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SOME NEW ESTIMATORS FOR COX REGRESSION?

By PETER SASIENI

Imperial Cancer Research Fund

New estimators for Cox regression are considered. Their asymptotic
properties, both on and off the model, are established. Corollaries include
conditions under which the maximum partial likelihood estimator defines a
parameter in the population and the asymptotics of the case-cohort estima-
tor. Robust estimators that minimize the asymptotic variance subject to a
bound on the maximal bias on infinitesimal neighborhoods are discussed.
The estimators are illustrated with medical data.

1. Introduction. The proportional hazards model is often used to assess
the influence of various factors on survival. Although a model should generally
only be regarded as a useful approximation to the underlying process from
which the data are generated, it is somewhat disturbing that if a proportional
hazards model holds when several covariates are included, the omission of a
covariate (even one that is orthogonal to the others) will lead to nonpropor-
tional hazards. In this paper we present asymptotic results that enable one to
study the behavior of proportional hazard estimators in a general setup.

Alternatives to the maximum partial likelihood estimator (mple) for esti-
mating the regression parameters in the Cox model are considered. The mple
is known to be efficient if the Cox model holds [Begun, Hall, Huang and
Wellner (1983) and Efron (1977)], but in practice one never knows whether the
data are sampled from a population that conforms to the Cox model. A data
analyst may perform a test to see whether particular model assumptions are
valid, but this will only detect departures that are of at least a certain
magnitude. (A classical goodness-of-fit test will not reject the model if the
distance from the true distribution to the model is of order no larger than
n~1/2) For this reason it seems sensible to adopt the position considered by
Bickel (1984) and to look for an estimator that has minimum variance subject
to a bound on the bias on an infinitesimal neighborhood of the model. On such
neighborhoods variance and squared bias are of the same order. Thus the
approach is equivalent to minimizing the maximum mean squared error over
the neighborhood.

An applied statistician may, for want of something better, use the Cox
model even after a formal test has rejected it. Since any model is only supposed
to be a convenient. approximation of the population, the Cox model may be
worthwhile even when the. model assumptions fail to hold. For this reason one
would like to know something about the mple when the model is misspecified,
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and to compare its properties to that of other estimators. In particular, it
would be useful to know: the variance of the estimator; how much it is
influenced by small subgroups of the data; and, if possible, whether the
functional defined by the estimator has a descriptive interpretation (such as a
measure of relative risk). This paper starts to address these issues, but does
not provide a satisfactory answer to all of them. Sasieni (1993) introduces a
class of weighted estimators and compares them under the assumption that
the data are a sample from a member of the Cox model. That paper also
considers the effect of model outliers on the estimators. Lin (1991) proposes a
goodness-of-fit test based on the same class of estimators. Here we consider a
slightly larger family of estimators and prove their asymptotic normality under
a general probability model. When the Cox model has been correctly specified,
the estimators are all consistent for the regression parameter with the usual
relative risk interpretation (e#‘%1~%2 is the relative risk between two individu-
als with covariates Z, and Z,), but when it is misspecified different estimators
will converge to different quantities and it is difficult to provide a physical
interpretation to these ‘‘parameters.” Direct comparisons can be made on
contiguous alternatives to the Cox model, since then we can evaluate the
asymptotic bias and variance of the estimators.

We start by considering a class of estimators that generalize maximum
weighted partial likelihood estimators [Lin (1991) and Sasieni (1993)]. Section
3 gives sufficient conditions for the functionals associated with these estima-
tors to be well defined. As a special case we give conditions under which the
Cox functional (mple) is well defined, thus providing the “missing step” in the
consistency proof of Struthers and Kalbfleisch (1986), who omit to show
whether the B* to which § converges actually exists. The next section consid-
ers the asymptotic properties of these estimators. Proofs are given at the end
of the paper (Section 7). The special case of the mple has been considered by
Bickel, Klaassen, Ritov and Wellner (1993) and by Lin and Wei (1989). Our
treatment is more general than the first reference and more rigorous than the
second. Other special cases include the asymptotic distribution of various
censored linear rank tests and the asymptotic normality of the case-cohort
estimator [Self and Prentice (1988)].

A useful robustness theory can be developed by considering the properties of
estimators on contiguous alternatives to the Cox model. This is done in Section
5. In particular, we discuss the problem of constructing an estimator with
minimum variance subject to a bound on the bias on local neighborhoods of
the Cox model. Bednarski (1991) has considered a similar approach to robust
estimation in the Cox model and proposes a slightly different family of
estimators.

Finally, a variety of weighted estimators are compared on data concerning
the prognostic value of serum B2 microglobulin for myelomatosis patients
(Section 6).

2. Estimators of class K. Consider first the Cox model: in the uncen-
sored version, one observes a failure time, T%, and covariates, Z. The model
specifies that the conditional hazard of T* given Z is A(t|1Z) = Ay(¢) exp(B'Z).
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More generally, one observes the covariates Z; a random time T', which is the
minimum of a failure time T* and a censoring time 7'¢; and a 0-1 random
variable, A = 1jpu_qpe. If T* and T° are conditionally independent given Z
and the conditional hazard of T“ is as above, then X = (Z, T, A) ~ P is said
to come from the Cox model.

The state (sample) space for the Cox model is some subset of R? X R +x{0, 1}.
We wish to study the situation in which data of this sort do not necessarily
come from the Cox model. To facilitate this, we will consider general probabil-
ity measures on the Cox model’s state space. Let 2 be an open subset of
R? x R, x{0,1} together with its Borel o-field. Use @ to denote both a
probability measure and the corresponding distribution function on £". Thus
if X=(Z,T,A) has distribution @, then Q(z,¢,8) = @ Z <z, T <t, A =9).
Suppose that {X,,..., X,,} € 2" denote by P, the measure placing mass 1/n

at each of X,,..., X,,.
" Given a model & with an identifiable parameter 8 € R?, one can regard 8
as a function from & to RY. Estimators of B can often be thought of as
extensions of this function from & to a set 2 containing both & and all
possible empirical distributions [P,. One then uses 8, = B(P,) as the estima-
tor. Suppose now that W: R x 2— R? is such that W(B(P), P) = 0 for all
P € &, then it is reasonable to define 8, by W(B,,P,) = 0. Asymptotic
properties of such generalized M-estimators can be studied by applying a
one-step Taylor expansion to the implicitly defined functional 8. Under condi-
tions (A1)-(A5) of Appendix A, Bickel, Klaassen, Ritov and Wellner (1993)
prove such a result.

An M-estimator is defined to be the argument that maximizes ©7_,/(X;: B)
for some criterion function [ of an observation X and parameter 8. (When [ is
the log likelihood the corresponding estimator is just the mle.) If [ is differen-
tiable the maximizer 8 will be a solution to the equation X7_,I (X;;8) =0,
where [ is the partial derivative of /. Replacing /; by some score function ¢
gives a generalized M-estimator. The estimators in this paper go one step
further replacing the particular form of estimating equation, X7_,4(X;: B) = 0
by a general W(B,P,) = 0.

We will consider functions W: R¢ X 2— R? such that, whenever P is a
member of the Cox model with parameter 8,, W(B,, P) = 0. Let 8: 2 — R< be
implicitly defined by W(B(Q), @) = 0 for all @ € 2. Corresponding to W, we
define the estimator to be B(P,). Restricting attention to functions W that are
monotone in B will both ensure that B(Q) is well defined and simplify the
proof of consistency and asymptotic normality.

NoratioN. K will denote a measurable function from R? X R, X 2 to R?,
that is, K(z,t,Q) € R%. Y(¢) will be a 0-1 valued stochastic process. Define
Si(t, B,Q) = Eq[exp(B'Z)Y(¢)]
and

Sk(t,B,Q) = Eq[K(Z,t,Q) exp(B'Z)Y(t)].

For now, let Y(¢) = 1,7, later we will consider more general Y(¢) to study
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the case-cohort estimator. Denote the marginal subdistributions of Z and T
with A = 1 by

QV(2) =Q(Z<zA=1) and QP(t)=Q(T <t A=1)

and let @ 2,8) = Q(Z <2, T<t,A=1) and Q(z,t) =Q(Z <z, T <?).
Assume that P is the true underlying probability measure. We use the
following abbreviated notation:

K.(z,t) = K(z,t,P,),
SK(t’ B) = SK(t’B’P)’

1
S.x(t,B) = Py .ZlK(Zj,t,P)exp(B'Zj)Y}(t),
=

1
Sue(:8) = o L K(Z,6,P,) exp(BZ)Y,(0),
Jj=

Sk(t,B) = Ep[ K(Z,1,P,) exp(B'Z)Y(¢)IP,].

Similar notation will be used with KZ replacing K. We will also, at times, drop
the argument B when it is fixed at some value B, throughout a calculation.
Finally, let A, == Al _, and N(t) = 17, soq)

In order to motivate the new estimators, we first reexamine the mple, which
is calculated by solving the score equation

(2.1) ;EIAi{zi - §—nl(Ti,B)} = 0.

An asymptotically equivalent version of the score equation is given by
Sy
1

It can be shown algebraically [cf. Sasieni (1992), Lemma 2c] that, when the
Cox model holds with parameter g,

SK (t ’ BO)

S1(2, Bo)

Thus (2.2) holds at B = B,.
In view of (2.3), one may try to estimate 8 by solving

Lj-1K(Z;, Ti)r, > 1y exp(B'Z;) } -

(2.3) = E[K(Z,t)IT =t A=1].

Li-ilir, =1, exp(B'Z))

where K is some d-dimensional function of Z and ¢. Such estimators were
first proposed by Ritov and Wellner (1988) and have been studied by Sasieni
(1989). To obtain a wide variety of estimators, we consider functions K that
are data-dependent.

1
(24) ~ ;IAi{K(z,-,Ti) -
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The estimators, ﬁ k. of class K, are defined by
WK,T(BAK,T’Pn) = 0’

for some d-dimensional function K of z, t and @ where

T S
W (B, Q) = [ [K(2,6,@) dQ(z,0) - ["5(2,8,Q) d@(t)
(2.5) s
= EQ AT[K(Z’T’ Q) - S_T(T’ B, Q)]

REMARK 1. By permitting K to depend on the measure @, one can study
functions K that are determined by the sample. In that case W is a function of
Q both explicitly and through K.

