie in the difference set A,,(n, t) — S(n, ¢t — 1). Let C(n, t) denote
the set of the centers. This construction means, obviously, that if ¢ is in C(n, i)
and 6’ in C(n, t), for i < ¢, then the distance from 8’ to J,, ;(8) is not smaller
than (log(n + i))/ Vn + i. As above, the neighborhoods o, (8), for 8 in C(n, t),
may not cover the difference set, but by doubling their radius the union of the
resulting expanded neighborhoods together with S(»n, ¢ — 1) gives a cover S(n, t)
for B,(n,t) = A,(n,0) + --- +A,(n,t). Hence, the volume V, (n, t) of B, (n, t)
is bounded by

A6 V.(n,t) < KN, logn ) * + +KN log(n + ) *
. ,t) < — | ——,
( ) m\ 1 n,O( /n vt n+t

where K is a constant. We presently derive an upper bound for the right-hand
side.
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From (A.4) and (A.5) we conclude that
1-1/m log P, ,(0)
P, (0) log((n+ t)k/z

for 6 in A, (n,t). By picking n large enough we can by (A.3) make P, ,(9) so
close to unity that the expression within the brackets is less than some number S,
such that 0 < 8 < 1, uniformly in ¢ and 6. Hence,

(A.8) Qu,(0) > (n+ )2,

which holds for 6 in A, (n, ¢t) and n larger than some number.
We wish to prove the inequality

(A.9) 12 Y Q. o0)+ -+ ¥ @Q,40),

8eC(n,0) 9cC(n,t)

(A7) —1logQ, (0) < ) log((n + £)*?),

for all ¢. Each sum is a probability, induced by the density g, of a set of strings
with length varying from sum to sum, and we cannot directly claim the in-
equality. However, consider the following. The neighborhoods J,(#) for 6 in
C(n,0) are disjoint by construction, which makes the corresponding N, , sets
X, o(8) disjoint. Hence, surely, the first sum in (A.9) does not exceed unity. For ¢
in C(n, 1), consider the set of the prefixes with length n of the strings in X, ,(9).
Denote this subset of X, (6) by U, ,(8). The neighborhoods o, () for § in
C(n,1) are not only disjoint from each other and from all of the neighborhoods
J,(8") for 8’ in C(n,0), but since the distance from 6 to any neighborhood J,(6"),
6’ in C(n,0), exceeds (log n)/Vn, also none of the larger neighbor-
hoods J,(8) for 6 in C(n,1) intersects any of the neighborhoods J,(8’), for 8’ in
C(n,0). This means that for § in C(n,1) the set X, ,(#) does not intersect any of
the sets X, ((8’), 6’ in C(n,0), which appear in the first sum of (A.9). Therefore,
because g is a density satisfying the compatibility conditions for a random
process,

Y Qo)< Q[ U U,,,I(O)},
feC(n,l) 8eC(n,l)
where @ denotes the probability measure defined by the density g, and (A.9)
holds for ¢ = 1. The same arguments apply for any ¢, because, as we explained
above in the paragraph preceding (A.6), if 6 is in C(n,i) and 8’ in C(n,t),
for i <t, then the distance from 6’ to J,,,(0) is not smaller than
(log(n + 1))/ Vn + i. Therefore, for § in C(n,t) and 6’ in C(n,i), i <t and
0 + 6’, the sets X, (6) and X, ,(0’) consist of strings with length n + ¢ and
n + i, respectively, such that their prefix sets of length n, U, ,(8) and U, ,(8")
are disjoint. This in turn means that the two sets of strings of length n,
Usecin, yUn, (8) and U, -, g c c(n, iyUn, ((8), are disjoint, and (A.9) follows.

We now put the various pieces together to conclude the proof. From (A.6) we
get first

t
Vo(n,t) <KY N, (n+i)""*%n+i)*P " (log(n + i))".

=1
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Because (log n)/ Vn is eventually monotone decreasing, we also have eventually

t
V.(n,t) < Kn*B=22(logn)* Y. N, (n + i) ">
(A10) m(n, t) (logn) EO (n+i)
< Kn*B-92(log n)*,

where the last inequality results from (A.8) and (A.9). This holds for all ¢ and all
sufficiently large values for n. Hence the monotone increasing sequence V, (=, t),
t=1,2,... has a limit, which is V, (n), still bounded from above by the right-
most term in (A.10) for all sufficiently large n. Because this term converges to
zero as n grows to infinity, so does V, (n).