REMARK 2. In practice, one would like to be able to use 7=, but
problems occur at the end of the time interval. For this reason many authors
define estimators on a finite time interval [0,7]. Here we provide rigorous
proofs for estimators based on a finite time interval and, at the request of a
referee, indicate how the results may be extended to cover estimators that use
all the data.

ExamPLES oF K.

ExavrLe 1. K(Z,t,Q) = Se®)?(1 — Su(#))’Z, where So(t) =TT (1 —
dQ®(uw)/@Q(T = u)) so that S p, 1s the product limit (Kaplan-Meier) estimator
of the survival function of 7'“. The case with (p,y) = (1,0) is of special
interest since it corresponds to the Peto-Peto generalization of the Wilcoxon
statistic. For general (p, y), these estimators correspond to the G, statistics
of Fleming and Harrington (1991).

ExampLE 2. For univariate Z, consider K(Z, ¢ @) = min( P1-.(Q),
max(p,(Q), Z)), where p,(Q) is such that Q(Z < p_(Q)} = «, that is, the 100«
percentile of the @-distribution of Z. “Huberizing” the covariate is designed
to decrease the influence of high leverage Z’s. Notice, however, that S; and
Sk still depend on exp(8'Z).

ExampLE 3. A variant on Example 2 has K(Z,¢ Q) = min(p, _ (@, ¢),
max(p,(Q, t), Z)), where p,(Q,¢) is such that Q{(Z < p (@, )IT > ¢} = a, that
is, the 100« percentile of Z among those at risk at time ¢. Although K in
Example 2 is simpler, this choice is natural in that the leverage of an
individual failing at some time ¢ depends on the values of the covariates of the
other individuals at risk at time ¢.

ExXaMPLE 4. As an alternative to Example 3, one may prefer a strictly
monotone transformation of the covariate; the rank transformation offers a
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certain amount of robustness. K(z,¢,Q) = r(zlt,Q) = Q(Z < z|T = t) so that
r(zlt, P,) = L7_1liz <. 1,54/ Li- 111, » - Estimators based on this K are anal-
ogous to the tests proposed by Jones and Crowley (1989, 1990).

CONDITIONS.
(E1) Moments.

(i) Elexp(B'Z)] < » for all B € R®.
(i) There exist functions %k: R?® > R, and w: R,— R,, such that
IK(z,t)| < k(2)w(?t), with E[k™(Z)] < « for all m > 1 and |lw|[; < .

(E2) “Strong monotonicity” of o'K as a function of a'Z. Set

o inf{t: «’Z1p ., = 17, as., for any a # 0},

o, if this set is empty.
@) QT <t*} > 0.
(ii) For each a € R? and for all ¢ in a set of @-probability 1,
[The domain of K(-,t) is the set of 2’s that are in the @-support of (Z,T)
intersected with the set {T' > ¢}.]
(iii) The set A* of ¢ on which a'(K(z,,¢) — K(2,t))a'(zy — z;) > 0 when-
ever a'(z, — z;) # 0 is such that QT € A* N [0,¢t* A 7]} > 0.

(E3) “Nondegeneracy” of the support of (Z,T,A). For each direction
a # 0, there exists a set A with QT € A, A, = 1} > 0 (A may depend on «)
such that

esssup{a'K(Z,t): T > t} > essinf{a’'K(Z,¢): T =¢, A = 1},
for all ¢t € A.

REMARK 3. (E3) fails to hold if and only if there is a pair (@, ¢), a # 0 € R?
and ¢: R - R decreasing, such that for each ¢ (< 7) in all but a set of
Q@-probability 0,

a'K(Z,t)dN(t) = () dN(t) a.s.-Q
and
a'K(Z,t)Y(t) < ¢(t) a.s.-Q.

The following special cases seem to be worth stating explicitly.

LemMa 2.1 (Univariate Z). When Z is real valued (d = 1), conditions (E2)
and (E3) simplify.

(E2u) With t* defined as in (E2):

@ AT <t*} > 0.
(ii) K(z,t) is monotone in z for each fixed t.
(iii) It is strictly monotone on some set A* with Q{T € A* N [0,t* A 7]} > 0.
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(E3u) There does not exist a monotone function ¢ such that for Q®-almost
all t <7,

K(Z,t)dN(t) = ¢(t) dN(t) a.s.-Q
and
K(Z,t)Y(t) < ¢(t) a.s.-Q

(with the inequality reversed if ¢ is increasing. ¢ here is increasing if a in
Remark 3 equals —1).

For multivariate Z (d > 1), condition (E2) appears to be very restrictive. We
do, however, have the following result.

Lemma 2.2 [K(Z,t) = Zw(t)]. Suppose K(z,t) = w(t)z for some w: R, — R.
Then (E2) is satisfied provided there is no linear combination a'Z, a #+ 0, such
that :

a’Zw(t)l[TZt] = w(t)lszt] a.s.-Q

holds for all t in a set of probability 1. (It is enough if a'Z is not a.s. constant
and if there exists t, with Q{T < t,} > 0, such that w(t) # 0 on [0, ¢,])

Cox EstimaTor. K(Z,t) = Z.

(C1) Elexp(B'Z)] < « for all B € R?.
(C2) There is no pair (a, ), a # 0 € R% and ¢:R — R decreasing, such that
for @@-almost all ¢ < 7,

a'ZdN(t) = ¢(t) dN(t) a.s.-Q
and
a'ZY(t) < $(t) a.s.-Q.

LEmMa 2.3. When K(Z,t) = Z, conditions (E1)-(E3) are implied by (C1)
and (C2).

Proor. (C1) is identical to (E1)(i). Under (C1), by the theory of Laplace
transforms, (E1)(ii) holds with w(¢) = 1 and k(2) = |z|. The positive semidefi-
niteness of (E2) holds without further assumption, and the quadratic form will
be nonzero provided there is no linear combination (a # 0) of the covariates
that is @ V-a.s. constant (i.e., A,a'Z = A_ a.s.-Q), and this is implied by (C2)
(with ¢ = 1). Finally, (E3) is implied by (C2)—see Remark 3. O

3. Existence and uniqueness of estimators of class K. The estima-
tors studied here are defined implicitly as the roots of certain equations. Before
discussing the asymptotic properties of such estimators, one must first estab-
lish that they exist and are well defined. In this section results concerning the
existence and uniqueness of solutions to the estimating equation Wy (8, @) =
0 are presented. Throughout, the function K and the probability measure @
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will be fixed and for this reason the dependence of various quantities upon @
may be dropped from the notation.

The question is: when does W(B(P), P) = 0 uniquely define a * parameter’’?
We are interested in the answer both for the population and for a sample. The
situation for a finite sample is slightly easier than in the population because
expectations are then simply sums and one does not have to worry about their
existence. We present a theorem with sufficient conditions on the function K
and the measure @, for W to uniquely define a parameter, and then discuss
the special cases when K(Z,t) = Z (the Cox estimator) and when @ = P,, the
empirical probability measure based upon a finite sample. When both K(Z, t)
= Z and @ = P,, these sufficient conditions are identical to the necessary and
sufficient conditions given by Jacobsen (1989).

In the Andersen and Gill (1982) generalization of the Cox model, one
observes three processes: the counting process of actual failures, the “at risk”
or “under observation” process and the covariate process. It seems reasonable
that the methods used here could be extended to allow coprocesses Z,(-) and a
general ““at risk indicator function” Y(-). Certainly the estimators are consis-
tent provided Z(:) and Y(-) are left continuous with right-hand limits. A
problem arises in that, unless Y(-) takes a special form, the estimators will be
“consistent” for some parameter other than B, even when the Cox model
holds, that is, the estimators will be asymptotically biased. In the proof of
asymptotic normality, we use

1Su1(+5 B) = S1(+, B)llo = Op(n~1%)

and this requires further smoothness on Y(-) and Z(-). Rather than become
involved in these uniform probability results, we shall restrict attention to
time-independent covariates Z;, and Y;(-) of the form

Y.() = 1[T,2‘]Bi’

where B, is a {0, 1} random variable that is independent of X, = (Z;,T;, A,). It
is assumed that (X,, B,),(X,, B,),... are iid and that Prob(B = 1) = a > 0.
With minor modifications the proofs of the main theorems can be adapted to
the Cox estimator, K(Z,¢) = Z, even with time-dependent covariates. In that
case the moment conditions (E1) would have to be strengthened slightly, but
the results certainly hold for Z(-) bounded. This is done for the case-cohort

estimator (Corollary 4.2).

TueoreM 3.1 (Existence and ufliqueness). Under conditions (E1)-(E3),
Wk (B, @) = 0 has a unique root Bx (@) € Re.

COROLLARY 3.1. The Cox functional exists and is unique for any probability
measure, Q, on 2 satisfying (C1) and (C2).

Proor. See Lemma 2.3. O
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Fic. 1. Support of (T, Z): illustrating when condition (C2) fails.

Thus the Cox functional exists and is unique provided two conditions hold.
Condition (C1) states that the Laplace transform (or moment generating
function) of Z is finite for all 8. If one already knew that the partial likelihood
score, W, had a root, then it would be enough to assume that the Laplace
transform is finite in some open ball about the root. But in order to show that
a root exists we use this stronger condition.

Suppose (C2) fails, so that A,a'Z = A ¢(T') a.s. and let (Z,, T;) = (2,,¢;) for
i = 1,2, then a'z, < a'z, implies that ¢, < ¢, a.s. This means that the hazard
for an individual with covariate z, is, at time ¢,, infinitely greater than the
hazard for an individual with covariate z,, for, with probability 1, the individ-
ual with z, will not fail until ¢, > ¢,.

Figure 1 illustrates the situation for a discrete univariate Z. The figure
plots the support of (T, Z) in the (¢, z)-plane. When A = 1, the supports of T
for each value of Z are nonoverlapping, and if z, < z,, then the support of T
given Z = z, is to the left of the support given Z = z,, that is,

sup{support(T|Z = z,, A = 1)} < inf{support(T|Z = z,, A = 1)}.

This condition is very mild.

CoroLLARY 3.2 (Finite sample). When @ = P,, a probability measure that
places mass 1/n at each of the n observations (Z;, T, A,) in R? X R, x{0, 1},
the estimating equation Wy _ has a unique 0 whenever (E2) and (E3n) hold.

(E3n) There is no linear combination o'K(Z,t), a # 0, such that, at each
failure time t,, the value of the linear combination for the individual that fails
is greater than or equal to the value for all other individuals at risk at ¢,.

Proor. (E1) is satisfied without further assumptions, since a finite sum of
finite terms must be finite. (E3n) is simply a restatement of (E3) for the case
Q=P,. 0O
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REMARK. Combining Corollaries 3.1 and 3.2, one sees that the conditions of
Theorem 3.1 reduce to the necessary and sufficient conditions that Jacobsen
(1989) gives for the existence and uniqueness of the Cox estimate for a finite
sample. Jacobsen shows that the logarithm of the partial likelihood is concave
always and strictly concave if and only if

span{zj — z;: i € {individuals that fail}, j € {individuals at risk at T}}} = R¢.
Further, the Cox estimate exists and is unique if and only if there is no a # 0
such that for all i that fail and for all j # i that are at risk at T},

a,(zj - zi) 2 0.

4. Consistency and asymptotic normality. The following theorem
gives both consistency and asymptotic normality for estimators based on a
finite time interval. Extensions covering estimators that use all the data are
discussed following the proof of the theorem in Section 7.

In general, K may depend on the probability measure and it is necessary to
introduce conditions that govern the convergence of I, = K(-,-,P,) to K =

s s n

K(-,-, P). Basically one would like [, to be uniformly asymptotically linear.
Some relaxation of the uniformity is possible, but the weaker the conditions
the more involved the proof. The following seems to be a fair compromise
between generality and complexity.

ConpiTioN K1. [Recall that X = (Z, T, A).] Either (I) or (II) holds.
@
(1) There is a function Yy = ¢x(x; 2, ¢) so that
i, — K — K,ll. = op(n‘l/z),
where
K,(z,t) = [Yg(x;2,¢)d(P, — P)(x) and |fll.:= sup suplf(z,¢)l.

) tef0,7] 2€P
GD) K, lle = op(l) [and hence (K, — Kll» = op(l)].
(iii) Let ¢%(x, 2) = sup, <o ¥k (x; 2, t)|. There exists an & > 0 such that
E[y5(X,2)"""| <o and E[yg(X,,2,)" "] <o,

where X; and Z, are independent.

(ID K,(Z,8) = Zw,(2).

(1) There exist functions w(¢) and. ¢, (x,t) such that
lw, —w — w,ls = 0,(n™?),

where w,(t) = [y,(x,¢) d(P, — P)(x).

@ llw,llo = o, (D).

(iii) Let (//i(x§= Sup; <o, 111¥,,(x,t)l. There exists an ¢ > 0 such that
E[y5(X)?*e] < oo,

Let K,(2,8) = 2t,(2), Yx(x; 2,8) = 29, (x, ) and YE(x, 2) = 24 (x).
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THEOREM 4.1 (Asymptotic normality). Suppose that X, ..., X, are iid and
that conditions (E1)-(E3) and (K1) hold. If, in addition, 1nf,€[0 4 PY (@) =
1) > 0 and K(¢) == K(Z,t, P) is a random element of DI0, 719, then the gener-
alized M-estimator By (P,) = Bx of B k.-(P) = B, correspondmg to

T +S
WK,T(B’P) =LIK(Z’t7P) dP(u)(Z,t) - j(; S—Il((t,B,P) dP(Z)(t)

is asymptotically linear with inﬂuence function l~K,T(X ). That is,

n

\/E(BAK ) Z (X ) + 0,(1),

where

z'K,,<X,»)=WIz},<BO,P>{ ( 2.1) - § (T))

[ &(Z,,t)- == PO
[|&@0 - o) ero1 5

+f(:f¢K(Xj;z,t)dP(”)(z,t)

7 [Jok(X)52,t) e%zl(szt) dP1?(z,s)
fo Si(¢)

dP(t)

and

+(Skz Sk Sz

WK,T(B’P) :=j(;( S1 - E_S—l_)(tyﬁ’P)dP(Z)(t)'

Hence Vn (Bg — By) =4 N0, E([x (X)®?) asn - .

For the Cox estimator (with time-independent covariates), one has the
following corollary, a version of which was first proved (under more restrictive
hypotheses) in Section 7.2 of Bickel, Klaassen, Ritov and Wellner (1993).

CoOROLLARY 4.1. If the data are iid and conditions (C1) and (C2) hold,
then the Cox estimator, based on an interval [0,] [with P(T > r) > 0], is
asymptotically normal.

Proor. By Lemma 2.3, (C1) and (C2) imply (E1)-(E3). (K1) is vacuous for
the Cox estimator. The result is thus an immediate consequence of the
theorem. O

The theorem shows that the estimators in the class Wy are asymptotically
linear and gives the influence function [, ,(X). The formula for the influence
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function may look horrendous, but it is not so different from the more familiar
expression for the mple.
Define

dQ®(t)
1208,(¢, B(Q), Q)

and let W (X) = Wy .(B,, P)ix (X). The part of ¥, not involving the gradi-
ent of K can be written as

M,(#1Q) = Ny(t) — [eF1

T SK
S| K(Z;.6) = () | My(dtIP).
0 1
The remaining terms are
B] [0 2, ) Mi(aiP) X, .

(Here X; is independent of X.) If the Cox model holds, M; is a martingale: in
general it is not. When it is a martingale the conditional expectation is
identically 0 and the influence function does not depend on the gradient .

ExampLE 1 (Continued). Suppose that K ,(z, ¢t) = zP®(¢), where nP®(¢) is
the number of individuals still at risk at time ¢. This particular choice of K
yields an estimator with an influence function that is bounded in ¢ both on
and off the Cox model. Here we merely point out that conditions (E2) and (K1)
do indeed hold for this choice of K and hence, by Theorem 4.1, the estimator
is asymptotically normal. We have

(K, = K)(2,8) = 2[ 1, ,d(PP — PD)(s),
0

that is, ¢ (X, 2,t) = 217, ,;, where X = (Z, T, A). Condition (K1)ID) is easily
seen to hold by Donsker’s theorem. Lemma 2.2 simplifies condition (E2) for
K’s that are merely time-weighted versions of Z.

The estimator with weights proportional to the number of individuals at
risk corresponds to Gehan’s (1965) version of the Wilcoxon test statistic. It has
the disadvantage that the asymptotic distribution of the statistic depends on
the censoring distribution. In the presence of censoring one would rather use
weights analogous to those proposed by Peto and Peto (1972) to generalize the
Wilcoxon test. The simplest way: to produce a similar weighting that is
asymptotically independent of censoring is to use the Kaplan—Meier estimator
of the survival function for all individuals (i.e., pooled over the covariates).
Once again condition (K1) holds—asymptotic linearity of the Kaplan—Meier
estimator has been shown by Breslow and Crowley (1974).

Rather than use a pooled estimator of the survival function, one might like
to use the usual estimator of the baseline survival function (i.e., the product
integral of the Breslow estimator of the cumulative hazard).
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ExampLE 4 (Continued). As a second example illustrating the conditions on
K, consider K(z,t,Q)=@Q(Z <z|T >t) for a single covariate Z. Here
Kz, 8) = X711z <. 7,54/ Lilir, 54 For each t and any @, K(2,t,Q@) is a
monotone function of z. Hence (E2) holds by Lemma 2.1. It remains to check
condition (K1). Denote by A and B the events {Z <z, T >t} and {T > t},
respectively. Then

P,A PA
K(z,t,P) — K,(2,t) = P B )
(P, —P)A PA (P, - P)B
- PBPB PB
(P, —P)A PA (P,—P)B)\ (P, - P)B
\T P8 ~PB PB P,B

The third term in the expansion is a remainder which will be uniformly
negligible when PB > ¢ > 0 as is required by the condition inf, ., P{Y(¢) = 1}
> 0 in Theorem 4.1. Note that under this condition K is bounded and has
bounded gradient

1[T >1t]

1[Z52,T2t]
P{T >t}’

l/’K(X;z1t) = P{T > t}

~P(Z<2T >¢t)

REMARK. Weighted log rank statistics are of the form Wg(0,P,). For
example, K =Z gives the log rank statistic and K = S(t)Z gives the
Peto-Peto-Prentice censored data Wilcoxon statistic, where S(¢) is the
Kaplan—-Meier estimator of the marginal (pooled) survival function. K(z,¢) =
P(Z < 2|T = t) (as in Example 4) gives the Jones and Crowley robust log rank
regression statistic. In the proof of Theorem 4.1, we show that vn Wy (8,,P,)
is asymptotically linear. There is no part of the proof that uses the special
nature of B, [that Wx(B,, P) = 0] and the argument works for any fixed B. (In
fact, the proof simplifies somewhat for 8 = 0.) Thus, as a corollary to the proof
of Theorem 4.1, we have

1 n
\/—n—(WK(O’Pn) - Wi(0, P)) = Tn AglqlK(Xi) +0,(1).

Case-cohort design. Recall that the indicator Y(#) may be more general
than 1,7 ,;. The reason for working in this much generality is to derive results
for the ““case-cohort design.” This design was proposed by Prentice (1986) for
use in large epidemiological or disease prevention studies in which the propor-
tion of individuals, who will develop the disease end point (i.e., fail) within the
follow-up period, is small.

The case-cohort design involves collecting ‘‘raw covariate’’ data on all
subjects, but processing these data for only a small subsample. This subsample
will consist of all the cases (observed failures) together with a cohort identified
at the beginning of the study.
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Let Y,(¢) = 1,7, 4B;, where B, is a random variable taking values, 1, with
probability a > 0, and 0 otherwise, which is independent of X; = (Z,, T}, A)).

13 124

CoROLLARY 4.2 (Case-cohort design). Suppose that the data are iid from a
member of the Cox model with time-dependent covariates and parameter B,
and that P(T > ) > 0 and the Z,(-) are almost surely bounded elements of
D[0, 71¢ such that

(C2*%) There is no pair (a,$), a # 0 € R? and ¢: R — R decreasing, such
that, for Q®-almost all t < ,

a'Z(t) dN(t) = ¢(t) dN(t) a.s.-Q
and
a'Z(t)Y(t) < ¢(t) a.s-Q.