We have shown that the measure of the set limsupA,(n,t) is zero, or,
equivalently, that for all m, the measure of the set of parameters 6 for which all
of the inequalities

(A11) T, = (1 - 1/m)log(n*?), T,,=(1-1/m)log((n+1)*?)...,

hold for some value of n, is the measure of Q*. Consider the inequality log y >
a(l — (1/y)), where a = 1/In b, b being the base of the logarithm. By putting
y = fo(x)/8(x) we get further

fo(x)
fox, o8 gy

where A denotes the complement of the set A. Using this we get for the points 8
where (A.11) hold,

Eﬂog% >T,,~a>(1-1/m)log((n+)"*) - a.

dx > —a,

Since for each such # these hold for some n and all ¢, the statement in the
theorem follows. O

APPENDIX B

ProOF OF THEOREM 3. Write g(d,w) = —In f, 4(w) for short, where w
ranges over the reals, and denote the row vector of the first partials by
Ag(0,w) = dg(8,w)/d8 while J(0, w) denotes the matrix of the double deriva-
tives of g. We now use natural logarithms. Then for each & the inequality

n—1

lgp(x) < — Z In fk,é(z)(xzﬂ) + G,
0

holds by the definition of the semi-predictive complexity, where Cj, = In2'°€*%,
Further, with 8, = 6(¢) — 6 we get from Taylor’s expansion of g(8, x) about 6

n—1

Igp(x) +In fk,()(x) =< Z [Ag(oyxt+1)8t + éBtlJ(o’xt+l)8t

t=0

+R(6(t), xt+1)] + C,,
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where 6(t) is a point on the line segment connecting 6(t) and 6, and the
remainder term R(6(?), x,,,) is proportional to a sum of terms of type

3%(0,x,.1) , A A
~50,90,a6, 0~ O)(8(2) — 0)((2) = 0),

all evaluated at 6(¢). These triple partials are uniformly bounded in the compact
subset @’ k. Since the moments of §, converge, we get by Schwarz’s inequality that
E, 4|R(6(2), x,,,)| < Kt~*?, for some constant K. Further,

E, 4(8,8) = (tJ)_l + ¢t o,

where E,, 4J(0, x,,,) = J and p, > 0. Hence, by using the independence of x,.
and 6(¢) together with the fact that the mean of the latter is 6, we get

n1

k
n'E, ollsp(x) + In fr, o(x)] < on > 7 + 1,
t=1

where
12 led a) . Ci
TR 4 —.
s o B[ rEe) g

The sum of the harmonic series is In n + p,, where p,/Inn — 0. With a little
struggling one sees that also nr,/In n — 0, which completes the proof. O

Acknowledgment. An anonymous referee deserves credit for carefully read-
ing several versions of this paper and providing many helpful suggestions.

REFERENCES

AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat.
Control AC-19 716-723.

BENTLEY, J. L. and Yao, A. C. (1976). An almost optimal algorithm for unbounded searching.
Inform. Process. Lett. 5 82-87.

CHAITIN, G. J. (1975). A theory of program size formally identical to information theory. /. Assoc.
Comput. Mach. 22 329-340.

DawiD, A. P. (1984). Present position and potential developments: some personal views, statistical
theory, the prequential approach. J. Roy. Statist. Soc. Ser. A 147 278-292.

GEISSER, S. and Eppy, W. (1979). A predictive approach to model selection. J. Amer. Statist.
Assoc. 74 153-160.

GOKHALE, D. V. and KULLBACK, S. (1978). The Information in Contingency Tables. Dekker, New
York.

HiorTH, U. (1982). Model selection and forward validation. Scand. <J. Statist. 9 95-105.

KoLMoGOROV, A. N. (1965). Three approaches to the quantitative definition of information. Prob-
lems Inform. Transmission 1 4-17.

LINDLEY, D. V. (1956). On a measure of the information provided by an experiment. Ann. Math.
Statist. 27 986-1005.

RISSANEN, J. (1978). Modeling by shortest data description. Automatica 14 465-471.

RISSANEN, J. (1983). A universal prior for integers and estimation by minimum description length.
Ann. Statist. 11 416-431.

RISSANEN, J. (1984a). Universal coding, information, prediction, and estimation. IEEE Trans.
Inform. Theory IT-30 629-636.



1100 J. RISSANEN

RISSANEN, J. (1984b). A predictive least squares principle. IMA oJ. of Math. Control and Informa-
tion. To appear.

RISSANEN, J. (1985). Minimum description length principle. In Encyclopedia of Statistical Sciences
(S. Kotz and N. L. Johnson, eds.) § 523-527. Wiley, New York.

RISSANEN, J. (1986a). Order estimation by accumulated prediction errors. In Essays in Time Series
and Allied Processes (J. Gani and M. B. Priestley, eds.) 55-61. Applied Probability Trust,
Sheffield, England.

RISSANEN, J. (1986b). Complexity of strings in the class of Markov sources. IEEE Trans. Inform.
Theory IT-32 526-532.

ScHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464.

SOLOMONOFF, R. J. (1964). A formal theory of inductive inference. Part I. Inform. and Control 7
1-22; Part I1. Inform. and Control 7 224-254.

STONE, M. (1974). Cross-validatory choice and assessment of statistical predictions. /. Roy. Statist.
Soc. Ser. B 36 111-147.

STONE, M. (1977a). Asymptotics for and against cross-validation. Biometrika 64 29-35.

STONE, M. (1977b). An asymptotic equivalence of choice of model by cross-validation and Akaike’s
criterion. J. Roy. Statist. Soc. Ser. B 39 44-47.

IBM ALMADEN RESEARCH CENTER
650 HARRY RoAD
SAN Josg, CALIFORNIA 95120