Then the case-cohort estimator B of Bo is consistent and asymptotically
normally distributed. That is, the solution, B, of

"Z(T;
Ll Bilig, o 1,2(T;) €P7C0

Z(T,
Z?=lBi1[T,~sz] eP 7Ty

L AZ(T) - =0
j=1

satisfies
Vr (B = Bo) =a N(0,3,) asn— =,

where 3, =373 + R)3S™!, 3 == E Var(A_ Z(T)IT, A) (¢the information for
the Cox estimator),

R, =2(1 - a)a—lfo’fo’E[(zm —e())(2(u) — e(u))

X L 5 g @PEOT 2] d A (u) dAo(2)

and e(t) == E[Z®IT = t, A = 1] = S,/S(t, By).

Note that this result agrees with (5.2) of Self and Prentice (1988). [Their A
is equivalent to our R, and their Y(¢) is our 15 .,.] We have removed their
tightness condition (7), at the expense of requiring the covariate process to be
external, so that the conditional hazard given the whole process Z = {Z(¢):
¢t > 0} satisfies A(¢|Z) = Ay(2) exp(B'Z(2)).

Consistency of the covariance estimator. Discussion is limited to estimating
the asymptotic covariance of estimators By for which K is not a function of
P, that is, I, = K. Estimation in the more general case is analogous under
appropriate restrictions on the class of K. The estimator proposed here
converges both on and off the Cox model to the appropriate covariance matrix.
Thus it may be preferable to the usual estimator of covariance of the mple
which is appropriate only when the model holds. The asymptotic variances of
the variance estimators have not been considered, but intuitively the estimator
discussed in this section will be less efficient than the usual one. [See Lin and
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Wei (1989) for use of this estimator.] Let
Sk
Y (X,;,B;Q) =A,K(Z,T;) - AfiS—(Ti’ B; Q)
1

k(z.0) - 5%t p: eI
“fo{ (Z:.) = 5, ( ’B’Q)}sl(t,ﬁ;m

and 9y == Sk, [ We(x, Bk, P,)®? dP(xXS, k2, where 3, ., = WK,T(éK’ P,).

dQ®(t)

ProposITION 4.1. Suppose that K, = K. Under the conditions of Theorem
4.1,

g?K _)p E[[K,f(x)®2]
= SLE[W(X, Bx(P); P)*%|(3kb)-
Proor. See Sasieni (1989), Proposition 9.2.2.

5. Estimating B under contiguous alternatives to the Cox model.
In this section we use Le Cam’s third lemma to compare various estimators of
the regression parameter 8 in the proportional hazards model under contigu-
ous alternatives. It is assumed that censoring is conditionally independent of
failure and that the covariates are time-independent.

On the Cox model, the influence functions of estimators of class K are given
by

Uy = I,;I{A(K(z, T) - ex(T)) - [OT(K(Z, t) — ex(t)) exp(BhZ) dAo(t)},

where
and
Ix=W(By, P) =ECov(AZ,AK(Z,T)IT,A).
Contiguity theory tells us that if the log likelihood ratio (log L,,) is asymp-
totically linear with direction ¢(X) and if B, is an asymptotically linear
estimator with influence function ¥, then, under the contiguous alternative,

Vn (B, = Bo) 24 N(,V),

«

where u = E[¢(X)¥(X)] and V is the asymptotic variance of B, under the
null (i.e., on the model).
For example, suppose that under

P:.X,,...,X,, areiid with density £,
and under
Q,.: X,q,...,X,, are iid with density f,
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such that
Vo (£172 = £72) = 36 £72], > 0 asn -,
where || - || is the L,-norm (with respect to the dominating measure). Then

n 1
logL,=n"v2Y ¢(X,) — —2—EF¢(X) +0p(1).

i=1

ExampLE 5. If the conditional hazard under @, is
M (HZ) = Ao(t) exp(B'Z + n™1%v(Z, 1)),
then ¢(Z, T, A) = [v(Z,t) dM(2), where M(t) = N(¢) — [{1p . ,,A(ulZ) du, the
counting process martingale

E[¢W¥y] = 1,;1E[/u(z, t) dM(¢) [ (K — ex) dM(2)

= Izx'E[Cov(Av(Z,T),AK(Z,T)IT,A)] by Sasieni (1992), Lemma 1.
Notice that when
E[Cov(Av(Z,T),AK(Z,T)IT,A)] =0
the asymptotic shift under the contiguous alternatives @, is 0.
ExampLE 6. If A, (t1Z) = (1 — n"Y2AEIZ) + n~Y2h(¢, Z), where A(t|Z) =

Ao()eP%, then the direction ¢ =(h — A)/A — (H — A), where H(¢, Z) =
JEh(s, Z) ds. That is,

h(T,Z) - MT\Z) r( k(t,Z) — A(81Z)
&(T,Z,A) = A( NTTZ) ) —fo ( \IZ) )A(tlZ)dt
= fh—;—idM.

So the asymptotic bias is

h—\
E[¢Vy] = IZ'E Cov(A—T,AKIT,A).

ExaMPLE 7 (e-contamination). Let f(z,t, §) denote a density from the Cox
model, and g(z,t, 8) an arbitrary density on R¢ X [0, ) X {0, 1}, and let the
density f, = (1 — n"Y?)f+ n"/2g. Let h = g/G be the hazard correspond-
ing to g, and H the cumulative hazard. Then the log likelihood ratio is
asymptotically linear with

h® exp(—H) — A exp(—A)
Xexp(—A) -

¢ = (ﬁ)sexp(—(H—A))—l.

A
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Thus the bias
h &
E[¢WK1=E[(;) exp(—(H — A)) [(K — ex) dM | = Eg[ ¥,

(Of course, it is always true that the shift under ‘“contamination’ alternatives
is equal to the expected value of the influence function of the estimator under
the contaminating distribution.)

Notice that the asymptotic bias on a local contamination neighborhood of
the Cox model will be bounded if and only if the influence function is bounded.
The influence function of the mple is unbounded both in the covariate (if the
covariate space is not compact) and in time (if the estimator uses all the data).
This was first noted by Samuels (1978) and explains the results of Bednarski
(1989). In terms of Example 7, Bednarski considers a sequence of contaminat-
ing densities g, and shows that, if the marginal distribution of the covariate in
the contaminating distributions has support that grows like log n and if the
conditional distribution of the failure time given the covariate in the contami-
nating distribution does not follow the Cox model, then the bias in estimation
of B can be of any magnitude. His arguments may be extended to consider
contamination neighborhoods smaller than Vn and show that provided the
contaminating covariate values are large enough arbitrary large bias can be
caused by extremely small amounts of contamination.

Let X =(Z,T, A). If we were dealing with a one-dimensional parametric
model for B (e.g., if d = 1 and the baseline hazard is known), then standard
theory [Bickel (1981)] gives the influence function of an estimator with mini-
mum variance on the model subject to a bound on the bias on an infinitesimal
contamination neighborhood to be

W(X) = [ag + alo( X)),

where l'B(X ) is the score for B, a, and a; > 0 are constants (that may depend
on B) chosen such that E¢(X) = 0 and [©]% = min(max(a, ), b). (The bias is
bounded between m, and m, where — <m; <0 < m, < ».) In the Cox
model, however, even when we consider only a single covariate, there is the
unknown baseline hazard to contend with. As is well known from the theory of
semiparametric models [e.g., Bickel, Klaassen, Ritov and Wellner (1993)] the
influence function of any estimator of 8 must be orthogonal to the tangent
space for the baseline hazard function. Solving the variational problem for
in the presence of the nuisance function yields

(5.1) ¥(X) = [ao + al(l.B(X) - l.,\a*(X))]:j,

where [, is the score operator for the baseline hazard and a* is some function
of T (with finite second moment) chosen such that Ey(X) = 0 and ¢(X) is
orthogonal to &, = {l/,a: a € L,(P;)}, the tangent space for A,. Sasieni (1992)
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shows that
Io(X) = [2dM(t) and [a(X)= [a(t)dM(2),
and that, on the model, the efficient score for B is
I5(X) = [(Z-E[Z2IT =t,A = 1]} dM(?).

It does not appear to be a simple matter to find «,, @; and a*(+) in (5.1) so
that E¢(X) =0 and E[¢(X)],a(X)] = 0 for all a € Ly(P;). One possible
solution is to fix a*(¢) = E[Z|T = 1, A = 1] and to find «, and «, such that

(5.2) W(X) = [a0 + aul3(X)] 0

has mean 0. The interpretation that we would like to give to this solution is
that it solves the variational problem in the least favorable parametric sub-
model. That is in the model &, = {P; ,): B € R}, where P; , is a probability
measure from the Cox model wﬂ;h parameters 8 and A, and A(B) is the least
favorable one-dimensional parametrization of the basellne hazard function.
Unfortunately, we have been unable to exhibit such a curve A(8). What we do
know is that the least favorable direction is given by

dA(t)
dp

(note that the conditional expectation will depend on B, too). Hence an
influence function of the form (5.2) will solve the variational problem for the
locally least favorable submodel. Calculating «, and «, given m, and m, is
still not straightforward. The constants will depend on B and the marginal
distribution of Z, and, in the presence of censoring, on the censoring distribu-
tion (relative to the baseline hazard) via dC(¢|z)/dG(t), where C(t|2) is the
conditional censoring distribution function and G(¢) = 1 — exp(— A (¢)) is the
baseline failure time distribution.

Suppose that we have found a, and «, to solve the parametric problem.
Since the influence function of any estimator must be orthogonal to the
tangent space for the nuisance part of the model, it is still necessary to project
the influence function from the parametric submodel so that it will be orthogo-
nal to &, and, in the presence of censoring, so that the conditional expecta-
tion of the influence function given the censoring time is 0.

Consider the simpler problem in which the contaminating distribution has
compact Z-support. In that case, since we are mostly concerned with influen-
tial times, it seems reasonable to consider the class of maximum weighted
partial likelihood estimators. Weight functions of the form w(¢) =1
if mi<A@)<my wit)=>0 —my)/(1 — Ay@t) if Ayt) > m,y w(t) =
1 -m)/(AQ = Ay@)if A(T) < my, with 0 < m, <1 < m,, approximate the
ideal of leaving noninfluential points unchanged and setting the influence
function at other points to be maximum permitted value. This is analogous to
“Huberizing”’ the standard residuals [rather than the influence residuals (or

=E[ZIT =t, A = 1]A(2)
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delta-B’s)] in regular linear regression. In practice, one would want to center
the covariates so that the baseline hazard is the hazard of an ‘“‘average
individual” and then choose m,; ~ 0 and m, > 2. [Note that the survival
fur;ction corresponding to the baseline hazard is equal to exp(—A,) and that
e % ~0.05.]

6. Illustration. Serum B2 microglobulin (s-82m) has been shown to be
extremely important in predicting the survival of patients with myelomatosis.
It has also been noted [e.g., Cuzick, Cooper and MacLennan (1985)] that s-82m
has less prognostic value in long-term follow-up than in the period immedi-
ately after diagnosis. The data come from the Medical Research Council’s fifth
trial on myelomatosis. The s-B2m levels of 553 patients at the time of
diagnosis are related to their subsequent survival. The survival times of 123
patients are censored. Survival is recorded in months and for simplicity we
have separated ties randomly. The range of log(s-82m) is (0.8,4.4) (10th and
90th percentile 1.3 and 3.2, respectively).

Application of the Cox model to all the data gives the mple of the coefficient
of log(s-82m) to be 0.59 with estimated standard error 0.07. If the model is fit
only to the subsequent survival of those individuals who survive at least
18 months (n = 346, 224 uncensored), then the estimates become 0.23 + 0.10.
Whereas if one artificially censors all survival times at 30 and 18 months, the
coefficients are 0.78 + 0.08 and 0.94 + 0.09, respectively. Thus, as noted by
previous authors, the effect of s-B2m on the hazard decreases with time since
measurement, but it does have a large and highly significant influence on early
survival. (With B = 0.75 the relative risk is 15 and 4 over the full and
interdecile range, respectively.)

Table 1 summarizes the results of estimating the regression coefficient
using a variety of weight functions. The estimates together with an estimate of
their standard error based on Proposition 4.1, and where appropriate, the Cox
estimate of their standard error are presented. In estimating the standard
error we have ignored the increase in variability that one would expect (when
the Cox model does not hold) from the randomness of the weight functions.
That is, the standard errors are conditional on the actual (data dependent)
weights used.

Notice, in particular, that use of Wilcoxon-type weights and artificial censor-
ing gives estimates that are larger, and that the standard error of the
Wilcoxon-type estimator compares favorably with that of artificially censored
ones. Notice also that use of K(z,¢) = k(2)w(¢) with k(z) = min(max(1.3, 2),
3.2) gives slightly smaller estimates than the corresponding weights with
k(z) = z, but that the standard errors are considerably smaller. The asymp-
totic relative efficiency of the Wilcoxon estimator on the Cox model is discussed
in Sasieni (1993).

Consider how these estimators might be used in practice. Suppose, for
instance, one merely estimated the regression coefficient using the mple and
the Wilcoxon estimator. Observing the difference in the standard error esti-
mate for the mple depending on whether or not one assumes the Cox model
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TABLE 1
Estimated coefficient and standard error of log(s-B2m).
wy(t) is the number at risk at time t, wy(t) is the Kaplan—Meier estimate
of (pooled) survival at t and k(z) = min(max(z, 1.3), 3.2)

K(z,t) Coefficient Standard error Cox standard error
Z 0.59 0.080 0.067
ZY 515 0.29 0.098 0.092
Zy 0.23 0.100 0.101
Z1, -5y, 0.78 0.081 0.080
Z1, 21 0.94 0.082 0.092
Zw(2) 0.74 0.078 —
Zw(2) 0.73 0.078 —
Zwi(t) 0.84 0.079 -
Zw (1)1 — wy(t)) 0.47 0.085 —
k(Z) 0.57 0.075 —
k(Z)w(2) 0.72 0.068 —
E(Z)wi(t) 0.82 0.066 —

holds (0.80 versus 0.67) already indicates that the model may not hold. The
difference between the mple and the Wilcoxon estimator is further indication
that the model may not hold and suggests that the effect of s-82m on survival
is less strong in long-term survivors. (One could perform a formal test by
looking at the joint distribution of the two estimators under the null hypothe-
sis that the model holds. Using Theorem 4.1 this is quite straightforward.)
Further investigation shows that s-82m has a strong influence on short-term
survival, but that its prognostic value decreases rapidly so that the relative
risk associated with a unit increment in s-82m is 2.6 during the first 18
months, but only 1.3 thereafter.

One possible explanation of a decreasing prognostic value is that there is an
unobserved factor (often called a frailty). We have considered s-82m levels at
presentation, but data are also available on s-2m levels at follow-up visits.
When available, subsequent s-32m levels again provide strong prognostic value
for the next 18 months. This is important for understanding the progression of
myeloma, for it suggests that the disease may still be reversible even after high
levels of s-B2m are encountered.

In evaluating a new treatment, however, one will not want to use follow-up
measurements because adjustment for such time-dependent variables may
obscure the effect of treatment. (The treatment could be completely aliased if it
not only reduces mortality but also reduces s-82m levels.) For these reasons it
is important to evaluate the effect of the presentation s-2m level on long-term
survival.

7. Proofs. The following lemmas will be used in the proofs of the main
results.
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LemMma 7.1. Suppose that (E2) holds. Then
B'K(2*(B,t),t) > esssup{B'K(Z,t): T > ¢},

for all directions B and for each t in all but a set of @-measure 0, where
2*(B, t) is such that B'z*(B,t) = esssup{B'Z: T > t}.

Proor. By (E2), B[K(z*(B,1),t) — K(2,t)[2*(B,t) — 2] = 0 a.s. But, by
definition of z*, B'(z*(B,t) —2) > 0. O

LeEMMA 7.2. The moment conditions (E1) are sufficient for Wy (B, @) to be

well defined for all B. Further, Wy (B, Q) is continuously dzﬂ”erentzable in B,
and

ZKZ(B,T) =

SKZ SKS,Z
- Wi (B, @) = [ (S—l(T,ﬁ)— 5 (T,B))].

Proor. By the theory of Laplace transforms [see, e.g., Barndorff-Nielsen
(1978)], (E1)(i) implies that S,(¢, B) :== E[Y(¢) exp(B'Z)] is, for each ¢, infinitely
differentiable at each B, and that the derivatives can be evaluated by differen-
tiating inside the expectation. Similarly (E1)(ii) implies that the same is true of
Sk (¢, B). Thus, in particular,

ad
%Sx(t,ﬁ) = Skz(t, B)
and |Sg,(¢, B)| < =, for each ¢. Hence
a (S S Sk S
(7.1) %(—‘—S%(t,ﬁ)) = Silz(t,ﬁ) - —%(t,ﬁ)

and if the right-hand side of (7.1) is dominated in an open ball about each g8 by
an integrable function of ¢, then

] [ [ Skz
(72) _WK,’T(B"Q) =-E AT(S_I(T’B) -

B
We now show that (E1) yields the required dominating function.
Skz xSz Skz Sy S,
s, — (£, B) - S? (t.B)| <| 5= + g:(t,ﬁ) S—l(t’B) :

Applying Holder’s inequality with ¢ > 1 and 1/q + 1/r = 1, gives
(E[Y()])"""
(Elexp(—B'Z/n)])"

ISkz(t, B) = |E[Y(¢)K(Z,t)Z exp(B'Z)]l
(7.4) <E[Y(¢)k(Z)w(¢t)|Zlexp(B'Z)] by (E1)(ii)
< w(t)(E[Y()])(E[R(Z)Zlexp(rB'Z)])"".

(7.3) Sy(t,B) = E[Y(¢)exp(B'Z)] = forall m > 0,
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[To see (7.3), put U = Y() exp(B'Z/(n + 1)), V = exp(—B'Z/(n + 1)) and ¢
n + 1 in Hélder’s inequality.] Thus with Qp(t —) = E[1;1, ] = Qr_(¢)
a1E[Y(2)] (recall the definition of Y and a in Section 3):

S = 1/g—(n+1
5 (68| sw(t)(aQr ()"

(7.5)

1/r

x(E[k(Z)12Ie®?]) " (E[e~#?/])".

Now by taking a compact (nontrivial) neighborhood & of B:
(7:6)  supElexp(~§Z/n)] = Elexp(~p,2/n)] for some B, < 2

< by (E1)(i),
sng[k(Z)'IZI’ exp(rB'Z)]

7 - E[k(Z)'IZI’ exp(rB'*Z)] for some B, € &
1/2

< (E[r(2)" ] E[121* exp(2rB, 2)))
<o by (E1),

since the expectations on the left-hand side of (7.6) and (7.7) are continuous
functions of B. Applying similar arguments to S; and S, gives

SkSz
St
where A is a constant and 0 < y < 1 by appropriate choice of ¢ and 7 in (7.5)
(in particular, 1/q > 5. By choosing ¢ close to 1 and 7 close to 0, y will be
arbitrarily close to 0; the resulting A will then be very large, but that is of no

consequence.) Hence, since w is bounded, it is enough to show that
E[A. Q7Y (T - )] <

(7.8)

Skz = -y
S_l(t’ B) - (t’ B) SAw(t)QT(t _) for all B e %,

E[A.Q77(T -)]

IA

[ “Qr(t —) dQr(t)

= - ['[Qr-@7'(x))] " ax

< @

2

1
< | aVdx =

fo 1-vy
since for any survival function F (right continuous) F_(F '(¢)) > ¢ and

1>y > 0. (The first equality is from the change of variable theorem.) Thus
(7.2) holds. O

Lemma 7.3. Suppose that (E1) and (E2) hold. Then Wy (B,Q)/3B is
negative definite, and hence Wy (B, Q) is strictly monotone.
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Proor. Let Q12 denote the marginal distribution of (Z, T, B). For each ¢
and B, define v = v, ; to be a probability measure such that

dv (2.5, B) = exp(B'z)llszt]B
dQ(lz) T S,(t, B)

Let E, denote expectation with respect to v. Then, for all a # 0,

[ Skz Sk Sz
a S_l(t’B) - S—lz(t,B) a
(79 - (B,[K(2,6)Z] - E[K(Z,0)] E[Z])a
= %Eu[a'(K(Zz»t) - K(Zpt))(zz - Zl)'a]’

where Z;, and Z, are independent and are distributed as Z. Equation (7.9) is
nonnegative for @-almost all ¢, and for all probability measures v, by (E2).
Further, by the strict inequality required in (E2)(iii) and the nondegeneracy in

(E3), )]

Proor or THEOREM 3.1 (Existence and uniqueness). The proof will use the
following two results from Ortega and Rheinboldt (1970).

B
is negative definite for all 8. O

Sk
WK AB,Q) = *E[ (—(T B) —

6.3.4 (Existence). Let C be an open, bounded set in R? and assume that
F: C c R? » R? is continuous and satisfies (x — x,)F(x) < 0 for some x, € C
and all x € dC (the boundary of C). Then F(x) = 0 has a solution in C.

5.4.4 (Uniqueness). If F: C c R¢ - R% is continuously differentiable on an
open convex set C, € C and the derivative, F(x), is positive definite for all
x € C,, then F is one to one on C,,.

By Lemma 7.2, Wy (B,Q) is well defined for all B and is continuously
differentiable in 8. By Lemma 7.3, the derivative of the estimating equation is
positive definite. Thus, by the uniqueness result 5.4.4 [Ortega and Rheinboldt
(1970)], W is one to one.

Consider a fixed g € C, = {B € R?: |8| = 1}. We show that np'Wx .(nB) <
0 for n sufficiently large. Further, since Wy , is a continuous monotone
function of B and since {B: |8| = 1} is compact, there is some M, such that
B'Wy (B) < 0 for all B with IBI = M. For each B, let

E[BK(Z,t)exp(nB'Z) 11 ]
E[exp(nB’Z)I[TZ,]] ’
By (E2) and the argument proving Lemma 7.3, f(¢,B8,n) is, for each ¢, an

Sgx
f(t B’n) =

31( B)—B (t np) =
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increasing function of n, and f(¢z, 8,n) - B'K(z*(B,),t), where z*(B,?) is
such that

B'z*(B,t) = esssup{B'Z: T > t}
> esssup{B'K(Z,t): T > t} = ¢(¢,8) by Lemma 7.1.

It has also been shown above that |W ,(B)| < « for all 8. Thus, by monotone
convergence, (Sg/S; is monotone in B)

B'Wy .(nB) = E[A,BK(Z,T)| - E[A,.f(T,B,n)]
- E[A,FK(Z,T)] ~ E[a, lim £(T, ,n))|

(7.10) <E[A.BK(Z,T)] - E[A,¢(T, B)]
- E[A(E[BK(Z,T)IT,A] - &(T, B))|
<0 by (E3),

for all directions B. Define D,, =: {B: |B| < M}. Since Wy (-, @) is continuous
in B, there is an M, sufficiently large, such that

B'Wy .(B) <0 forB € dD,,.

For suppose there is no such M. Let K, :={B € C;: B'Wg (nB) = 0}. If
r>s, then K, C K, by the monotonicity of Wy , (Lemma 7.3). [Since
Wy ./0B is negative definite, it follows that, for each g € C}, B'Wy (np)is a
decreasing function of n.] K, is a compact set, since Wy , is a continuous
function; by supposition K, is nonempty for all n. Thus K, =N ,K, isa
nonempty set. But this contradicts (7.10).

Thus Wy .(8,Q) = 0 has a solution in D, for some finite M, by the
existence result 6.3.4 [Ortega and Rheinboldt (1970)]. This completes the
proof. O

LEMmMmA 7 4.

(A) Suppose that (E1) holds. Then for each a € R? there exists a compact
neighborhood %, (which contains an open ball) about a such that S,, Sz, Sk,
Sk, and Sk2 are bounded on [0,7] X #,.

(B) If, in addition, inf, . ,; P(Y(t) = 1) > 0, then S, is bounded away
from 0 on [0,7] X 4,.

Proor.
ISkz(t, B)l = E[K(Z,t)Z' exp(B'Z)Y(1)]l
< E[k(Z)w(t)Zlexp(8'Z)] by (E1)(ii)
. 9 1/2
< w(t)(E[k*(2)]| E||Z” exp(28'Z)]) "~ by Cauchy-Schwarz.
Hence, by (E1), [|Sk(-, Bllo < .
Now, by the theory of Laplace transforms, (E1)3) implies that
E[|Z|" exp(B'Z)] < = for m = 0,1,2 for all B, and that they are continuous
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functions of B. Thus, by the dominated convergence theorem, for m = 0,1, 2,

sug7 E[1ZI" exp(B'Z)] = E[IZI" exp(B'sx Z)] < =,
BE%,

for some B, (depending on m only) in %, (since %, is compact). Hence Sk,
is bounded on [0, 7] X &,. Similarly, so are S;, S, Sx and Sge.
By Hélder’s inequality [as in the proof of Lemma 7.2, (7.3)],

Sy(¢,B) = (E[Y()])"(E[exp(—-B'Z/(n — 1))]) " forallyp > 1.

By the continuity of E[exp(B'Z)], there exists, for any compact %, c R¢, a
B« € %, such that inf,., Elexp(-=B'Z/(n — 1)] = Elexp(-BZ/(n — 1)]
> 0 by (E1)(). Also, inf, ¢, ,; E[Y(#)] = inf, ., ,; P(Y(¢) = 1) > 0 by supposi-
tion. Hence S, is bounded away from 0 on [0,7] X 4,. O

LEMMA 7.5. Suppose that K(t) = K(Z,t,P) is a random element of
DI0, 71%. In the iid case (E1) implies that there exists a (full dimensional)

neighborhood %, of B, such that for any P in the Cox model with parameter
Bo; ford =Z, K, KZ, K? and “1” (i.e., S,),

sup sup IS, (¢, B) — S,(¢,B) -, 0,
tel0, 7] BEQO

for some limiting function S (¢, B). Further, the limiting functions S,(t,- ) are
continuous in B € %,, uniformly in t € [0, 7].

Proor. Use the uniform law of large numbers for D[0, 1] random variables
[Rao (1963)] and the generalization of this result given by Andersen and Gill
(1982), Theorem 3.1. [See also the proof of Andersen and Gill (1982), Theorem
4.1.] By the uniform law of large numbers, it suffices to show that there exists
a compact (full dimensional) neighborhood %, of B, such that for J = Z, K,
KZ, K? and 1,

E[ sup Y(t)J(Z,t)lexp(B'Z)| < .
telo,7], Be B,
By (E1), for all B € R¢, E[sup, <o, Y(t) exp(B'Z)] < Elexp(B'Z)] < », and
E[ sup Y(¢)K(Z, t)lexp(B'Z)] < llwll( E[k2(2)] E[exp(28'2)])"* < .
telo, 7] !

Without loss of generality, take &, to be the closed ball of radius «, say, about
Bo. Now

k
lz2l < Y 2l = u'z,
i=1

where z; is the ith coordinate of z and u is a vector of 1’s and —1’s of length
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d. Let U denote the 2¢ different vectors u. Then

E sup  Y(¢) exp(B'Z)] SE[ sup {exp(B’Z)}]
tel0,7], pe 4, Be %,

< E[exp(BoZ + alZl)]
< E[ Y exp((B, + au)’Z)]

uelU

= Y Elexp((B, + au)'Z)]

uelU
<% by (E1)(i).

Similarly, for J = Z, K, K? and KZ, Elsup, c(o,.1, s 3, YOW(Z, D)lexp(B'Z)] <
«. Hence S, ; converges uniformly to S.

By dominated convergence, S;, S;, Sk, Sk, and Sk: are continuous
functions of B € %, for each ¢ € [0, 7], uniformly in ¢ € [0,7]. O

Proor oF THEOREM 4.1 (Asymptotic normality). The proof follows the
recipe of Theorem 7.2.4 of Bickel, Klaassen, Ritov and Wellner (1993), as given
in Theorem A.1. In particular, we shall verify conditions (A1)-(A5) of that
theorem.

Conditions (A1)-(A3) follows from Theorem 3.1 and its proof [see, in
particular, Lemma 7.2 for (A3)]. It remains to verify (A4') (by Lemma A.2) and
(A5).

To see (A4') write

[(W(B,R,) - W(B,, P)),,|
<|(W(B,P,) ~ W(B, P)),,| +|(W(B, P) - W(By, P)),,|-

We show that the first term above is 0,(1), uniformly in B in some neighbor-
hood of B,, and that the second term tends to 0 as B — Bo:

(S, S, S,
/‘ ( SK;;Z _ K, Z)(t, B) dlp,(lz)(t)
0

2
nl §nl

\W(B,P,) — W(B, P)| =

+(Skz  SkSy "
_/o(S—l - _ST)(t’B) dP®(t)

<

(S Sk S;

San,,Z _ §nIK,,g,nZ
§nl Sil

Skz _ Sk

—(S—l - S—f))(t,ﬁ)’dﬂj’ﬁz)(t)
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The first term is 0,(1) by the weak law of large numbers since, by Lemma 7.4,
T SKZ S KSIZ

—_— - t,B) dP®(t

/ ( 5, 57 |LAAPAW)

The second term is dealt with in two parts. Let %, denote a compact
neighborhood of B, (as in Lemma 7.4):

< oo,

S
sup f Suez _ Skz (t B) dP®
Be#B,"0 nl
S _ ! S Sez|”
< sup n(l, K)Z(t, B) + sup nKZ _ KZ
Be %, Snl 0 Be %, Snl Sl 0
nZ !
< sup <, (2,¢) — K(2,t)lle
Be %, Snl 0
SnKz ! Snl - S1 ! SnKz - SKZ !
+ sup sup |——=——| + sup | —————
Be %, 0B %, Sl 0 BeH, Sl (1]
= Op(]')’

by condition (K1) and Lemmas 7.4 and 7.5;
A

sup

Be %, S?zl S12 “0
SK ( SnZ SZ) (Snﬂ(n SK) /nZ
= sup ||—= - — | + —_—
Be X, Sl Snl Sl §n1 Sl Snl 0
< sup SK T sup Snz :S'_Z_ T
h Be %, Sl 0BE %, S Sl 0
+ SnIK,, SK SnZ !
sup — —| sup
Be %, S S, 0BE %, Sn1 0
=0,(1)

by the boundedness of supy . 4,/Sk/S:| and supjg ;1x 3,/S,z/S,1| for suffi-
ciently large n (Lemma 7.4) and by an argument identical to that used to show
that supy ,x2,/Sni,z/Sn1 — Skz/S1l = 0,(1). Hence supgc g, W(B, P,)
—-W(B,P) =0 »(1. It is thus sufficient to show that W(B, P) is continuous in
B at B,, and thls follows from the continuity of the integrand uniformly in
t € [0, 7] [Lemma 7.4(B) and 7.5]. Hence (A4') is satisfied.

Next we verify (A5). The form of the influence curve can be motivated by
formally differentiating W with respect to the measure P. The rigorous proof
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below is quite long. The argument B, which is fixed at B,, will often be
dropped in the rest of this proof, for example, Sk () = S, (¢, Bo)-

W(Bo,P,)
= [k, ap - jg%d[@,@(t)
nl
= W(B,, P) + fOTde(u»,gu)—Pw) + jOT/K,, dP®

‘I‘SK
— | —d(P® — p®
[ 5 a@e - P2

(*) _ff SnK SK n & _ & Snl_Sl dP(z)
S, s, '8, 8| s,

+ij|}<,, d(PW — Pw) — f;[(u«n - K- K,)dP®

Sk Sgl[S,; — S
nK K K nl 1
_ __+__"_____ d[p'(l2)_P(2)
f( S, S, Sl[ S, ])( )

_f Snik, &_ S"K_%jL& Sk[Sm =5 dP®.
0 Sn1 S1 Sl S1 Sl Sl Sl "

The identity is easily seen to hold by cancelling terms that have been added
and subtracted to the right-hand side of (*). Recall that W(B,, P) = 0 [as-
sumption (A1)], the next four terms are all linear and the final four, which we
shall refer to as A, B, C and D, respectively, will be shown to be o0,(n~1/2).

A: This term may be written as a V-statistic and will be dealt with later.

B: Under (KD, Bl <K, - K = K,ll. =0 o(n"17%), whereas under
KDAID, Bl < llw, — w — w,ll6[l2ldPP(2) = o0,(n~ 1/2)

C: Another V-statistic—see below.

D: Let || - |o denote the supremum norm over ¢ € [0, r]. Under (K1)I),

o <| S =S | Sme Sk
S, || S, Silp
” sup|iK,(2,") — K(z,") — K,,(z,~
Sl oze@
[ Suk, Sk
n n P(Z)
MU B )(t,ﬁo)dn :

since [IS,kllo < [IS,,/l6llKll. and IS, o < IS,,llollK,ll. and so on. Now
||(§,,1 S1/84llo = 0,(n"1/2) by Lemma A.3 of Tsiatis (1981) [or directly
using the central limit theorem of Pollard (1982)], and as was shown in
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verifying (A4),

T

S, S
=6 (1).

Snl Sl 0

Also IS ,,, /8,5 is finite and |IK, — K — K ,ll. = op(n‘l/z). Hence the first two
terms are 0,(n~'/?). That leaves

f "[Suk, _ Sw, dP®
ol Sy S, "
which is shown to be 0,(n~'/?) in Lemma 7.6 following this proof.

If instead (K1)XII) holds, replace the second term on the right of the
expansion of |D| by [IS,z/S,illollw, — w — w,llo = op(n‘l/z).

)

Returning to term A,

"[K, d(P® — P®) = [ [yg(x;2,t) d(P, — P)(x) d(PSM) — P®)(z,t).
A ( )= (

This is a V-statistic with (centered) kernel v (X, X,) = A 1¥x(X,; Z,, T;) and
hence, by (K1) and Appendix B, A = o,(n"'/?).
Term C will be dealt with in pieces:

T SnK SK SK SK §n1 - Sl
—_ - 4y 2 = 1 d(P® - p@
fo( s, S, S8 S| s (P )

=f’(§"K—_SK SK(M))d(pr(f)_P(?))
1

0 S] Sl S
L[ - po)
0 Sl "
=K+ F, say.

F= [ forto, ) d(P, - P)(22) d(P2 - PO)(1),
where

vp(%x, X9) = E[‘/’K(xﬁ Z,ty) eXP(BIoZ)Y(tz)]/S1(t2)7

another V-statistic. Recall that ¢*(x, 2) = sup, <o ,jl¥x(x; 2, ), so, by Cauchy-
Schwarz,

‘

B[4z (21, 2)"] Blexp 280 2)])
0

for all ¢, € [0,7]. Thus, by (E1) and Lemma 7.4, |vg(x,, x2)|2 =
O(E[y#(xy, Z)?]) and F = O,(n~'/?) by (K1). Similarly,

E = [ [vp(x1, %5) d(PS? = PUD)(zy) d(PP - PO)(2,),
0

Up( X4, X <
(1, %2) = | -
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where

exp(Bo21)
2)] [t1>t213152~

Ug(%q, %p) = [K(zl,tZ) S,(t3)

[Recall that Y(#) = 1,7, ,,B and use the convention that integration with
respect to P(x) gives the expectation over B, too.] Now

Sk 2exp(2[3' 2;)
vE(xl,tz)2 = [K(zl,tZ) - S_l(tz)] m%‘Ll[zlztz]Blsz

T T

S,

= ME?(2,) exp(2B,2,),
where M is a constant, by Lemma 7.4 and condition (E1). Thus, by (E1),
Eug(X;,T;)" < ME[k*(Z;) exp(2B,Z;)] < .

Hence, by the theory of V-statistics, Corollary B.1, E = o,(n~"/?).

We have shown that the remainder terms A through D in (%) are indeed
0,(n~1/?), and that the other terms may all be written as the sum of iid
random variables. Thus, by the central limit theorem, we have established that

St

0

(Mkomwm+ O ) exp(2By2)

0

Vn Wi (Bo, P,) = Vn [é(x, P) dP,(x) + 0,(1)

and that E[¢(X, P)] =

It remains to prove that ¢ € Ly(P).

Using the inequality (X ,a,)® < mZ{" a3, it is enough to consider the
square of each of the nonconstant terms in ¢. There are six terms all of which
can be shown to have finite second moment. The following argument for the
fifth term is the most involved:

‘rE[l»[’K(Xl;Z27t)eB,0Z2Y2(t)|X1] 2 ’

Eu 0 @Wﬂ]
TE[II,;E(XI’ 22)2e2B’ozz|X1]

<E|[ S%(0)

dP®(t)| by Jensen (twice)

T F1\1/7 ! , 1 1 1
Iz O(E[lﬁz"é(Xl,zz)z ]) (E[e*%2])/* forany r> 1, —+ =1

<

< ®© by Lemma 7.4 and conditions (E1) and (K1).
This completes the proof. O

Extending the proof to cover estimators that use all the data. It is possible
to extend the proof of Theorem 4.1 to cover estimators that use all the
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observed data. Rather than adding to the complexity of this paper, we merely
sketch the additional steps. The basic idea is to extend the arguments of the
existing proofs to cover the case of a slowly increasing end point 7, := inf{:
E[e??1 1 . 5] < n™°} for some a € (0, 1), and to show that the contribution to
the statistics from 7, to « is negligible.

The proofs of Lemmas 7.1-7.3 and Theorem 3.1 all hold without modifica-
tion. Conditions (A1)-(A3) still hold for the estimating equations with 7 = o,
Thus the only difficulty in proving asymptotic normality is to show that (A4')
and (A5) still hold.

To show (A4’), one needs to look at terms like

SnKZ - SKZ "
el s,
1

pBe#

0

Essentially, one can use Bennett’s (1962) exponential inequality as extended
by Alexander (1984). Theorem 1 of Lai and Ying (1988) is an application
similar to our needs. Care must be taken if one wants to work in the generality
of unbounded Z and data-dependent K. The basic result gives

= pn~1/2+a/2+0  forall > 0.
0

SnKZ - SKZ

sup S
1

Be#

From the proof of Lemma 7.2 it is clear that

S, S?

sup -0 asn—ow®

Be B

fw( Skz Sk Sz )(t, B) dPO(¢)

and the convergence holds in probability for the empirical version.

Bennett’s exponential inequality is again the key to showing that (A5) holds
on [0, 7,]. Notice that the V-statistic argument holds even when one has a
sequence of kernels whose second moments are increasing. Greater care is
required to show that the contribution from (r,, ) is negligible, since negligi-
ble now means o,(n~'/2). In (A5), however, we are working with a fixed B,
and (at least when the covariates are bounded and K is not data-dependent)
Lemma 2 of Ying (1991) can be used directly to obtain the desired result. O

Since Y(t) = 1, . 4B;, let P® denote the probability measure for (Z, T, B),
that is,
P®)(z,5,1) = P'9(z,s)a and P®)(z,s,0) = P1?(z,5)(1 - a).
Similarly, P$®) is the empirical measure corresponding to P2,

LEmMMA 7.6. Under conditions (E1)-(E3) and (K1), for t such that
inf, o, P(Y(¢) = 1) > 0,

"(Snic — Sg
f Znis — %% ) (1, By) dPD(t)
0 Sy

= 0,(n"12).
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Proor.

7( Snk, = Sk
/ (—"s;—")(t) dP(t)

7[ Snk, = Sk [ Sni, = Sk
= (7| 22% PRa ) gp@ nky — DK, @ _ p@
/0( 5 )dP +j0( 5. d(P® - P®).

Now the first term is a V-statistic, with kernel

T 1(T1 > t)B

- ! B0z . @
v(Xy, X) = [ =g e (X5 2, 1) dPOY),
for it is equal to

/ [ 1g>(;>) P (2,t) d(PE — PB)(2, s, B) dPA(t)

_ f /f §>(ft>) ePoryy (x;52,t) d(P, — P)(x)

Xd(P{® — P®)(z,s, B) dPP(t)
T 1(s>t) Blz 2)
- /f{ S0 Y (x;2,t) dPP(¢)
xd(P, — P)(x) d([P’,EB’ - P(B))(z, x, B)
by Fubini. Thus, by (K1)(ii),

2

1

2
v3(X,, X,) < ( ) (eP 2y (X, zl))"’.

0
By Lemma 7.4, Holder’s inequality (K1) and (E1)(),
Ev¥(X,X) <» and Ev%(X,,X,) < for X,, X, independent.

Thus the hypotheses of Corollary B.1 for the kernel of the V-statistic are
satisfied and

*Snk, — Sk
—n o dP®
j(; S,

The remaining term is another V-étatistic, with centered kernel

=0,(n?).

L¢,>e9B1 e (%45 2y, t3)
Si(t3)
Once again apply Corollary B.1. The hypotheses are easily checked since the

kernel is bounded in its third argument. |w(x, x, x3)| < CePor1yf(x,, 2,)
where C = |[1/S,l[5. Hence, using the inequality |2E[AB]| < EA% + EB?, it is

o(xq, Xg, X3) =
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enough to show that
B[4 (0 (Xy, )] <0 and  E[e"7(y(X, 2))] <.

These follow from Holder’s inequality and conditions (E1) and (K1). Hence the
V-statistic is 0,(n~2).
This completes the proof of the lemma. O

Proor oF CoROLLARY 4.2 (Case-cohort). When the covariates are time-inde-
pendent, Theorem 4.1 is applicable and it is necessary only to show that on the
Cox model the parameter defined by the case-cohort estimating equation is the
Cox model parameter B, and then to evaluate the asymptotic variance.

We know that 3 will be consistent for B, on the model if

W Z(t
E[EY[(;)(;:;ZS{ | Blzeir -8 -1 - ett), say
Now
E[Y(£)eP?Z(t)] = aE[Yy . e Z(t)]
and

E[Y(t) e%0] = aE[1 1, ePo%®],
by independence of B from (Z, T, A). Thus [cf. Sasieni (1992), Lemma 2c]

E[Y(t) eP70Z(t)]  E[lg,,eP"VZ(2)]
E[Y(t)eﬁ'oz(t)] N E[l[T ]eﬂ’oZ<t>]

=E[Z@)IT =¢, A =1].

Hence, by Theorem 4.1, Vn (8 — Bo) is asymptotlcally distributed as a normal
random variable with mean 0 and variance given by E(/(X))®2.
For the case-cohort estimator,

- S,
l(Xj)=2—l j J(T) ‘fJS( )

+Z;(¢) ePo%i (t)l['.r >0B;

_ - dP(Z) t
== 2
BoZi(t)] B.
™9z € (72077 00
+[o sl(t)_sl(t) dP®(¢t)},

where

R f(822 —(—5) )(t)‘dP‘Z)(t)=EVar(A,Z(T)|T,A),

since by the independence of the cohort S,/S(¢) = e(?).
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Now,
E(si(X))*
= E[A(Z(T) - ¢(T))*]
( [z - e(t))L;”BdP@m) }
BoZ(®) 1[T>t] )
~2E|A,(Z(T) - e(T))f (Z(t) —e(t)y po (t)
=3 +R,, say,
where
R, =aE| [ [\(Z(t) - (1)) (Z(x) - e(u)y
eﬂb(Z(t)+Z<u»1[T2tVu] . .
S(0)S(x) dP®(u) dP®(t)

g dp®
- 2aE[ [A2(T) - e(T))(2(1) - e(yy enseng ) (t()’) ]

Now, a little algebra gives [Sasieni (1992), Lemma 2b]

dP®(t)  S(t)
dAo(t)  a

and, for any function ¢, E[A ¢§(T)|Z] = [58@) eP*DE[1,1. . |Z1d A (#). Thus

R, = a‘lE[fOTfOT(Z(t) —e(t))(Z(u) — e(u))' ePoZ®+Zwy

Xl[TZt\/u]dAO(u) dAO(t)]
— ZE[LTLT(Z(t) - e(t))(Z(u) — e(u))'eﬂb(Z(t).q.z(u»

X l[th]l[tz u) dAg(u) dAo(t)]

T

=2(a"t'- 1)E[/ fOT(Z(t) —e(t))(Z(u) — e(u))' ePoZd+Zwy

0

XLy dAo() dAo(t)|
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It remains to extend the proof of Theorem 4.1 to permit bounded time-de-
pendent covariates when K(Z,t) = Z(¢). Lemmas 7.1-7.6 extend easily. The
key step in the proof of the theorem that presents difficulty is showing that
ID| = 0,(n~'/?) since without some smoothness constraint on the covariate
paths [S,,; — S,ll # O,(n~'/2). But for the case-cohort estimator K, = K and
K, = 0. Thus

T § 1 - Sl S VA SZ
D| = k = - = | dP@
A s (5n1 5, ) %
_ f" S, =S Snz =8z _ Snz [Sa — S dP®
0 Sl S1 Snl Sl "
TSI_S]. SZ_SZ SZT T§1_S1)2
< z - dP@| +|| === ———— | dP®.
‘[0 S1 ( S1 " nl 0'/;) Sl

Proceed as in the proof of Lemma 7.6:

T Snl - Sl SnZ - SZ T §nl - Sl §nZ - SZ
dpP® = d(P® — p®@
A [ A [

T Snl_Sl SnZ—‘S’Z
+ P®,
(s

The right-hand side is the sum of two V-statistics with bounded kernels. The
first kernel

exP(B'o Z(Ts) )1[7'1 > T3]Z2( T;) eXP(B'ozz( Ts))lm >Ty)
S(T5)”

k1( X, X,, Ts) =

)

and the second ky(X,, X,) = [Jk(X,, X,,t) dP®(¢), by Fubini.
Arguing in this way shows that |[D| = 0p(n~1/2). O

APPENDIX A: GENERALIZED M-ESTIMATORS

Given a model & with an identifiable parameter B8, regard B as a function
from & to R™. Consider W: R™ X 2 — R™ such that W(B(P), P) = 0 for all
P € #. A reasonable estimator, B(P,), may be defined by W(B(®,),P,) = 0.
Asymptotic properties of such an estimator may be studied by applying a
one-step Taylor expansion to the implicitly defined functional B.

Under conditions (A1)-(A5) below, Bickel, Klaassen, Ritov and Wellner
(1993), Theorem 7.2.4, prove such a result. Their proof relies heavily on earlier
results of Brown (1985) and Ritov (1987).

(A1) There exists B: 2— R™ such that B(P) satisfies W(B(P), P) = 0 for
all Pe £
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(A2) With probability tending to 1, W(-,P,) satisfies: .

(i) W(-,P,) is monotone [i.e., for all u € R*, t € N, the map A — u'W(¢ +
Au,P,) is increasing].

(i) W(B®,),P,) = 0 for a unique B(P,) € N, where N is some open convex
subset of R™.

(A3) W(-, P) = (W(-, P),...,W,_(-, P)) is differentiable, and

oW,
5 (B(P), P)Lx,n

we) - |
is nonsingular.
(A4) Set B, = B(P). For each fixed y € R™,
Vi (W(B, + n™'%y,B,) = W(Bo,P,)) = W(P)y + 0,(1).
(A5) Vn W(B,,P,) = Vn [y(x, P)dP, + 0,(1), where

¢ € LY(P) = {l/l(‘,P): Jw(x,P)dP(x) =0, [yy'(x, P) dP(x) < oo}.
THEOREM A.1 [Bickel, Klaassen, Ritov and Wellner (1993), 7.2.4]. Under
(A1)—(Ab) the generalized M-estimator j3, implicitly defined by
W(B,,P,) =0

exists and is unique with probability converging to 1, and when it exists, it is
asymptotically linear with influence function —W~YP)y(-, P).

REMARK. If (A1)-(A5) hold for all P € &, then the result holds whenever
X,,..., X, areiid P for any P € &.

The following lemmas will be useful.

LeMMa A.l. (A4) is implied by (A4):
(A4") For each vy € R™,
sup{{W(B,P,) = W(B,, P)I: IB = Bol <n~'/%y} =, 0,
where W(-,P,) = (W(-,P,),...,W,(-,P,)) and
oW,
B,

W(B,P,) = l (B,P,,)]

mXm

Proor. For each fixed n,
Vn (W(Bo +n"1%y,P,) - W(Bo,P,))
= W(B*,P,)Vn (By + n~ 2y — By) = W(B*,P,)y,
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where

. oW,
W(B*’Pn) = [@—(nylpn)]
J mxm

and each B} lies on the line segment between B, and B, + n™'/?y.

Now, by (A4), W(B*,P,) = W(B,, P) + 0,(1). Hence (A4) holds. D

LEmMA A.2. (A2)() is satisfied if:

(A2)(i") With probability tending to 1, W(B,P,) is positive semidefinite for
all B.

Proor.
wW(t+u,P,) — wW(t+2u,B,) = w'W(t+ Xu,P,) (A = X)u
= u'W(B*,P,)u(Ar — A°) for some B*.
Hence u'W(¢ + Au,P,) is increasing (nondecreasing) in A if W(B,P,) is posi-
tive (semi-) definite for all . O
APPENDIX B: V-STATISTICS

The following is a brief summary of V-statistics for the proof of Theorem
4.1. Proofs of the results stated here and further details may be found in
Serfling (1980), Chapter 5 and subsection 6.3.2.

DEFINITION 1. A V-statistic, V,

", is a functional of the data X;,..., X,
which can be written in the form

1 =
V- 5 o L (X X,).
i;=1 intl

0,(+) is called the kernel of the V-statistic.
Suppose that [ - [§,(xq,..., %, )12, dP%(x;) exists for all values of

Xy,...,%, and for all 2™ vectors, a, of 0’s and 1’s. Then, if X,..., X, are iid
P, one may rewrite the V-statistic in terms of a centered kernel, v,:

V,,=]m[un(xl,...,gcm)i:fnlld(p,,—P)(x,.).

LemMa B.1 [Based on Lemma 6.3.2.B of Serfling (1980)]. Suppose that
EplvX(X,,..., X, )1=0(n®) forall1 <i,...,i, < mandsome a > 0.Then

(B.1) Ep

([ fvn(xl,...,xm)f[ld([lﬂ’n - P)(xi)) } = 0(n"m+9),
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CoroLLARY B.1. Suppose that Eplvi(X;,...,X; )= 0(n*) for all 1<
i1y---sl, <m and some a = 0. Then

(B.2) [ . fvn(xl,. cXy,) ﬁd(Pn - P)(x;) = Op(n("‘_m)/z),
i=1

Proor. (B.2) follows immediately from (B.1) by applying Chebyshev’s in-
equality. O

ReEMARK. The lemma is a trivial extension of Serfling’s result to allow a
sequence of v,. Such an extension is only used in order to study estimators not
restricted to a finite time interval [0, 7] for 7 < .
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